i have raw data as below:
Subject_ID | Date | Time_administered | Dose_administered | __of_capsules_administered | Study_day_IP |
001-001 | 4-Mar-21 | 45:00.0 | 25 mg | 1 | TP1-Day1 |
001-001 | 5-Mar-21 | 50:00.0 | 25 mg | 1 | TP1-Day2 |
001-001 | 6-Mar-21 | ||||
001-001 | 7-Mar-21 | ||||
001-001 | 8-Mar-21 | ||||
001-001 | 9-Mar-21 | ||||
001-001 | 10-Mar-21 | ||||
001-001 | 11-Mar-21 | ||||
001-001 | 12-Mar-21 | ||||
001-001 | 13-Mar-21 | ||||
001-001 | 14-Mar-21 | ||||
001-001 | 15-Mar-21 | ||||
001-001 | 16-Mar-21 | ||||
001-001 | 17-Mar-21 | ||||
001-001 | 18-Mar-21 | 45:00.0 | 50 mg | 2 | TP1-Day15 |
001-001 | 19-Mar-21 | ||||
001-001 | 20-Mar-21 | ||||
001-001 | 21-Mar-21 | ||||
001-001 | 22-Mar-21 | ||||
001-001 | 23-Mar-21 | ||||
001-001 | 24-Mar-21 | ||||
001-001 | 25-Mar-21 | 00:00.0 | 50 mg | 2 | TP1-Day22 |
001-001 | 26-Mar-21 | ||||
001-001 | 27-Mar-21 | ||||
001-001 | 28-Mar-21 | ||||
001-001 | 29-Mar-21 | ||||
001-001 | 30-Mar-21 | ||||
001-001 | 31-Mar-21 | 30:00.0 | 50 mg | 2 | TP1-Day28 |
001-001 | 1-Apr-21 | 25:00.0 | 50 mg | 2 | TP1Washoutday29 |
001-001 | 2-Apr-21 | ||||
001-001 | 3-Apr-21 | ||||
001-001 | 4-Apr-21 | ||||
001-001 | 5-Apr-21 | ||||
001-001 | 6-Apr-21 | ||||
001-001 | 7-Apr-21 | ||||
001-001 | 8-Apr-21 | ||||
001-001 | 9-Apr-21 | ||||
001-001 | 10-Apr-21 | ||||
001-001 | 11-Apr-21 | ||||
001-001 | 12-Apr-21 | ||||
001-001 | 13-Apr-21 | ||||
001-001 | 14-Apr-21 | 00:00.0 | 25 mg | 1 | TP2-Day1 |
001-001 | 15-Apr-21 | ||||
001-001 | 16-Apr-21 | ||||
001-001 | 17-Apr-21 | ||||
001-001 | 18-Apr-21 | ||||
001-001 | 19-Apr-21 | ||||
001-001 | 20-Apr-21 | ||||
001-001 | 21-Apr-21 | ||||
001-001 | 22-Apr-21 | 26:00.0 | 25 mg | 1 | TP2-Day8 |
001-001 | 23-Apr-21 | ||||
001-001 | 24-Apr-21 | ||||
001-001 | 25-Apr-21 | ||||
001-001 | 26-Apr-21 | ||||
001-001 | 27-Apr-21 | ||||
001-001 | 28-Apr-21 | ||||
001-001 | 29-Apr-21 | 15:00.0 | 50 mg | 2 | TP2-Day15 |
001-002 | 9-Mar-21 | 00:00.0 | 25 mg | 1 | TP1-Day1 |
001-002 | 10-Mar-21 | 40:00.0 | 25 mg | 1 | TP1-Day2 |
001-002 | 11-Mar-21 | ||||
001-002 | 12-Mar-21 | ||||
001-002 | 13-Mar-21 | ||||
001-002 | 14-Mar-21 | ||||
001-002 | 15-Mar-21 | ||||
001-002 | 16-Mar-21 | 10:00.0 | 25 mg | 1 | TP1-Day8 |
001-002 | 17-Mar-21 | ||||
001-002 | 18-Mar-21 | ||||
001-002 | 19-Mar-21 | ||||
001-002 | 20-Mar-21 | ||||
001-002 | 21-Mar-21 | ||||
001-002 | 22-Mar-21 | ||||
001-002 | 23-Mar-21 | 00:00.0 | 50 mg | 2 | TP1-Day15 |
001-002 | 24-Mar-21 | ||||
001-002 | 25-Mar-21 | ||||
001-002 | 26-Mar-21 | ||||
001-002 | 27-Mar-21 | ||||
001-002 | 28-Mar-21 | ||||
