Dear All,
I am simply trying to test whether the return of dependent variable increases/decreases after the sample end date (December 2001). For example, my dependent variable is L_S (long-short portfolio) of stock i at time t and the independent variable is post sample dummy for stock i at time t. Post sample dummy is equal to one if the date is after 2001, else zero.
L_S(it) = alphai + beta1 post sampel dummy(it) + e(it)
Can you please help me how to run the regression test for changes in returns relative to the sample end date (December 2001)? I have provided sample data too.
data have;
infile cards expandtabs truncover;
input stock date : yymmn6. L_S post_sample ;
format Date yymmn6.;
cards;
14 199901 14.0238 0
15 199901 11.9454 0
16 199901 9.0066 0
14 199902 1.5165 0
15 199902 -1.9619 0
16 199902 0.3936 0
14 199903 1.9127 0
15 199903 -0.2142 0
16 199903 -6.9887 0
14 199904 1.9835 0
15 199904 1.1102 0
16 199904 1.1719 0
14 199905 1.771 0
15 199905 3.2528 0
16 199905 -0.7609 0
14 199906 0.2883 0
15 199906 1.174 0
16 199906 -0.3383 0
14 199907 3.1988 0
15 199907 2.2924 0
16 199907 -2.6332 0
14 199908 0.3939 0
15 199908 -0.1062 0
16 199908 -2.1077 0
14 199909 2.2333 0
15 199909 2.3855 0
16 199909 -0.9922 0
14 199910 0.0906 0
15 199910 -1.7595 0
16 199910 1.8265 0
14 199911 12.0945 0
15 199911 13.1003 0
16 199911 11.7012 0
14 199912 13.1348 0
15 199912 13.0311 0
16 199912 5.6075 0
14 200001 16.5104 0
15 200001 13.4878 0
16 200001 1.6201 0
14 200002 24.751 0
15 200002 22.8749 0
16 200002 9.1362 0
14 200003 -7.1384 0
15 200003 -5.9835 0
16 200003 -7.9094 0
14 200004 -13.1302 0
15 200004 -12.6789 0
16 200004 -12.3907 0
14 200005 -7.179 0
15 200005 -8.9204 0
16 200005 -12.4663 0
14 200006 9.8039 0
15 200006 10.4251 0
16 200006 4.0955 0
14 200007 -6.7036 0
15 200007 -6.3405 0
16 200007 -2.261 0
14 200008 1.7284 0
15 200008 2.8166 0
16 200008 -0.1966 0
14 200009 -6.1185 0
15 200009 -6.2332 0
16 200009 -8.9549 0
14 200010 -9.5955 0
15 200010 -8.6117 0
16 200010 -7.8711 0
14 200011 -15.9693 0
15 200011 -14.1019 0
16 200011 -17.3939 0
14 200012 -11.7599 0
15 200012 -11.0496 0
16 200012 -16.0614 0
14 200101 28.428 1
15 200101 24.3161 1
16 200101 24.8696 1
14 200102 -10.0572 1
15 200102 -9.8009 1
16 200102 -14.7445 1
14 200103 -8.1778 1
15 200103 -6.6534 1
16 200103 -12.8975 1
14 200104 3.5659 1
15 200104 4.775 1
16 200104 7.0148 1
14 200105 3.0865 1
15 200105 3.0205 1
16 200105 2.6813 1
14 200106 -3.0407 1
15 200106 -1.0529 1
16 200106 6.5331 1
14 200107 -7.8688 1
15 200107 -6.0558 1
16 200107 -6.5671 1
14 200108 -5.2509 1
15 200108 -4.9021 1
16 200108 -4.7708 1
14 200109 -6.6907 1
15 200109 -7.7812 1
16 200109 -6.3164 1
14 200110 8.0976 1
15 200110 10.2051 1
16 200110 6.8036 1
14 200111 4.6386 1
15 200111 4.0607 1
16 200111 9.7786 1
14 200112 2.4793 1
15 200112 3.2357 1
16 200112 6.4167 1
14 200201 0.3871 1
15 200201 0.1048 1
16 200201 -3.0061 1
14 200202 -7.5435 1
15 200202 -7.1932 1
16 200202 -10.9996 1
14 200203 1.1006 1
15 200203 3.6903 1
16 200203 -2.3129 1
14 200204 -6.706 1
15 200204 -4.6423 1
16 200204 -7.2183 1
14 200205 -3.319 1
15 200205 -3.5954 1
16 200205 -4.587 1
14 200206 -5.9677 1
15 200206 -6.8817 1
16 200206 -4.1095 1
14 200207 -4.3103 1
15 200207 -5.4936 1
16 200207 -1.6184 1
14 200208 -0.783 1
15 200208 -1.9367 1
16 200208 -3.7291 1
14 200209 -6.8038 1
15 200209 -4.4041 1
16 200209 -4.2089 1
14 200210 4.7228 1
15 200210 4.2958 1
16 200210 6.1159 1
14 200211 14.8031 1
15 200211 11.6538 1
16 200211 9.2207 1
14 200212 -7.44 1
15 200212 -5.6201 1
16 200212 -6.7057 1
14 200301 2.7663 1
15 200301 1.9519 1
16 200301 0.2942 1
14 200302 -0.5867 1
15 200302 -0.6244 1
16 200302 -3.116 1
14 200303 0.8218 1
15 200303 0.8057 1
16 200303 0.8502 1
14 200304 5.9883 1
15 200304 4.1283 1
16 200304 8.4368 1
14 200305 13.8637 1
15 200305 11.1063 1
16 200305 4.3414 1
14 200306 4.0383 1
15 200306 4.8102 1
16 200306 -0.4886 1
14 200307 4.8519 1
15 200307 4.2237 1
16 200307 3.1779 1
14 200308 2.7659 1
15 200308 3.2586 1
16 200308 -0.6638 1
14 200309 5.2582 1
15 200309 3.2569 1
16 200309 -0.4464 1
14 200310 2.961 1
15 200310 3.1561 1
16 200310 1.5347 1
14 200311 0.5451 1
15 200311 1.0336 1
16 200311 -4.545 1
14 200312 0.6783 1
15 200312 -0.7552 1
16 200312 -5.7656 1
run;
Thanks in advance for your help.
Best Regards,
Cheema
Assuming that e(it) is iid normal:
proc glm data=have;
class stock post_sample;
model l_s = stock|post_sample / ss3;
output out=res r=l_s_res;
run; quit;
proc univariate data=res normal;
var l_s_res;
probplot / normal(mu=0) square;
run;
Thanks for it, but it seems bit different than what I am looking for. I might not have explained it well. Please find the attached Table from one of the paper from Journal of Finance, I want to run the similar regression. Thanks for your help.
Sorry. I can not help you. Maybe you should take a look at PROC PANEL
Registration is open! SAS is returning to Vegas for an AI and analytics experience like no other! Whether you're an executive, manager, end user or SAS partner, SAS Innovate is designed for everyone on your team. Register for just $495 by 12/31/2023.
If you are interested in speaking, there is still time to submit a session idea. More details are posted on the website.
Learn how to run multiple linear regression models with and without interactions, presented by SAS user Alex Chaplin.
Find more tutorials on the SAS Users YouTube channel.