Hi SAS forecasting experts,
This time I came across the problem of using weekly data in a VAR model for forecasting. I have two-year weekly sales and marketing campaign data (RAQ) and want to use VAR to run forecast. However, the sales always have spikes at the end of month. As the data is weekly, the end of month can be the fourth week of a month or (the beginning of) the fifth week. So, my question is: how to do such month-month seasonal adjustment using weekly data in order to use the seasonally adjusted data in the VAR model?
The sample data is attached. Both the sales and the campaign activities are in logarithm form.
Thank you!
week | year | lsales | lcampaign |
0 | 2013 | 9.511629 | 10.94447 |
1 | 2013 | 9.73074 | 11.19503 |
2 | 2013 | 9.820323 | 11.26294 |
3 | 2013 | 9.888374 | 11.30585 |
4 | 2013 | 10.02167 | 11.24355 |
5 | 2013 | 9.699779 | 11.14156 |
6 | 2013 | 9.985759 | 11.21244 |
7 | 2013 | 10.14345 | 11.28749 |
8 | 2013 | 10.35993 | 11.2146 |
9 | 2013 | 9.789815 | 11.09255 |
10 | 2013 | 9.98516 | 11.09909 |
11 | 2013 | 10.05651 | 11.18147 |
12 | 2013 | 10.36945 | 11.18582 |
13 | 2013 | 9.878631 | 11.0726 |
14 | 2013 | 9.971707 | 11.05936 |
15 | 2013 | 10.0575 | 11.08756 |
16 | 2013 | 10.20233 | 11.14399 |
17 | 2013 | 10.14624 | 11.02723 |
18 | 2013 | 9.879041 | 10.97432 |
19 | 2013 | 10.00406 | 11.02241 |
20 | 2013 | 10.25857 | 11.1648 |
21 | 2013 | 10.42955 | 11.14669 |
22 | 2013 | 9.923535 | 11.04971 |
23 | 2013 | 10.04329 | 11.06462 |
24 | 2013 | 10.13321 | 11.11524 |
25 | 2013 | 10.39035 | 11.20462 |
26 | 2013 | 10.05617 | 11.14541 |
27 | 2013 | 10.06216 | 11.11842 |
28 | 2013 | 10.08168 | 11.21829 |
29 | 2013 | 10.19347 | 11.32347 |
30 | 2013 | 10.2509 | 11.29164 |
31 | 2013 | 10.021 | 11.26334 |
32 | 2013 | 10.04863 | 11.25205 |
33 | 2013 | 10.12415 | 11.26457 |
34 | 2013 | 10.42899 | 11.28143 |
35 | 2013 | 9.972874 | 11.12966 |
36 | 2013 | 9.811756 | 11.10172 |
37 | 2013 | 9.864227 | 11.10297 |
38 | 2013 | 10.0174 | 11.06164 |
39 | 2013 | 9.921278 | 11.02241 |
40 | 2013 | 9.79568 | 11.00686 |
41 | 2013 | 9.940253 | 11.05972 |
42 | 2013 | 10.05595 | 11.11215 |
43 | 2013 | 10.11131 | 11.04937 |
44 | 2013 | 9.603395 | 10.9504 |
45 | 2013 | 9.723523 | 11.00896 |
46 | 2013 | 9.863915 | 11.05559 |
47 | 2013 | 10.20814 | 11.08708 |
48 | 2013 | 9.721606 | 10.91369 |
49 | 2013 | 9.669788 | 10.92228 |
50 | 2013 | 9.873131 | 10.93519 |
51 | 2013 | 9.990811 | 11.00627 |
52 | 2013 | 9.651366 | 10.49255 |
0 | 2014 | 9.381432 | 10.50381 |
1 | 2014 | 9.392162 | 11.03046 |
2 | 2014 | 9.713174 | 11.07163 |
3 | 2014 | 9.809342 | 11.12891 |
4 | 2014 | 9.986955 | 11.10241 |
5 | 2014 | 9.488502 | 11.0561 |
6 | 2014 | 9.833226 | 11.19188 |
7 | 2014 | 10.16574 | 11.24522 |
8 | 2014 | 10.4304 | 11.23107 |
9 | 2014 | 9.709357 | 11.12648 |
10 | 2014 | 9.98815 | 11.13966 |
11 | 2014 | 10.07631 | 11.19915 |
12 | 2014 | 10.21841 | 11.26174 |
13 | 2014 | 10.09005 | 11.09156 |
14 | 2014 | 9.982576 | 11.03743 |
15 | 2014 | 10.05959 | 11.12678 |
16 | 2014 | 10.14471 | 11.16423 |
17 | 2014 | 10.2376 | 11.08667 |
18 | 2014 | 9.961143 | 11.03373 |
19 | 2014 | 10.05651 | 11.13076 |
20 | 2014 | 10.17329 | 11.17912 |
21 | 2014 | 10.3772 | 11.13428 |
22 | 2014 | 9.946595 | 11.02451 |
23 | 2014 | 10.01864 | 11.04596 |
24 | 2014 | 10.09448 | 11.07414 |
25 | 2014 | 10.27215 | 11.15696 |
26 | 2014 | 10.21365 | 11.11531 |
27 | 2014 | 10.19388 | 11.16723 |
28 | 2014 | 10.08997 | 11.1838 |
29 | 2014 | 10.05651 | 11.17566 |
30 | 2014 | 10.19096 | 11.1527 |
31 | 2014 | 9.795457 | 11.072 |
32 | 2014 | 9.921769 | 11.09712 |
33 | 2014 | 10.07786 | 11.21036 |
34 | 2014 | 10.41085 | 11.3168 |
35 | 2014 | 10.05199 | 11.20929 |
36 | 2014 | 9.903837 | 11.1398 |
37 | 2014 | 9.965711 | 11.15681 |
38 | 2014 | 10.09237 | 11.18805 |
39 | 2014 | 10.07933 | 11.15161 |
40 | 2014 | 9.766636 | 11.13017 |
41 | 2014 | 9.85692 | 11.15869 |
42 | 2014 | 9.906732 | 11.16284 |
43 | 2014 | 10.16908 | 11.17224 |
44 | 2014 | 9.640368 | 11.14215 |
45 | 2014 | 9.805875 | 11.21039 |
46 | 2014 | 9.870758 | 11.32554 |
47 | 2014 | 10.12579 | 11.27662 |
48 | 2014 | 9.86277 | 11.19193 |
49 | 2014 | 9.844268 | 11.13488 |
50 | 2014 | 10.06373 | 11.17643 |
51 | 2014 | 10.07643 | 11.15661 |
52 | 2014 | 10.1118 | 10.81565 |
Registration is open! SAS is returning to Vegas for an AI and analytics experience like no other! Whether you're an executive, manager, end user or SAS partner, SAS Innovate is designed for everyone on your team. Register for just $495 by 12/31/2023.
If you are interested in speaking, there is still time to submit a session idea. More details are posted on the website.
Learn how to run multiple linear regression models with and without interactions, presented by SAS user Alex Chaplin.
Find more tutorials on the SAS Users YouTube channel.