BookmarkSubscribeRSS Feed
malakaext
Calcite | Level 5

I need to fit a AR(1) model to the attached data set and out put the RESIDUALS to an excel file for plotting.

Can some one help me with this writing residuals to an excel file step please?

3 REPLIES 3
udo_sas
SAS Employee

data have;

input ar;

i=_n_;

cards;

-1.703233141

-1.703850657

0.091440462

0.022882462

-0.224949807

1.367217146

2.512797936

0.669231031

-0.150223471

0.759437408

0.435890183

0.242421635

0.766223353

0.673573325

0.589709362

0.619025926

-0.731962503

-0.669309886

-0.277606805

-0.093268198

0.04727051

0.282256656

-1.015885861

-0.962834737

0.612218648

1.357896244

0.589988689

0.637063037

0.974907176

1.004179541

0.589961515

1.547349773

1.730216041

-0.861477052

-2.626268836

-1.779317662

0.061755533

1.534604015

0.526923035

1.614684892

0.173828311

0.488559228

0.719774332

-0.191777895

-1.771017794

-0.058856223

0.679685944

3.269724873

1.091529825

0.971006867

-0.107460208

0.293076027

0.370636623

0.533093946

0.391928966

-0.492171644

0.839278575

-0.425762518

-1.207455241

-1.54961444

-1.641561189

-0.27123277

-0.397213342

0.724231229

-0.157298162

1.066291385

1.128867801

1.609255864

0.086916055

-0.115766379

0.537818057

-0.343593782

-2.467415689

-2.173708286

0.072657043

-0.375419903

0.338660815

1.011734183

-0.158013934

0.239575285

-2.583980999

-2.846387638

-0.603616568

-0.497500862

0.297922

-0.015076177

0.150838215

-0.115385963

-1.732796511

-1.592980786

-1.401058263

-0.969909419

-0.163289582

0.762052852

-1.585677285

-1.418407659

-1.243692625

0.622140761

0.485028199

0.933575088

0.788277596

0.069538939

0.235537624

-0.736203794

0.318672947

1.017047843

0.933484359

0.741096717

1.714004131

1.739542595

-0.033124656

-0.173701443

0.440641251

0.643783836

0.457639771

-0.620456893

-1.37360193

-0.95579669

-0.277869925

0.751280471

-0.062705563

-0.688951776

1.60764724

0.568455209

-0.373085754

-0.942035048

-0.081296576

-1.647495371

0.173496866

2.966331223

2.245816685

2.100557048

-1.077766643

-1.161580974

-0.93895674

1.022260341

1.237106891

0.839522745

0.205026862

0.630623776

0.531449234

-0.714343268

-1.355814622

0.548880834

0.267590847

-1.014296508

-0.098426097

-0.491855559

1.225178831

0.470209127

0.699238472

0.5724062

0.029438365

-0.482742156

-0.723112385

0.989385252

0.989329295

-0.578363002

1.321796813

-0.874560301

-0.631065408

-1.529170029

-2.681906783

-0.119903064

0.004533811

0.730458562

0.578137122

0.236370805

-2.079182525

-0.071340718

-0.303920122

0.613980152

1.371999419

-0.814722568

-1.848830753

-0.130395496

-0.509307917

-0.393216756

-1.421626376

-1.260456909

1.717350204

-0.061588567

1.576699575

0.158695843

0.673967143

-0.01453695

-0.4530414

-0.88008168

-0.474358787

-1.648059003

-0.904919194

-0.5591077

0.733474439

0.940235238

-0.212510383

-0.656917914

0.371847888

-0.844212576

0.333547821

1.619507802

0.369515674

0.804317214

0.89894827

0.77951859

0.981110897

0.314118497

-1.051161227

-2.210462871

-0.657069879

1.492717871

1.553498307

-1.024299473

-2.197860477

-0.925403182

-0.583727976

-0.976836244

-2.19909525

-0.725045734

-1.776861852

1.627229106

2.361392176

1.397083255

0.192149392

-0.552117478

-0.598968735

-1.23673472

-0.602974611

0.787100327

0.536302509

-1.008315127

0.084224151

-1.167576987

-0.405077966

-1.203027374

-1.378858106

-1.698293468

-2.093450717

-1.1818349

-1.247048078

-3.544954943

-1.092977498

-1.298717529

0.906210929

0.800989891

2.236083499

-0.362437186

0.422974814

0.588826273

-0.336866824

1.204007401

0.677138821

-1.331655364

-2.241190093

