Help using Base SAS procedures

how to read this data in to dataset

Reply
Regular Contributor
Posts: 168

how to read this data in to dataset

Hi All,

I took this from one of the sas sample "http://support.sas.com" . I need to read this data to dataset but data not reading properly.

Any help is greatly helpful

data :

data test;

input Subgroup $1-25 Count Percent Mean Low High PCIGroup Group PValue;

zero=0;

PCI_lbl='PCI group';

grp_lbl='group';

pval_lbl='-';

if count ne . then CountPct=put(count, 4.0) || "(" || put(percent, 3.0) || ")";

val=mod(_N_-1, 6);

if val eq 1 or val eq 2 or val eq 3 then ref=subgroup;

datalines;

Overall 2166 100 1.3 0.9 1.5 17.2 15.6 .

Age . . . . . . . 0.05

<= 65 Yr 1534 71 1.5 1.05 1.9 17.0 13.2 .

> 65 Yr 632 29 0.8 0.6 1.25 17.8 21.3 .

Sex . . . . . . . 0.13

Male 1690 78 1.5 1.05 1.9 16.8 13.5 .

Female 476 22 0.8 0.6 1.3 18.3 22.9 .

Race or ethnic group . . . . . . . 0.52

Nonwhite 428 20 1.05 0.6 1.8 18.8 17.8 .

White 1738 80 1.2 0.6 1.6 16.7 15.0 .

From MI to Randomization . . . . . . . 0.81

<= 7 days 963 44 1.2 0.8 1.5 18.9 18.6 .

> 7 days 1203 56 1.15 0.75 1.5 15.9 12.9 .

Infract-related artery . . . . . . . 0.38

LAD 781 36 1.4 0.9 1.9 20.1 16.2 .

Other 1385 64 1.1 0.8 1.4 15.6 15.3 .

Ejection Fraction . . . . . . . 0.48

< 50% 1151 54 1.2 0.8 1.5 22.6 20.4 .

>= 50% 999 46 0.9 0.6 1.4 10.7 11.1 .

Diabetes . . . . . . . 0.41

Yes 446 21 1.4 0.9 2.0 29.3 23.3 .

No 1720 79 1.1 0.8 1.5 14.4 13.5 .

Killip class . . . . . . . 0.39

I 1740 81 1.2 0.8 1.6 15.2 13.1 .

II-IV 413 19 0.95 0.6 1.5 25.3 26.9 .

;

run;

Thanks

Sam

PROC Star
Posts: 7,492

Re: how to read this data in to dataset

Sam,

Since some values of subgroup contain multiple words, the easiest way to enter the data may be to manually add an extra space between the values of subgroup and count, and modify your input statement accordingly.  E.g.:

data test;

  informat subgroup $25.;

  input Subgroup & Count Percent Mean Low High PCIGroup Group PValue;

  zero=0;

  PCI_lbl='PCI group';

  grp_lbl='group';

  pval_lbl='-';

  if count ne . then CountPct=put(count, 4.0) || "(" || put(percent, 3.0) || ")";

  val=mod(_N_-1, 6);

  if val eq 1 or val eq 2 or val eq 3 then ref=subgroup;

  datalines;

Overall  2166 100 1.3 0.9 1.5 17.2 15.6 .

Age  . . . . . . . 0.05

<= 65 Yr  1534 71 1.5 1.05 1.9 17.0 13.2 .

> 65 Yr  632 29 0.8 0.6 1.25 17.8 21.3 .

Sex  . . . . . . . 0.13

Male  1690 78 1.5 1.05 1.9 16.8 13.5 .

Female  476 22 0.8 0.6 1.3 18.3 22.9 .

Race or ethnic group  . . . . . . . 0.52

Nonwhite  428 20 1.05 0.6 1.8 18.8 17.8 .

White  1738 80 1.2 0.6 1.6 16.7 15.0 .

From MI to Randomization  . . . . . . . 0.81

<= 7 days  963 44 1.2 0.8 1.5 18.9 18.6 .

> 7 days  1203 56 1.15 0.75 1.5 15.9 12.9 .

Infract-related artery  . . . . . . . 0.38

LAD  781 36 1.4 0.9 1.9 20.1 16.2 .

Other  1385 64 1.1 0.8 1.4 15.6 15.3 .

Ejection Fraction  . . . . . . . 0.48

< 50%  1151 54 1.2 0.8 1.5 22.6 20.4 .

>= 50%  999 46 0.9 0.6 1.4 10.7 11.1 .

Diabetes  . . . . . . . 0.41

Yes  446 21 1.4 0.9 2.0 29.3 23.3 .

No  1720 79 1.1 0.8 1.5 14.4 13.5 .

Killip class  . . . . . . . 0.39

I  1740 81 1.2 0.8 1.6 15.2 13.1 .

II-IV  413 19 0.95 0.6 1.5 25.3 26.9 .

;

run;

Ask a Question
Discussion stats
  • 1 reply
  • 190 views
  • 3 likes
  • 2 in conversation