001-002 | 29-Mar-21 | ||||
001-002 | 30-Mar-21 | 50:00.0 | 75 mg | 3 | TP1-Day22 |
001-002 | 31-Mar-21 | ||||
001-002 | 1-Apr-21 | ||||
001-002 | 2-Apr-21 | ||||
001-002 | 3-Apr-21 | ||||
001-002 | 4-Apr-21 | ||||
001-002 | 5-Apr-21 | ||||
001-002 | 6-Apr-21 | ||||
001-002 | 20-Apr-21 | 30:00.0 | 25 mg | 1 | TP2-Day1 |
001-002 | 21-Apr-21 | 00:00.0 | 25 mg | 1 | TP2-Day2 |
001-002 | 22-Apr-21 | ||||
001-002 | 23-Apr-21 | ||||
001-002 | 24-Apr-21 | ||||
001-002 | 25-Apr-21 | ||||
001-002 | 26-Apr-21 | ||||
001-002 | 27-Apr-21 | 00:00.0 | 25 mg | 1 | TP2-Day8 |
001-002 | 28-Apr-21 | ||||
001-002 | 29-Apr-21 | ||||
001-002 | 30-Apr-21 | ||||
001-002 | 1-May-21 | ||||
001-002 | 2-May-21 | ||||
001-002 | 3-May-21 | ||||
001-002 | 4-May-21 | ||||
001-002 | 5-May-21 | 00:00.0 | 50 mg | 2 | TP2-Day15 |
001-002 | 6-May-21 | ||||
001-002 | 7-May-21 | ||||
001-002 | 8-May-21 | ||||
001-002 | 9-May-21 | ||||
001-002 | 10-May-21 | ||||
001-002 | 11-May-21 | 03:00.0 | 75 mg | 3 | TP2-Day22 |
001-002 | 12-May-21 | ||||
001-002 | 13-May-21 | ||||
001-002 | 14-May-21 | ||||
001-002 | 15-May-21 | ||||
001-002 | 16-May-21 | ||||
001-002 | 17-May-21 | ||||
001-002 | 18-May-21 | 30:00.0 | 75 mg | 3 | TP2-Day28 |
001-002 | 19-May-21 | 45:00.0 | 75 mg | 3 | TP2Washoutday71 |
001-002 | 20-May-21 | ||||
001-002 | 21-May-21 | ||||
001-002 | 22-May-21 | ||||
001-002 | 23-May-21 | ||||
001-002 | 24-May-21 | ||||
001-002 | 25-May-21 | ||||
001-002 | 26-May-21 | ||||
001-002 | 27-May-21 | ||||
001-002 | 28-May-21 | ||||
001-002 | 29-May-21 | ||||
001-002 | 30-May-21 | ||||
001-002 | 31-May-21 |
I want the data as below :
Subject_ID | Date | Time_administered | Dose_administered | __of_capsules_administered | Study_day_IP |
001-001 | 4-Mar-21 | 45:00.0 | 25 mg | 1 | TP1-Day1 |
001-001 | 5-Mar-21 | 50:00.0 | 25 mg | 1 | TP1-Day2 |
001-001 | 6-Mar-21 | TP1-Day3 | |||
001-001 | 7-Mar-21 | TP1-Day4 | |||
001-001 | 8-Mar-21 | TP1-Day5 | |||
001-001 | 9-Mar-21 | TP1-Day6 | |||
001-001 | 10-Mar-21 | TP1-Day7 | |||
001-001 | 11-Mar-21 | TP1-Day8 | |||
001-001 | 12-Mar-21 | TP1-Day9 | |||
001-001 | 13-Mar-21 | TP1-Day10 | |||
001-001 | 14-Mar-21 | TP1-Day11 | |||
001-001 | 15-Mar-21 | TP1-Day12 | |||
001-001 | 16-Mar-21 | TP1-Day13 | |||
001-001 | 17-Mar-21 | TP1-Day14 | |||
001-001 | 18-Mar-21 | 45:00.0 | 50 mg | 2 | TP1-Day15 |
001-001 | 19-Mar-21 | TP1-Day16 | |||
001-001 | 20-Mar-21 | TP1-Day17 | |||
001-001 | 21-Mar-21 | TP1-Day18 | |||
001-001 | 22-Mar-21 | TP1-Day19 | |||
001-001 | 23-Mar-21 | TP1-Day20 | |||
001-001 | 24-Mar-21 | TP1-Day21 | |||
