BookmarkSubscribeRSS Feed
🔒 This topic is solved and locked. Need further help from the community? Please sign in and ask a new question.
SMcelroy1287
Obsidian | Level 7

Hello! Thank you fro your help in advance. I have a dataset containing the outcome variable 1=case and 0=control, group_id= the matching controls for each case and the case, propensity scores for every case and control. I would like to select the propensity score of the case and use this value to generate a new variable that is the difference between the case's score and all the control's propensity scores in the same group.

 

Outcome    Group_id    Propensity score         New Variable (control propensity score-case propensity score)

1                   1                     .2378                       0  

0                   1                    .2637                       (.2637-.2378)

0                   1                     .2987                      (.2987-.2378)

0                   1                     .2309                      (.2309-.2378)

0                   1                     .2134                      (.2134-.2378)

0                   2                     .0023                      (.0023-.0324)

0                   2                     .0123                      (.0123-.0324)

0                   2                     .0224                       (.0224-.0324)

1                   2                     .0324                        0

0                   2                     .0128                       (.0128-.0324)

 

I have about 45,000 groups I need to calculate this difference for. Thank you very much for your time!

1 ACCEPTED SOLUTION

Accepted Solutions
Astounding
PROC Star

While there are a few ways, this is probably the most likely to work without hiding potential error situations:

 

data want;

do until (last.group_id);

   set have;

   by group_id;

   if outcome=1 then case_propensity = propensity_score;

end;

do until (last.group_id);

   set have;

   by group_id;

   new_variable = propensity_score = case_propensity;

   output;

end;

run;

 

Assuming your data set is sorted by GROUP_ID, the top loop finds the CASE observation for a GROUP_ID.  Then the bottom loop reads the same observations, calculates, and outputs.

View solution in original post

4 REPLIES 4
art297
Opal | Level 21
proc sort data=have out=want;
  by Group_id descending Outcome;
run;

data want (drop=hold);
  set want;
  by Group_id;
  retain hold;
  if first.Group_id then hold=Propensity_score;
  new_variable=Propensity_score-hold;
run;

Art, CEO, AnalystFinder.com

 

Astounding
PROC Star

While there are a few ways, this is probably the most likely to work without hiding potential error situations:

 

data want;

do until (last.group_id);

   set have;

   by group_id;

   if outcome=1 then case_propensity = propensity_score;

end;

do until (last.group_id);

   set have;

   by group_id;

   new_variable = propensity_score = case_propensity;

   output;

end;

run;

 

Assuming your data set is sorted by GROUP_ID, the top loop finds the CASE observation for a GROUP_ID.  Then the bottom loop reads the same observations, calculates, and outputs.

sas-innovate-2026-white.png



April 27 – 30 | Gaylord Texan | Grapevine, Texas

Registration is open

Walk in ready to learn. Walk out ready to deliver. This is the data and AI conference you can't afford to miss.
Register now and lock in 2025 pricing—just $495!

Register now

How to Concatenate Values

Learn how use the CAT functions in SAS to join values from multiple variables into a single value.

Find more tutorials on the SAS Users YouTube channel.

SAS Training: Just a Click Away

 Ready to level-up your skills? Choose your own adventure.

Browse our catalog!

Discussion stats
  • 4 replies
  • 2538 views
  • 2 likes
  • 3 in conversation