0.184259721

1.930920361

2.311793146

1.109200185

-0.791974638

-1.08564213

1.607991439

1.011779543

-0.094338971

-1.928330832

-3.106928547

-0.091950645

1.495767441

1.683371251

2.346405952

1.89038747

-0.46201662

-0.542984672

0.602729159

0.36527735

1.262175791

0.162724826

-2.066036176

0.243493142

1.731903261

-0.415348157

-0.389712366

0.007746851

-0.268180566

-0.464236965

-1.806022722

-1.310659139

0.391443028

0.55421646

0.464512184

-0.431567189

-1.541712974

-1.406008525

-2.755092752

-2.200624179

-1.43483199

0.704004341

0.185227002

0.939864088

0.232468301

-0.773638109

1.113680641

0.705881922

-0.714587966

-2.015997007

-0.807841071

-0.552233873

-0.805833024

-1.050298585

2.041769753

3.492041813

0.166761303

0.302023916

-1.568907022

-1.774899356

-2.006743891

-2.083914682

0.321201287

-0.005636432

-0.444885535

-0.906073134

1.158743314

1.194715332

0.777231062

-1.625914092

-2.959616502

-1.547453664

0.237328828

-0.061896927

-1.014056666

-0.59835862

-1.77473216

-1.461187464

-0.312216045

-1.371742185

-0.148572264

-0.501180413

0.173015441

-0.062940728

1.320793115

1.617685141

0.413626948

-0.304411351

-0.120355904

0.965082051

0.009849071

2.026863315

1.646435429

-0.380605304

-0.165769236

0.60243475

0.70210055

-0.585501567

-0.663213955

-0.557129177

-0.468884536

-0.442566792

0.485117227

-1.253108375

1.404758252

0.129529169

-0.999482169

0.529962734

-0.182542511

0.500887528

1.050330058

3.047949942

1.846735789

0.438194217

0.774039271

2.380831831

0.714461788

-0.991705441

-1.812732618

-0.31411008

-0.64944534

-1.258499416

-0.915516218

-0.271856335

-1.911122908

-1.291926834

-1.767002829

-0.391157141

-1.024920688

-2.589483443

0.198653089

0.448796084

-1.392323862

-0.880774034

0.104594641

0.824904778

0.479992249

-0.085901242

0.91284545

-0.770693108

1.506673497

-1.179183132

-0.999483257

0.104652556

0.200867468

-0.419183962

1.493706233

0.790044333

0.376065424

1.399303856

0.587585705

-0.44743918

-0.454349503

-0.275231988

-1.241886252

-0.54750486

-0.282745587

1.22568246

-1.497636619

-1.32345921

-0.742289702

-2.699060814

-1.051398766

-1.410396453

-0.921759574

0.500252211

-0.810993728

-0.348990116

1.368846573

-0.133754853

2.271797928

0.694942069

0.337811568

-0.499364258

-0.12218939

-0.261627236

0.806883033

-0.209998381

0.831548748

0.317192399

-0.151603793

0.229057983

1.544714194

0.705456536

0.554796121

-0.164542602

1.340979979

0.27013942

-1.635102833

-0.571436879

-1.829335436

0.286513495

0.060524518

0.283567358

1.545713755

0.419145283

0.631324685

-0.771673491

0.360090947

-0.550902449

-0.791437388

-1.114134223

0.426264571

-0.300942025

1.28479551

-0.201906968

-2.1698603

-0.763315024

0.561826226

-0.233745234

-0.093263909

-0.048754834

-1.202850944

-2.780207782

-1.773726667

-1.169196279

-1.926808303

0.798141217

-1.916343444

-2.435401211

-1.525288907

-0.494366929

0.647918229

0.73818663

-0.08780999

0.494788154

2.442941919

0.839549054

-1.272061449

0.904141233

-1.904132959

-1.729758415

-1.776267913

-2.169291806

-2.297256362

-0.53306235

0.490982244

0.791824657

1.459281082

-0.054616456

-0.359706556

-0.144130081

-0.923044826

-2.523280678

-2.882883854

-1.786493173

-0.111820397

0.84120808

1.53546941

-0.483527434

-0.489710706

1.703309964

0.945793987

0.424951757

-0.778086661

0.507712855

-0.427705531

1.023315002

2.142572142

1.351279261

0.747828058

0.177526009

0.077684339

0.29094858

0.093171908

0.219146046

1.18602888

0.449315792

0.911844076

2.523371914

0.82965641

-0.212184145

0.265989756

-1.576975336

-1.262854119

-1.0576732

