BookmarkSubscribeRSS Feed
Schtroumpfette
Obsidian | Level 7

Hello!

I would like to make sure my SAS code is correct in identifying only the first occurrence of either of two outcomes, dka or hhs (meaning the first encounter where either outcome occurs).   I would like to also identify the first composite outcomes (where both outcomes occur in the same encounter).   Outcomes will be analyzed separately in a case control study. 

 

I included mock datasets samples for your convenience (MALIB.DKA_HSS_SORTA6 and malib.DKA_HHS_first) and I indicated this clearly in the attached SAS code.  Thanks! 

 

Columns in the input dataset which only has dka and/or hhs cases based on diagnosisIDs:

  1. UniqueID: unique identifier specific to the patient.
  2. encounterID: hospital visit associated with the patient.  Each patient can have multiple encounters throughout his existence in the cohort as they were admitted/discharged multiple times.
  3. dka_event: binary 0 or 1, event occurred or not for the patient in a specific encounter.
  4. hhs_event:  binary 0 or 1, event occurred or not for the patient in a specific encounter.
  5. Discharged_date:  The date the patient was discharged for that encounter.  
  6. DiagnosisID: diagnosis_ids for either of the two outcomes: dka or hhs.  There are multiple ids for each outcome and it is possible one encounter lists multiple ids.  The IDs for either outcome are different. 
  7. Alldischarge: formatted dischaged_date.

Output dataset:

Same as above and these two addiitonal columns:

  1. Dka_date: based on alldischarged date which is the date of first occurrence
  2. HHS_date: based on alldischarged date which is the date of first occurrence

No errors in code when I ran it each step or sql.

 

In the final datasets, there are duplicateIDs, but different encountersIDs for each patient. 

 

Thanks so much for all your help!

Nisrine

/*Acquire diagnosisIDS */
proc sql;
create table malib.dkahhscases as
select encounterID,
diagnosisID
from work.f_diagnosis
where diagnosisID in (/*DKA*/ 5504, 5503, 555, 102940, 139200, 142092, 147334, 142091, 140369, 139201, 
147333, 140368, 16755 , 16756, 
				/*HHS event*/ 102941, 556, 5507, 5508 , 140966, 16758, 16757);
quit; 

/*Create binary variables 0 and 1 for outcomes of interest*/

proc sql;
create table malib.DKA_HHS as
select *,
/*DKA event*/
(case when diagnosisID in (5504, 5503, 555, 102940, 139200, 142092, 147334, 142091, 140369, 139201, 
147333, 140368, 16755 , 16756 ) then 1 else 0 end) as DKA_event,
/*HHS event*/
(case when diagnosisID in (102941, 556, 5507, 5508 , 140966, 16758, 16757  ) then 1 else 0 end) as HHS_event
from malib.dkahhscases;
quit; 

/*check if duplicate encounters but don’t use- there are duplicate encounters but don’t use the deduped dataset*/
proc sort data =  malib.dka_hhs out =duplicate1 nodupkey;
by encounterID;
run;


/*sort by encounterID*/

proc sort data = malib.dka_hhs out = malib.dka_hhs_S;
by encounterID;
run;

/*Collapse Rows to Get Unique Encounters - Keep Max Value for diagnosisID—because one encounter may have multiple diagnosisIDs for either outcome and I don’t want to loose any cases*/
proc sql;
create table malib.dka_hhs_C as
select encounterID, diagnosisID,
max(dka_event) as dka_event,
max(hhs_event) as hhs_event 
from malib.dka_hhs_S
group by encounterID;
quit;  /* grouped by */

/*this is a final table of only DKA and HHS events in the full database  - when encounterID is not deduped*/
title 'proc freq - unique encounters with diagnosisIDs of ineterst';
proc freq data=malib.dka_hhs_C;
table DKA_event hhs_event;
run;  /*DKA and HHS frequencies are higher if I don’t dedupe by encounter_ids*/

/*Dedupe by encounterID now that I collapsed*/
proc sort data = malib.dka_hhs_C out = malib.dka_hhs_CD nodupkey;
by encounterID;
run;


/*this is a table of only DKA and HHS events in full dataset*/
title 'proc freq - unique encounters with diagnosisIDs of ineterst if encounterID is deduped';
proc freq data=malib.dka_hhs_CD;
table DKA_event hhs_event;
run; /**/

