BookmarkSubscribeRSS Feed
🔒 This topic is solved and locked. Need further help from the community? Please sign in and ask a new question.
Achieng
Quartz | Level 8

Dear all, thank you very much for all your support.

 

I have a new problem.

 

Now I am doing some linear regression, I am able to get standardized estimates but not standardized 95% CI intervals.  I am getting 95% CI but not standardized. Please help.

 

Here are my codes 

 proc reg data=ALICEPAPER1MAY2018;
  model log_WHtR_2005=PPPL1Satfat PPPL2N3VLCAA PPPL3n62dbond PPPL4DGLAadreDPA PPPL5MUFA PPPL6ALA/ ss1 ss2 stb clb covb corrb ;
   run;

here is the output 

SAS Output

Parameter EstimatesVariable Label DF ParameterEstimate StandardError t Value Pr > |t| Type I SS Type II SS StandardizedEstimate 95% Confidence LimitsIntercept1PPPL1Satfat1PPPL2N3VLCAA1PPPL3n62dbond1PPPL4DGLAadreDPA1PPPL5MUFA1PPPL6ALA1
Intercept-0.704430.00577-122.10<.0001350.03800350.299480-0.71576-0.69310
 0.051310.005798.86<.00011.852431.845200.306580.039940.06268
 0.035840.005766.22<.00010.910550.909780.215270.024530.04714
 -0.006140.00577-1.060.28740.026480.02663-0.03683-0.017460.00518
 0.011530.005762.000.04560.094090.094200.069270.000224080.02285
 -0.015110.00576-2.620.00890.161720.16149-0.09069-0.02643-0.00379
 -0.015190.00578-2.630.00880.162410.16241-0.09096-0.02653-0.00385

 

Please help, my supervisor insist we have to generate that, I have tried a few codes, that I have found online, without success, some of them are 

  proc standard data=ALICEPAPER1MAY2018 mean=0 std=1 out=AlICEMAY_2018;
  proc reg; 
model log_WHtR_2005=PPPL1Satfat PPPL2N3VLCAA PPPL3n62dbond PPPL4DGLAadreDPA PPPL5MUFA PPPL6ALA /stb;
   run;

I am only getting standardized estimates with this code. Please help me get standardized 95%CI for standardized estimates.

Thank you. I am looking forward to hearing from you.

 

very kind regards

Achieng

1 ACCEPTED SOLUTION

Accepted Solutions
Rick_SAS
SAS Super FREQ

You can use PROC STDIZE to physically standardize the variables and then request CLB for the same model on the standardized variables:

 

/* original parameter estimates, including STB */
proc reg data=sashelp.class plots=none;
  model height=weight age/ stb clb;
  ods select ParameterEstimates;
quit;

/* standardize the numerical data */
proc stdize data=sashelp.class out=stdClass;
run;

/* regression on the standardized data gives same parameter 
   estimates as the STB option on the original data. But now
   the CLB option gives the CIs for the standardized coefficients */
proc reg data=stdClass plots=none;
  model height=weight age/ clb;
  ods select ParameterEstimates;
quit;

View solution in original post

4 REPLIES 4
Reeza
Super User

Once the variables are standardized, the 95% CI is on the standardized data. 

The 95% CI on the estimates is from the PROC REG statement using the OUTEST table.

 

 proc reg data=ALICEPAPER1MAY2018 OUTEST = WANT;

Then check the WANT data set for the estimates.

 


@Achieng wrote:

Dear all, thank you very much for all your support.

 

I have a new problem.

 

Now I am doing some linear regression, I am able to get standardized estimates but not standardized 95% CI intervals.  I am getting 95% CI but not standardized. Please help.

 

Here are my codes 

 proc reg data=ALICEPAPER1MAY2018;
  model log_WHtR_2005=PPPL1Satfat PPPL2N3VLCAA PPPL3n62dbond PPPL4DGLAadreDPA PPPL5MUFA PPPL6ALA/ ss1 ss2 stb clb covb corrb ;
   run;

here is the output 

SAS Output

Parameter EstimatesVariable Label DF ParameterEstimate StandardError t Value Pr > |t| Type I SS Type II SS StandardizedEstimate 95% Confidence LimitsIntercept1PPPL1Satfat1PPPL2N3VLCAA1PPPL3n62dbond1PPPL4DGLAadreDPA1PPPL5MUFA1PPPL6ALA1
Intercept -0.70443 0.00577 -122.10 <.0001 350.03800 350.29948 0 -0.71576 -0.69310
  0.05131 0.00579 8.86 <.0001 1.85243 1.84520 0.30658 0.03994 0.06268
  0.03584 0.00576 6.22 <.0001 0.91055 0.90978 0.21527 0.02453 0.04714
  -0.00614 0.00577 -1.06 0.2874 0.02648 0.02663 -0.03683 -0.01746 0.00518
  0.01153 0.00576 2.00 0.0456 0.09409 0.09420 0.06927 0.00022408 0.02285
  -0.01511 0.00576 -2.62 0.0089 0.16172 0.16149 -0.09069 -0.02643 -0.00379
  -0.01519 0.00578 -2.63 0.0088 0.16241 0.16241 -0.09096 -0.02653 -0.00385

 

Please help, my supervisor insist we have to generate that, I have tried a few codes, that I have found online, without success, some of them are 

  proc standard data=ALICEPAPER1MAY2018 mean=0 std=1 out=AlICEMAY_2018;
  proc reg; 
model log_WHtR_2005=PPPL1Satfat PPPL2N3VLCAA PPPL3n62dbond PPPL4DGLAadreDPA PPPL5MUFA PPPL6ALA /stb;
   run;

I am only getting standardized estimates with this code. Please help me get standardized 95%CI for standardized estimates.

Thank you. I am looking forward to hearing from you.

 

very kind regards

Achieng


 

Rick_SAS
SAS Super FREQ

You can use PROC STDIZE to physically standardize the variables and then request CLB for the same model on the standardized variables:

 

/* original parameter estimates, including STB */
proc reg data=sashelp.class plots=none;
  model height=weight age/ stb clb;
  ods select ParameterEstimates;
quit;

/* standardize the numerical data */
proc stdize data=sashelp.class out=stdClass;
run;

/* regression on the standardized data gives same parameter 
   estimates as the STB option on the original data. But now
   the CLB option gives the CIs for the standardized coefficients */
proc reg data=stdClass plots=none;
  model height=weight age/ clb;
  ods select ParameterEstimates;
quit;
Achieng
Quartz | Level 8
Dear Rick. Thank you.
Let me try this and will get to you As soon as possible.

Regards

Achieng
Quartz | Level 8

Thank you very much.

It worked.

 

 

I love the SAS community.

 

Yeah;)

 

sas-innovate-2024.png

Don't miss out on SAS Innovate - Register now for the FREE Livestream!

Can't make it to Vegas? No problem! Watch our general sessions LIVE or on-demand starting April 17th. Hear from SAS execs, best-selling author Adam Grant, Hot Ones host Sean Evans, top tech journalist Kara Swisher, AI expert Cassie Kozyrkov, and the mind-blowing dance crew iLuminate! Plus, get access to over 20 breakout sessions.

 

Register now!

What is Bayesian Analysis?

Learn the difference between classical and Bayesian statistical approaches and see a few PROC examples to perform Bayesian analysis in this video.

Find more tutorials on the SAS Users YouTube channel.

Click image to register for webinarClick image to register for webinar

Classroom Training Available!

Select SAS Training centers are offering in-person courses. View upcoming courses for:

View all other training opportunities.

Discussion stats
  • 4 replies
  • 2222 views
  • 1 like
  • 3 in conversation