BookmarkSubscribeRSS Feed
Phamhhm
Fluorite | Level 6

Hi

I have daily time series data from 2014 to today. I used it to build ARIMA models and forecast for the next days and weeks.

 

Now, i also have 15 minutes interval data, and would like to build model and do forecasting for the next 15 minutes periods.

I know that ARIMA model does not fit for interval forecasting. Do you have a model that fit for interval forecasting ?

 

Thanks

M. Pham

 

10 REPLIES 10
Jennifer_beeman
SAS Employee

Hi. do you have an example of your code? I am not sure why you cannot do the same forecasting with ARIMA that you did with the daily series. Could you do this by changing the seasonality of your interval?

 

I'm not sure what you mean by fitting for interval forecasting, isn't that what you did when you forecasted the daily data?

 

Jennifer

 

 

Phamhhm
Fluorite | Level 6

We can use ARIMA for 15 minutes period, for daily, for monthly, ...

But ARIMA is not the best model for 15 minutes period.

I will figure out the appropriate model.

 

Thanks

mitrov
SAS Employee

It may help to know what is the nature of the data that you are trying to forecasts and why you think ARIMA is not adequate. SAS/ETS offers several other model classes for time series data. However, without knowledge of the data it is difficult to make suggestions.  

Phamhhm
Fluorite | Level 6
Hi
Let me fix something and i will provide the data next week. So you can help me to find the best model.

Thanks

Pham
stat_sas
Ammonite | Level 13

Hi,

 

How your current ARIMA models are performing with daily, weekly intervals?

rselukar
SAS Employee

As long as your time series measurements are equally spaced in time, you can use PROC ARIMA to model/forecast them.  The time interval information such as daily, monthly, or fifteen-minute plays no role in the actual computation.  The time interval information does play a role in what type of model you might want to fit the series.  For example, monthly data usually has seasonal pattern of length 12 (differencing order of 12) whereas quarterly data has seasonal length of 4.  This means that what model to fit your series depends on your knowledge about the series.  You can specify very general ARIMA models using PROC ARIMA.  You will need to decide what type of seasonality makes sense for your 15-minute interval series---for example, if your measurements are stock trades every fifteen minute during an 8 hour business day then your season length might be 32 (4 fifteen minute intervals per hour).

 

Hope this helps.

Phamhhm
Fluorite | Level 6
Thanks,

Exactly, data from 8:30 to 16:30, (8hrs x 4 =32) for call center forecasting incoming calls.
I will try it at work, and let you know .
I have read papers from the topic, and they talk about different models that are not easy to write programs and need advanced statistics .



rselukar
SAS Employee

Good.  In addition to ARIMA modeling, you can also consider UCM models.  See "Example 42.3 Modeling Long Seasonal Patterns" in the PROC UCM doc.

alexchien
Pyrite | Level 9

I think you probably need to include multiple seasonality in the model such as hour of the day and day of the week. You will need to create dummy vars or trig curves to represent the desired seasonality, and include them as independent variables in the model. You could using regression with some lagged independent variables or auto-regression in addition to ARIMA and UCM with the additional independent vars.

thanks

Phamhhm
Fluorite | Level 6
Thanks for your advice, I will try .

Pham

SAS Innovate 2025: Save the Date

 SAS Innovate 2025 is scheduled for May 6-9 in Orlando, FL. Sign up to be first to learn about the agenda and registration!

Save the date!

Multiple Linear Regression in SAS

Learn how to run multiple linear regression models with and without interactions, presented by SAS user Alex Chaplin.

Find more tutorials on the SAS Users YouTube channel.

Discussion stats
  • 10 replies
  • 2085 views
  • 0 likes
  • 6 in conversation