/*USE malib.dka_hhs_CD*/

/*Inner Join Acquire Encounters for Adult Inpatients with 
DKA or HHS*/
/*link to encounter_patient to get the dischaged_date*/
proc sql;
create table malib.dka_hss_sortA2 as
select  a.*,  b.dka_event, b.hhs_event, b.diagnosisID
from nhlib.enc_patient as a inner join malib.dka_hhs_CD  as b
on a.encounterID =b.encounterID;
quit; /*74710 rows and 6 columns.
*/

proc sort data = malib.dka_hss_sortA2 out = malib.dka_hss_sortA3 nodupkey;
by encounterID;
run; /*zero duplicate values so deleted malib.dka_hss_sortA3 - it was a quality check only*/


*In full dataset but only with a dataset with DKA and HHS;
Title 'DKA frequency in full dataset inpatients';
proc freq data = malib.dka_hss_sortA2;
table dka_event;
run; *;

proc freq data = malib.dka_hss_sortA2;
table HHS_event;
run; *;

Title 'UniqueID - malib.dka_hss_sortA2';
proc sql; 
select count(distinct  UniqueID) from malib.dka_hss_sortA2;
quit; *;


Title 'encounter sk - malib.dka_hss_sortA2';
proc sql; 
select count(distinct encounterID) from malib.dka_hss_sortA2;
quit; /**/

/* Are there missing UniqueIDs*/  
data malib.dka_hss_sortA2B;
set malib.dka_hss_sortA2;
if UniqueID = . then output;
run; /*Some missing Unique IDs to delete later */


/*Testing to see if there are duplicate sks and there are, but no duplicate encounterIDs*/
proc sort data =  malib.dka_hss_sortA2 out = malib.dka_hss_sortA3 nodupkey; 
by UniqueID;
run; /*don't use , only for checking purposes - dataset deleted*/

/*run without deduping by UniqueID*/
proc sort data =  malib.dka_hss_sortA2 out = malib.dka_hss_sortA3;
by UniqueID;
run; /*one patient with different encounters but seems to be the same diagnosisID-- I collapsed above*/  

data malib.dka_hss_sortA4;
set malib.dka_hss_sortA3;
if UniqueID = . then delete;
run;
/*deleted missing UniqueIDs*/

/*Acquire first occurrence*/

/* Sort data by UniqueID and discharged_date */
proc sort data=MALIB.DKA_HSS_SORTA4;
  by UniqueID dischaged_date;
run; /*74325 observations and 6 variables*/

/*Reorder Varariables*/

proc sql;
create table MALIB.DKA_HSS_SORTA5 as
select UniqueID, encounterID, dischaged_date, dka_event, 
hhs_event , diagnosisID
from MALIB.DKA_HSS_SORTA4;
quit; /* 
*/

/*sort again*/
proc sort data = MALIB.DKA_HSS_SORTA5;
by UniqueID dka_event dischaged_date ;
run;

/*INPUT DATASET – included a sample*/

/*all discharge is the formatted dischaged_date */
data MALIB.DKA_HSS_SORTA6;
set MALIB.DKA_HSS_SORTA5;
alldischarge = datepart(dischaged_date); 
format alldischarge YYMMDD8.;
run;


/*Output DATASET – included a sample*/

/*Get first occurrence  */
data malib.DKA_HHS_first; 
set MALIB.DKA_HSS_SORTA6;
by UniqueID;
if first.UniqueID and dka_event=1 then DKA_date = alldischarge;
if first.UniqueID and hhs_event=1 then hhs_date = alldischarge;
run; *it worked -  74325 observations and 7 variables;

/*Is the above code for first occurrence, correct? */
/*how can I only keep the first occurrence?*/

/*Composite Outcome*/
data work.composite;
set MALIB.DKA_HSS_SORTA6;
by UniqueID;
if dka_event = 1 and hhs_event = 1 then output;
run;

/*How can I get the composite outcome based on first occurrence?*/




6 REPLIES 6
Kurt_Bremser
Super User

Since you start with dataset f_diagnosis, you should post an example for this, and for the final outcome. I have a strong feeling that the whole process can be streamlined into a few steps.

Ideally, post data as a DATA step with DATALINES in a code box, so we can recreate your dataset with a simple copy/paste and submit. If you attach a csv file, we must

  • download it from the post
  • upload it to our SAS environment
  • make guesses about variable attributes
  • write the import code

so don't be surprised if it takes time before someone answers.

Schtroumpfette
Obsidian | Level 7

Thanks for the advice.  