001-001 | 25-Mar-21 | 00:00.0 | 50 mg | 2 | TP1-Day22 |
001-001 | 26-Mar-21 | TP1-Day23 | |||
001-001 | 27-Mar-21 | TP1-Day24 | |||
001-001 | 28-Mar-21 | TP1-Day25 | |||
001-001 | 29-Mar-21 | TP1-Day26 | |||
001-001 | 30-Mar-21 | TP1-Day27 | |||
001-001 | 31-Mar-21 | 30:00.0 | 50 mg | 2 | TP1-Day28 |
001-001 | 1-Apr-21 | 25:00.0 | 50 mg | 2 | TP1Washoutday29 |
001-001 | 2-Apr-21 | TP1Washoutday30 | |||
001-001 | 3-Apr-21 | TP1Washoutday31 | |||
001-001 | 4-Apr-21 | TP1Washoutday32 | |||
001-001 | 5-Apr-21 | TP1Washoutday33 | |||
001-001 | 6-Apr-21 | TP1Washoutday34 | |||
001-001 | 7-Apr-21 | TP1Washoutday35 | |||
001-001 | 8-Apr-21 | TP1Washoutday36 | |||
001-001 | 9-Apr-21 | TP1Washoutday37 | |||
001-001 | 10-Apr-21 | TP1Washoutday38 | |||
001-001 | 11-Apr-21 | TP1Washoutday39 | |||
001-001 | 12-Apr-21 | TP1Washoutday40 | |||
001-001 | 13-Apr-21 | TP1Washoutday41 | |||
001-001 | 14-Apr-21 | 00:00.0 | 25 mg | 1 | TP2-Day1 |
001-001 | 15-Apr-21 | TP2-Day2 | |||
001-001 | 16-Apr-21 | TP2-Day3 | |||
001-001 | 17-Apr-21 | TP2-Day4 | |||
001-001 | 18-Apr-21 | TP2-Day5 | |||
001-001 | 19-Apr-21 | TP2-Day6 | |||
001-001 | 20-Apr-21 | TP2-Day7 | |||
001-001 | 21-Apr-21 | ||||
001-001 | 22-Apr-21 | 26:00.0 | 25 mg | 1 | TP2-Day8 |
001-001 | 23-Apr-21 | TP2-Day9 | |||
001-001 | 24-Apr-21 | TP2-Day10 | |||
001-001 | 25-Apr-21 | TP2-Day11 | |||
001-001 | 26-Apr-21 | TP2-Day12 | |||
001-001 | 27-Apr-21 | TP2-Day13 | |||
001-001 | 28-Apr-21 | TP2-Day14 | |||
001-001 | 29-Apr-21 | 15:00.0 | 50 mg | 2 | TP2-Day15 |
001-002 | 9-Mar-21 | 00:00.0 | 25 mg | 1 | TP1-Day1 |
001-002 | 10-Mar-21 | 40:00.0 | 25 mg | 1 | TP1-Day2 |
001-002 | 11-Mar-21 | TP1-Day3 | |||
001-002 | 12-Mar-21 | TP1-Day4 | |||
001-002 | 13-Mar-21 | TP1-Day5 | |||
001-002 | 14-Mar-21 | TP1-Day6 | |||
001-002 | 15-Mar-21 | TP1-Day7 | |||
001-002 | 16-Mar-21 | 10:00.0 | 25 mg | 1 | TP1-Day8 |
001-002 | 17-Mar-21 | TP1-Day9 | |||
001-002 | 18-Mar-21 | TP1-Day10 | |||
001-002 | 19-Mar-21 | TP1-Day11 | |||
001-002 | 20-Mar-21 | TP1-Day12 | |||
001-002 | 21-Mar-21 | TP1-Day13 | |||
001-002 | 22-Mar-21 | TP1-Day14 | |||
001-002 | 23-Mar-21 | 00:00.0 | 50 mg | 2 | TP1-Day15 |
001-002 | 24-Mar-21 | TP1-Day16 | |||
001-002 | 25-Mar-21 | TP1-Day17 | |||
001-002 | 26-Mar-21 | TP1-Day18 | |||
001-002 | 27-Mar-21 | TP1-Day19 | |||
001-002 | 28-Mar-21 | TP1-Day20 | |||
001-002 | 29-Mar-21 | TP1-Day21 | |||
001-002 | 30-Mar-21 | 50:00.0 | 75 mg | 3 | TP1-Day22 |
001-002 | 31-Mar-21 | TP1-Day23 | |||
001-002 | 1-Apr-21 | TP1-Day24 | |||
001-002 | 2-Apr-21 | TP1-Day25 | |||
001-002 | 3-Apr-21 | TP1-Day26 | |||
