BookmarkSubscribeRSS Feed
🔒 This topic is solved and locked. Need further help from the community? Please sign in and ask a new question.
jnunner
Fluorite | Level 6

I am running a logistic regression to predict a binary outcome with 12 predictors.  I ran the logistic regression in Enterprise Guide and then in Enterprise Miner...all fit statistics match, but the intercept and some of the parameter estimates do not match. While some odds ratios in one output can be inverted to match the odds-ratios in the other, I cannot come up with a logical reason of why this is happening. In each I am using the binary outcome=1 as the level to fit model.  I attached output for reference.  Any help is appreciated!

 

 

1 ACCEPTED SOLUTION

Accepted Solutions
jnunner
Fluorite | Level 6
Reeza,

Thanks for your quick reply! When I program in SAS I do use(param=ref ref=first). I am new to EG and thought that because I had binary categorical variables I could 'drag' all variables (binary and quantitative) to the 'Quantitative' list and be ok... evidently dragging binary predictors to the 'categorical' list fixes the problem.

Thanks!!!

View solution in original post

3 REPLIES 3
Reeza
Super User

Are the parameterization methods the same for your categorical variables?

The default is GLM though REF is usually what people want.

 


@jnunner wrote:

I am running a logistic regression to predict a binary outcome with 12 predictors.  I ran the logistic regression in Enterprise Guide and then in Enterprise Miner...all fit statistics match, but the intercept and some of the parameter estimates do not match. While some odds ratios in one output can be inverted to match the odds-ratios in the other, I cannot come up with a logical reason of why this is happening. In each I am using the binary outcome=1 as the level to fit model.  I attached output for reference.  Any help is appreciated!

 

 


 

jnunner
Fluorite | Level 6
Reeza,

Thanks for your quick reply! When I program in SAS I do use(param=ref ref=first). I am new to EG and thought that because I had binary categorical variables I could 'drag' all variables (binary and quantitative) to the 'Quantitative' list and be ok... evidently dragging binary predictors to the 'categorical' list fixes the problem.

Thanks!!!
Reeza
Super User

Glad to hear it's fixed, please mark this as solved. Marking your own answer as the solution here would also be appropriate. 

Cheers!

sas-innovate-2024.png

Don't miss out on SAS Innovate - Register now for the FREE Livestream!

Can't make it to Vegas? No problem! Watch our general sessions LIVE or on-demand starting April 17th. Hear from SAS execs, best-selling author Adam Grant, Hot Ones host Sean Evans, top tech journalist Kara Swisher, AI expert Cassie Kozyrkov, and the mind-blowing dance crew iLuminate! Plus, get access to over 20 breakout sessions.

 

Register now!

How to choose a machine learning algorithm

Use this tutorial as a handy guide to weigh the pros and cons of these commonly used machine learning algorithms.

Find more tutorials on the SAS Users YouTube channel.

Discussion stats
  • 3 replies
  • 991 views
  • 2 likes
  • 2 in conversation