The input dataset below is based on multiple datasets that are very large.  This is just a sample.

  • UniqueID and encounterID are text variables
  • Everything else is numerical

Again, I would like to only keep the first occurrence for each outcome and the combined outcome - we can call it  (meaning when an encounter has both dka and hhs. 

 

Is this what you mean?  I inserted the data and the code.

/*INPUT DATASET – included a sample*/

/*all discharge is the formatted dischaged_date */
data MALIB.DKA_HSS_SORTA6;
set MALIB.DKA_HSS_SORTA5; /*Sort 5A- sorted by UniqueID dka_event and discharged_date*/
alldischarge = datepart(dischaged_date); 
format alldischarge YYMMDD8.;
run;


Data MALIB.DKA_HSS_SORTA6;
Set MALIB.DKA_HSS_SORTA5; 
Infile uniqueID encounterID discharged_date dka_event hhs_event diagnosis_id alldischarge 

1	1	25AUG2012:00:30:00.000000	0	1	5507	2012-08-25
2	2	28MAR2014:11:59:00.000000	1	0	5503	2014-03-28
2	3	29MAY2014:17:30:00.000000	1	0	5504	2014-05-29
2	4	12JUN2014:22:30:00.000000	1	0	5504	2014-06-12
2	5	19JUN2014:11:43:00.000000	1	0	5504	2014-06-19
2	6	17JUL2014:14:39:00.000000	1	0	5504	2014-07-17
2	7	29JUL2014:18:39:00.000000	1	0	5504	2014-07-29
2	8	06AUG2014:21:00:00.000000	1	0	5504	2014-08-06
2	9	28SEP2014:14:12:00.000000	1	0	5504	2014-09-28
2	10	28OCT2014:16:27:00.000000	1	0	5504	2014-10-28
2	11	03NOV2014:12:10:00.000000	1	0	140368	2014-11-03
2	12	15NOV2014:13:00:00.000000	1	0	5504	2014-11-15
2	13	03DEC2014:15:59:00.000000	1	0	5504	2014-12-03
2	14	23JAN2015:14:15:00.000000	1	0	5504	2015-01-23
2	15	21FEB2015:15:28:00.000000	1	0	5504	2015-02-21
2	16	06MAY2015:12:00:00.000000	1	0	5504	2015-05-06
2	17	06JUN2015:00:50:00.000000	1	0	5504	2015-06-06
2	18	10SEP2015:21:30:00.000000	1	0	140368	2015-09-10
3	19	13JUN2011:14:41:00.000000	1	0	5504	2011-06-13
3	20	19SEP2011:19:30:00.000000	1	0	5504	2011-09-19
3	21	12APR2013:16:05:00.000000	1	0	5504	2013-04-12
3	22	01SEP2016:14:29:00.000000	1	0	142091	2016-09-01
4	23	17AUG2012:18:05:00.000000	0	1	5507	2012-08-17
4	24	12SEP2012:18:59:00.000000	0	1	5507	2012-09-12
4	25	12OCT2012:14:12:00.000000	0	1	5507	2012-10-12
4	26	28FEB2013:13:42:00.000000	0	1	5507	2013-02-28
4	27	27NOV2012:13:42:00.000000	1	0	5503	2012-11-27
4	28	11JAN2013:16:20:00.000000	1	0	5503	2013-01-11
4	29	13JUL2013:16:22:00.000000	1	0	5503	2013-07-13
5	30	22AUG2010:16:48:00.000000	0	1	5507	2010-08-22
5	31	04MAR2013:17:07:00.000000	0	1	5507	2013-03-04
5	32	07JUL2007:14:45:00.000000	1	0	5504	2007-07-07
5	33	14JUL2009:17:20:00.000000	1	0	5503	2009-07-14
5	34	07JUL2011:18:34:00.000000	1	0	5504	2011-07-07
6	35	14JUN2016:13:30:00.000000	1	0	140368	2016-06-14
6	36	07DEC2016:18:00:00.000000	1	0	140368	2016-12-07
7	37	14FEB2013:10:55:00.000000	1	0	5504	2013-02-14
7	38	09AUG2013:18:00:00.000000	1	0	5504	2013-08-09
8	39	08NOV2015:15:15:00.000000	1	1	140966	2015-11-08
						
						
						

Run; 

Output dataset
/*Get first occurrence  */


Data malib.DKA_HHS_first;
Set MALIB.DKA_HSS_SORTA6; 
Infile uniqueID encounterID discharged_date dka_event hhs_event diagnosis_id alldischarge dka_date hhs_date