0.032535466

-0.806127533

1.087518257

-0.390026142

0.23994921

0.642031813

-0.092846882

-0.022142393

1.435825384

0.377281555

-0.676019356

0.647964027

-0.459169595

-2.258486877

-3.846413176

-1.03565261

-2.139354005

-3.097029764

-2.857969316

-2.802317572

-0.605923201

-0.572358519

-0.854400952

-1.276206431

-1.616642367

-1.805612612

-0.821497021

0.430490664

1.444210812

0.512463713

0.432976074

-0.004116495

1.446708412

0.006330164

0.294152112

0.523739919

0.791703034

0.347739544

-0.579369455

0.131745396

-0.601044398

-1.575871606

-1.0625899

-0.441181866

0.569096116

-0.268895279

-0.704016338

0.857445835

-0.303369363

0.249254948

0.853137327

2.018482976

0.326340389

0.603675756

-2.032820315

-1.318561645

-1.070525997

-0.613038816

-2.315693533

-0.319707816

-0.455340316

0.477791853

-0.222339285

-0.591105311

-1.477556892

-1.116388942

0.781269276

-0.413368571

0.323735684

-1.016287902

0.787329476

0.009812545

2.627247402

1.624402027

0.875536815

0.198283053

-1.02804807

1.177035215

3.279408104

2.637042077

1.004018397

0.413187336

-0.322618191

-0.102609688

-0.066468288

0.670523431

1.732973963

1.43457463

1.258553795

0.566980784

1.295704521

1.008934004

2.124811289

-0.353772447

-0.224305266

1.903396872

1.020991231

2.745426738

1.866075475

0.912030299

0.546062698

-0.465859546

-2.615649423

-0.333521219

-0.161382514

-1.25793969

-1.600986607

1.218107365

0.994386829

-0.03749181

2.780473543

2.348185251

3.396985106

1.265746757

-0.592893626

0.68208655

0.817035399

0.228205488

0.199610576

-0.787236225

0.516510758

0.074959376

0.551352643

0.858844294

-0.54286223

-1.8812778

-0.609824488

-0.90353558

-0.800512887

-0.046958199

-0.708947799

-1.808564699

-1.498610564

-0.141525712

-0.702017354

0.136052747

-0.651297207

0.00725727

-0.446444564

0.128742257

-0.202727822

-1.080402149

-0.258480456

0.779876286

0.526460757

1.937161438

0.444082486

-1.789071415

-0.061286455

0.314832954

1.91249016

0.946714999

-0.337655897

-0.77658777

0.38667357

-0.308544342

-0.752366159

1.323908431

0.532311542

0.187344601

-0.748438977

-1.119948885

0.657197252

1.706374653

0.850581557

1.276079066

0.463038209

0.143438031

-0.211696496

-0.307528028

1.025338791

0.322346751

-2.446036742

-2.835372424

-1.692434656

-2.372605056

-1.581154377

-0.114131448

-0.254987871

-1.727749693

-2.220071323

0.171576056

-0.601633671

0.003036179

0.167370514

-1.403631277

-0.424156178

0.407621063

-0.019708837

-0.020534277

-1.055446499

-1.903050417

0.05588195

0.472787452

0.25333176

0.460258792

0.176142292

-1.901514346

0.895017423

-1.311799499

-1.534454147

-0.568706536

0.027726273

0.078868101

-0.36176327

-0.212113731

0.891889134

-0.654241962

-0.772683008

-2.151932437

-1.073949767

-2.213492052

-0.787207651

-0.546355251

-0.01664553

-0.359662154

-0.289378286

-1.42351752

-2.729965572

-1.572265449

0.0633524

-1.078185336

-1.625986028

-2.121553082

-1.25899818

0.368285546

2.154017322

-0.006309629

1.00871734

1.881835254

0.79666723

1.272574065

0.421689863

0.227800011

1.680619044

1.694901826

-0.642635177

-1.802705932

-1.170164634

-2.339469297

-1.896363617

1.411603907

1.349879621

-0.813043952

-2.518939354

-2.128260717

-1.073169423

0.086409574

1.171839549

0.122476732

-0.658564067

-0.381597911

-0.883972548

-0.265679028

-1.347483667

-0.302503272

0.502296744

1.213052769

2.356581793

0.684726023

0.230133972

0.028201738

0.345406328

0.510971281

-0.523218249

1.008925405

1.634181192

1.699309674

1.20360065

1.76302193

-0.354031663

1.531969991

0.348317166

-1.370224157

-1.566432533

-0.497490709

1.400243671

