BookmarkSubscribeRSS Feed
🔒 This topic is solved and locked. Need further help from the community? Please sign in and ask a new question.
MART1
Quartz | Level 8

Hello

 

I'm creating a chart with proc sgplot; the x axis is quite "busy" and I'd like to display only , say, every other value.

Below is an example of my chart.

 

data Test;
	input Year Vol1 Vol2;
	datalines;
1960    685.47    568.05                                                                                                                
1961    734.91    610.25                                                                                                                
1962    726.01    535.76                                                                                                                
1963    767.21    646.79                                                                                                                
1964    891.71    768.08                                                                                                                
1965    969.26    840.59                                                                                                                
1966    995.15    744.32                                                                                                                
1967    943.08    786.41                                                                                                                
1968    985.21    825.13                                                                                                                
1969    968.85    769.93                                                                                                                
1970    842.00    631.16                                                                                                                
1971    950.82    797.97                                                                                                                
1972   1036.27    889.15                                                                                                                
1973   1051.70    788.31                                                                                                                
1974    891.66    577.60                                                                                                                
1975    881.81    632.04                                                                                                                
1976   1014.79    858.71                                                                                                                
1977    999.75    800.85                                                                                                                
1978    907.74    742.12                                                                                                                
1979    897.61    796.67                                                                                                                
1980   1000.17    759.13                                                                                                                
1981   1024.05    824.01                                                                                                                
1982   1070.55    776.92                                                                                                                
1983   1287.20   1027.04                                                                                                                
1984   1286.64   1086.57                                                                                                                
1985   1553.10   1184.96                                                                                                                
1986   1955.57   1502.29                                                                                                                
1987   2722.42   1738.74                                                                                                                
1988   2183.50   1879.14                                                                                                                
1989   2791.41   2144.64                                                                                                                
1990   2999.75   2365.10                                                                                                                
1991   3168.83   2470.30                                                                                                                
1992   3413.21   3136.58                                                                                                                
1993   3794.33   3241.95                                                                                                                
1994   3978.36   3593.35                                                                                                                
1995   5216.47   3832.08                                                                                                                
1996   6560.91   5032.94                                                                                                                
1997   8259.31   6391.69                                                                                                                
1998   9374.27   7539.07                                                                                                                
1999  11497.12   9120.67                                                                                                                
2000  11722.98   9796.03                                                                                                                
2001  11337.92   8235.81                                                                                                                
2002  10635.25   7286.27                                                                                                                
2003  10453.92   7524.06                                                                                                                
2004  10854.54   9749.99                                                                                                                
2005  10940.55  10012.36                                                                                                                
2006  12510.57  10667.35                                                                                                                
2007  14164.53  12050.41                                                                                                                
2008  13058.20   6547.05                                                                                                                
2009  10605.70   6440.08                                                                                                                
2010  11655.0    9596.04                                                                                                                
2011  12928.5   10362.3                                                                                                                 
2012  13588.7   12221.2
;
run;




proc sgplot data=TEST;
	vbar Year / response=Vol1 nostatlabel fillattrs=(color=lightblue) transparency=0.1;
/*	vline actg_dt / response=expected  nostatlabel /*y2axis*/*/
                 lineattrs=(thickness=3 color=deeppink pattern=dash) /*transparency=0.1*/;
				 xaxis display=(nolabel) type=discrete;
				 keylegend;
run;

I've tried all the options (at least I think!) in xaxis, but can't find the right one.

 

many thanks in advance

 

1 ACCEPTED SOLUTION

Accepted Solutions
ballardw
Super User

The XAXIS with Fitpolicy=Thin should do what I think you want.

View solution in original post

2 REPLIES 2
ballardw
Super User

The XAXIS with Fitpolicy=Thin should do what I think you want.

MART1
Quartz | Level 8

great many thanks @ballardw   !

sas-innovate-white.png

Register Today!

Join us for SAS Innovate 2025, our biggest and most exciting global event of the year, in Orlando, FL, from May 6-9.

 

Early bird rate extended! Save $200 when you sign up by March 31.

Register now!

Mastering the WHERE Clause in PROC SQL

SAS' Charu Shankar shares her PROC SQL expertise by showing you how to master the WHERE clause using real winter weather data.

Find more tutorials on the SAS Users YouTube channel.

Discussion stats
  • 2 replies
  • 1043 views
  • 2 likes
  • 2 in conversation