1	1	25AUG2012:00:30:00.000000	0	1	5507	2012-08-25		19230
2	2	28MAR2014:11:59:00.000000	1	0	5503	2014-03-28	19810	
2	3	29MAY2014:17:30:00.000000	1	0	5504	2014-05-29		
2	4	12JUN2014:22:30:00.000000	1	0	5504	2014-06-12		
2	5	19JUN2014:11:43:00.000000	1	0	5504	2014-06-19		
2	6	17JUL2014:14:39:00.000000	1	0	5504	2014-07-17		
2	7	29JUL2014:18:39:00.000000	1	0	5504	2014-07-29		
2	8	06AUG2014:21:00:00.000000	1	0	5504	2014-08-06		
2	9	28SEP2014:14:12:00.000000	1	0	5504	2014-09-28		
2	10	28OCT2014:16:27:00.000000	1	0	5504	2014-10-28		
2	11	03NOV2014:12:10:00.000000	1	0	140368	2014-11-03		
2	12	15NOV2014:13:00:00.000000	1	0	5504	2014-11-15		
2	13	03DEC2014:15:59:00.000000	1	0	5504	2014-12-03		
2	14	23JAN2015:14:15:00.000000	1	0	5504	2015-01-23		
2	15	21FEB2015:15:28:00.000000	1	0	5504	2015-02-21		
2	16	06MAY2015:12:00:00.000000	1	0	5504	2015-05-06		
2	17	06JUN2015:00:50:00.000000	1	0	5504	2015-06-06		
2	18	10SEP2015:21:30:00.000000	1	0	140368	2015-09-10		
3	19	13JUN2011:14:41:00.000000	1	0	5504	2011-06-13	18791	
3	20	19SEP2011:19:30:00.000000	1	0	5504	2011-09-19		
3	21	12APR2013:16:05:00.000000	1	0	5504	2013-04-12		
3	22	01SEP2016:14:29:00.000000	1	0	142091	2016-09-01		
4	23	17AUG2012:18:05:00.000000	0	1	5507	2012-08-17		19222
4	24	12SEP2012:18:59:00.000000	0	1	5507	2012-09-12		
4	25	12OCT2012:14:12:00.000000	0	1	5507	2012-10-12		
4	26	28FEB2013:13:42:00.000000	0	1	5507	2013-02-28		
4	27	27NOV2012:13:42:00.000000	1	0	5503	2012-11-27		
4	28	11JAN2013:16:20:00.000000	1	0	5503	2013-01-11		
4	29	13JUL2013:16:22:00.000000	1	0	5503	2013-07-13		
5	30	22AUG2010:16:48:00.000000	0	1	5507	2010-08-22		18496
5	31	04MAR2013:17:07:00.000000	0	1	5507	2013-03-04		
5	32	07JUL2007:14:45:00.000000	1	0	5504	2007-07-07		
5	33	14JUL2009:17:20:00.000000	1	0	5503	2009-07-14		
5	34	07JUL2011:18:34:00.000000	1	0	5504	2011-07-07		
6	35	14JUN2016:13:30:00.000000	1	0	140368	2016-06-14	20619	
6	36	07DEC2016:18:00:00.000000	1	0	140368	2016-12-07		
7	37	14FEB2013:10:55:00.000000	1	0	5504	2013-02-14	19403	
7	38	09AUG2013:18:00:00.000000	1	0	5504	2013-08-09		
8	39	08NOV2015:15:15:00.000000	1	1	140966	2015-11-08	20400	20400
								
Run;						
			
		
/*Composite Outcome*/
data work.composite;
set MALIB.DKA_HSS_SORTA6;
by UniqueID;
if dka_event = 1 and hhs_event = 1 then output;
run;
						
Schtroumpfette
Obsidian | Level 7

Thank you.   My apologies for not getting back to you earlier.  I did not have readily access to the big datasets and I had to get it at a different location.  Included is the f_diagnosis.  Thank you.