1.961763668

1.048566542

0.60150767

0.316668128

0.211187799

1.013126244

3.278861747

0.222995251

0.076025269

-0.879239314

-0.532042965

-0.112867199

-1.105592151

0.268047884

0.548791714

0.658795958

-0.84636307

-1.868203866

0.512840297

-0.214583369

0.732722162

-0.076786357

-0.724437049

-0.611197495

0.259804052

-0.433211778

-2.09587017

-0.178208642

0.163117194

-1.350474758

-1.657902624

-0.532721429

-0.353796282

-0.335818986

-1.419651667

-1.011340271

-0.344794941

0.274774603

-0.451610732

-0.47018028

-0.08677203

-0.797121628

-0.125112035

1.258875426

2.288296555

0.600061715

0.341394655

1.398991813

2.413507929

0.627215886

0.106964459

-1.566159674

-0.737681701

-1.879033497

-2.731023466

-1.910367649

-1.212584476

-2.605262345

-1.123155746

1.680149826

2.623306503

1.733784681

1.682015602

0.178976589

0.828821229

-0.131652061

-2.398287506

-1.887145279

-1.591108562

-0.60114794

-1.268214397

-0.723626093

-0.727599428

-0.692625639

-0.229393052

-2.215957108

-1.617688747

0.841156825

-0.239381631

-2.403720702

-1.345598957

-0.100882014

0.31246694

0.159834357

0.528263873

-0.272162148

0.908264948

-0.713042299

-0.146195476

-1.247922326

-1.132410857

-0.531058382

-0.729990239

-1.422574028

2.028460338

0.739759149

-0.143274668

0.051202795

-0.006169156

0.364017203

-0.636566657

0.875010843

-0.680184452

0.821683149

0.155056631

-0.080160643

-0.988727654

0.486830123

1.890638186

1.017438622

-0.723179744

-1.38879166

1.008877003

1.041034374

-1.30116503

-0.87181454

0.999164831

-0.081475743

0.161428186

-0.16825921

1.596978276

1.388488299

-0.856242014

0.242278146

-0.281505643

0.887655405

1.642655771

1.238461556

-0.747157397

-0.557633869

-0.011679166

0.069909113

-0.811212607

-1.065810433

-0.859770578

-1.631517634

-1.923401419

-0.655575151

-2.33294895

-0.575916946

-0.125594946

-0.252088319

-1.164765568

-0.539233534

1.726405418

-0.181177025

2.603062891

2.111718656

1.329988036

-0.024842977

-0.278186805

-0.207653587

-0.164695566

-3.396457823

-3.500308469

-2.149867681

-0.976943982

-1.243429489

0.075316396

1.062966307

0.323823434

0.84395791

1.129555031

1.228139926

1.243521791

0.113778895

0.714317526

0.566813465

-0.734423548

1.697551258

2.111181943

1.628494325

-0.08886197

2.229940274

1.095423802

-1.269850982

0.212139503

0.813363764

2.074538017

-0.379978441

0.582723039

1.007738264

-1.343523263

-1.281435722

-1.709919199

-2.221110283

-0.357830805

-0.957889455

-0.828228651

-2.21342328

-1.741858015

-0.4136128

1.152547859

0.767231874

;

run;

proc arima data=work.have plot=residual(smooth);

     identify var=AR nlag=1 noprint;

     estimate p=1;

     forecast id=I interval=1 align=BEGINNING lead=0 alpha=0.05  out=want;

quit;

Once you created WANT you can export it to EXCEL in many different ways - the easiest might be to right click the data set in the explorer window:

Export.JPG

Thanks,

Udo

PaigeMiller
Diamond | Level 26

You could also use PROC GPLOT and skip Excel

--
Paige Miller
udo_sas
SAS Employee

Very true - in fact ARIMA does create the plot you are looking for out-of-the-box:

proc arima data=work.have plot=residual(smooth);

SAS Innovate 2025: Save the Date

 SAS Innovate 2025 is scheduled for May 6-9 in Orlando, FL. Sign up to be first to learn about the agenda and registration!

Save the date!

Multiple Linear Regression in SAS

Learn how to run multiple linear regression models with and without interactions, presented by SAS user Alex Chaplin.

Find more tutorials on the SAS Users YouTube channel.

Discussion stats
  • 3 replies
  • 1412 views
  • 3 likes
  • 3 in conversation