Data malib.dkahhscases;
Set f_diagnosis
Infile encounter_id diagnosis_id
32	755
32	5478
32	5504
32	5525
32	5620
32	5930
32	6324
32	6401
32	7278
33	755
33	782
33	16118
33	5503
33	5617
33	5778
33	5789
33	7278
33	7907
30	755
30	782
30	1342
30	1580
30	2132
30	5482
30	5507
30	5652
30	16118
34	11205
19	626
20	1580
19	1580
20	1604
20	1655
19	1604
19	1604
19	2473
20	4184
20	16118
20	5504
20	5504
20	5504
34	5499
34	5504
19	5501
19	5504
19	5504
19	5533
20	5648
20	5653
19	5620
19	5648
23	17426
24	5916
24	5916
1	5648
1	5648
1	626
1	626
23	626
24	1940
23	14935
23	755
23	5500
23	5507
23	5507
27	16029
1	782
1	782
24	15786
1	5876
1	5876
25	16029
27	7278
27	16118
25	16118
27	16132
24	7278
24	2212
24	2212
25	7294
27	2463
25	16211
24	16118
23	5641
27	16290
1	6401
1	6401
25	16295
25	7389
23	5666
25	11205
24	2463
24	2463
27	11205
24	16295
1	1580
1	1580
23	5789
23	5854
24	11205
23	1580
1	16091
1	16091
24	16635
24	16635
24	3210
24	7583
23	6102
25	4171
25	4564
1	7278
1	7278
24	3575
24	3575
24	4138
24	7907
24	7907
25	14915
25	14915
27	14915
25	14935
27	14935
25	14965
25	14965
1	16910
1	16910
23	7278
27	5500
27	5503
27	5503
27	5504
25	5507
25	5507
24	620
25	755
25	755
24	14915
24	14935
23	16133
24	755
24	755
24	5507
24	5507
24	782
24	782
23	16298
27	5652
23	11205
25	5648
27	5665
25	5652
1	5482
1	5482
24	9668
24	9713
24	9713
25	5665
27	5854
25	5854
25	5854
24	5665
27	1580
1	5507
1	5507
1	5524
1	5524
25	5916
24	5819
26	755
26	755
38	149
37	2437
26	782
26	782
31	9976
31	9976
31	16118
26	16118
26	16118
21	16132
31	16132
28	755
26	7278
26	7278
30	755
30	755
38	580
38	3611
38	3611
38	3611
38	3611
38	3611
38	3611
38	3611
38	3611
38	3611
38	3611
38	3611
38	3611
38	3611
38	3611
38	3611
31	14439
38	16238
38	620
38	621
38	621
38	621
38	621
31	626
28	782
38	626
38	626
38	626
38	626
38	626
28	16118
38	4308
30	16118
28	16132
26	16292
26	16292
31	16366
28	7278
31	755
37	755
26	14915
31	14915
38	755
26	14935
26	14935
31	782
38	7324
30	7278
38	7350
31	16637
31	16637
31	5478
37	11148
28	16294
38	5482
38	5482
38	5482
38	5482
31	7363
31	7363
30	16295
38	7363
31	969
37	7278
28	14915
30	16330
31	1089
31	1089
30	14915
30	14915
38	7378
30	14935
28	14965
38	7412
30	16626
38	7431
31	15177
31	15177
28	7363
38	5498
38	5504
38	5504
38	5504
38	5504
38	5504
26	5507
26	5507
26	5507
31	5507
37	9719
31	7563
31	7563
28	1580
38	2424
31	7618
31	7618
38	1381
38	1381
38	1381
38	1381
30	1580
37	5482
31	5620
28	5498
31	2444
31	2444
30	5503
30	5504
30	5504
30	5504
38	5620
28	5503
28	5505
38	1580
38	1580
31	1593
38	5641
38	5641
31	11156
37	15858
38	7789
38	7789
38	7789
38	7789
38	7789
28	5620
37	5504
26	5665
26	5665
31	7907
31	7907
31	5690
38	5721
38	5721
37	7626
37	5620
37	16118
30	5648
30	5649
26	5854
26	5854
30	5652
28	5665
31	5916
31	5916
38	5916
38	5916
38	5916
38	8221
38	8221
38	8221
21	5500
30	5666
30	7907
21	5504
21	5504
21	5504
21	5504
26	11205
26	11205
21	5530
31	2133
30	5825
38	15690
38	15690
38	15690
38	15690
28	5854
38	15695
38	15695
38	15695
38	15700
38	15787
37	5721
37	14935
28	11205
21	7634
21	236
21	11145
21	7647
21	5620
21	5648
21	5648
21	5653
21	2132
21	11163
21	8095
21	11191
21	2444
21	16029
21	16029
8	16029
5	7429
8	5620
7	5620
2	2479
2	2508
2	11137
12	7429
4	10345
10	16029
2	16366
9	5620
8	16118
10	5620
11	5620
13	5620
8	14919
5	16118
8	14935
7	626
12	16118
7	14935
2	1281
12	5648
3	5641
10	5648
4	626
11	16118
12	5649
3	5648
13	626
12	5652
3	14919
10	14935
9	10495
13	5652
13	5653
11	14935
13	14935
5	14935
12	14935
2	11150
9	16118
10	5689
12	5689
7	2464
11	5689
4	5702
4	5704
13	11096
3	5704
9	626
3	2463
3	5721
6	620
8	16366
7	16368
13	7730
2	1381
2	1381
9	14935
6	626
6	5504
6	5504
5	16368
10	16368
12	16368
12	16472
2	7268
11	16368
2	7276
13	5916
13	11144
7	8024
13	3452
2	149
2	149
11	3452
12	3452
7	11156
5	15311
11	11156
11	15311
3	1381
6	5620
9	16368
2	620
2	623
2	5503
13	1580
2	15786
7	1604
11	107024
2	755
11	132782
7	11206
4	11205
11	139829
11	140368
11	140368
11	140513
11	141508
7	7278
8	7278
11	189124
11	189144
11	191236
11	193831
6	5641
2	7429
2	7431
6	14919
12	7278
13	7278
10	7278
11	7278
6	14935
2	16118
2	5648
2	16132
7	5504
7	5504
7	5504
8	5498
2	7634
2	14935
8	5504
8	5504
4	5504
10	5504
8	2132
13	5504
5	5504
5	5504
2	5689
12	5504
12	5504
3	5501
3	5504
11	5504
11	5504
5	2132
2	5721
2	2463
2	7672
9	15311
6	5744
6	16306
6	1381
6	16368
9	7278
6	8161
9	5504
9	5504
6	11205
18	140368
18	140368
39	140966
39	140966
18	140513
39	140996
39	140997
39	141001
18	140992
39	141084
39	141084
17	15292
39	142091
18	10340
18	143215
39	104576
39	104576
17	11143
15	10495
15	15311
15	11131
17	5504
16	5504
16	5504
17	1580
39	111181
17	7789
17	5620
16	5620
39	113378
17	5641
17	8111
17	5648
15	5504
15	5504
17	5652
18	5501
18	5504
18	5504
16	16132
39	131180
15	5620
17	5721
39	193330
18	193831
39	193831
17	621
18	7907
18	5620
17	626
16	16306
15	5648
15	5652
17	16366
16	16368
15	16118
17	16384
14	7278
18	16118
18	132918
15	5721
18	5689
18	5720
18	16132
16	2457
16	2463
17	14935
16	14935
15	16368
18	16368
14	620
17	3452
16	3452
17	7278
16	7278
15	14935
18	2464
18	139829
14	626
14	10495
14	11131
14	1381
14	5504
14	5504
14	5504
14	7730
14	5620
14	16118
14	16132
14	16132
14	5689
14	16133
14	16368
14	14935
35	140992
35	146722
22	140992
22	140997
36	146722
22	141002
35	104576
36	190702
35	132289
36	104576
35	191234
22	141534
35	105951
22	142091
22	142091
22	142091
22	132782
35	193831
36	132914
36	193831
22	193831
36	188106
35	107031
36	133515
22	139829
36	134001
35	140136
22	139871
35	140368
35	140368
35	140368
35	140368
22	140190
36	140368
36	140368
36	140368
run;
ballardw
Super User

Do you really record "discharge date" information to the millionth of a second? Tell who ever creates that data the extra zeroes are just plain ugly and don't carry any significant information and truncate to seconds. Personally if the value carries any time component then the variable should not have a "date" name but a "datetime" so you can sort of expect to see a time component.

Don't forget to format your data variables in SAS.

Schtroumpfette
Obsidian | Level 7
Thanks, this is how it is recorded but I understand.

SAS Innovate 2025: Save the Date

 SAS Innovate 2025 is scheduled for May 6-9 in Orlando, FL. Sign up to be first to learn about the agenda and registration!

Save the date!

How to Concatenate Values

Learn how use the CAT functions in SAS to join values from multiple variables into a single value.

Find more tutorials on the SAS Users YouTube channel.

SAS Training: Just a Click Away

 Ready to level-up your skills? Choose your own adventure.

Browse our catalog!

Discussion stats
  • 6 replies
  • 1559 views
  • 2 likes
  • 3 in conversation