001-002 | 4-Apr-21 | TP1-Day27 | |||
001-002 | 5-Apr-21 | TP1-Day28 | |||
001-002 | 6-Apr-21 | TP1-Day29 | |||
001-002 | 20-Apr-21 | 30:00.0 | 25 mg | 1 | TP2-Day1 |
001-002 | 21-Apr-21 | 00:00.0 | 25 mg | 1 | TP2-Day2 |
001-002 | 22-Apr-21 | TP2-Day3 | |||
001-002 | 23-Apr-21 | TP2-Day4 | |||
001-002 | 24-Apr-21 | TP2-Day5 | |||
001-002 | 25-Apr-21 | TP2-Day6 | |||
001-002 | 26-Apr-21 | TP2-Day7 | |||
001-002 | 27-Apr-21 | 00:00.0 | 25 mg | 1 | TP2-Day8 |
001-002 | 28-Apr-21 | TP2-Day9 | |||
001-002 | 29-Apr-21 | TP2-Day10 | |||
001-002 | 30-Apr-21 | TP2-Day11 | |||
001-002 | 1-May-21 | TP2-Day12 | |||
001-002 | 2-May-21 | TP2-Day13 | |||
001-002 | 3-May-21 | TP2-Day14 | |||
001-002 | 4-May-21 | ||||
001-002 | 5-May-21 | 00:00.0 | 50 mg | 2 | TP2-Day15 |
001-002 | 6-May-21 | TP2-Day16 | |||
001-002 | 7-May-21 | TP2-Day17 | |||
001-002 | 8-May-21 | TP2-Day18 | |||
001-002 | 9-May-21 | TP2-Day19 | |||
001-002 | 10-May-21 | ||||
001-002 | 11-May-21 | 03:00.0 | 75 mg | 3 | TP2-Day22 |
001-002 | 12-May-21 | TP2-Day23 | |||
001-002 | 13-May-21 | TP2-Day24 | |||
001-002 | 14-May-21 | TP2-Day25 | |||
001-002 | 15-May-21 | TP2-Day26 | |||
001-002 | 16-May-21 | TP2-Day27 | |||
001-002 | 17-May-21 | ||||
001-002 | 18-May-21 | 30:00.0 | 75 mg | 3 | TP2-Day28 |
001-002 | 19-May-21 | 45:00.0 | 75 mg | 3 | TP2Washoutday71 |
001-002 | 20-May-21 | TP2Washoutday72 | |||
001-002 | 21-May-21 | TP2Washoutday73 | |||
001-002 | 22-May-21 | TP2Washoutday74 | |||
001-002 | 23-May-21 | TP2Washoutday75 | |||
001-002 | 24-May-21 | TP2Washoutday76 | |||
001-002 | 25-May-21 | TP2Washoutday77 | |||
001-002 | 26-May-21 | TP2Washoutday78 | |||
001-002 | 27-May-21 | TP2Washoutday79 | |||
001-002 | 28-May-21 | TP2Washoutday80 | |||
001-002 | 29-May-21 | TP2Washoutday81 | |||
001-002 | 30-May-21 | TP2Washoutday82 | |||
001-002 | 31-May-21 | TP2Washoutday83 |
Note the for some subject, as per date it study_day_ip should be tp2day29 be due to some condition it occurred on the tpt2day28. in this case please leave the before one as blank. For example in above table for subject 001-001, for date 21 Apr 20221 the study_day_ip should be tpt2day 8 but due to the some issue at site tpt2day8 occurred on 22 Apr 2021 instead 21 Apr2021, so for this i would like to have blank date or can even if it populates as TPT2day7 is also fine with me.
Please let me know this is possible programmatically.
Please let me know if you need any further information or if you are not clear about above points.
Really appreciate if anyone can be of any help for me with this regards.
It is not clear what you need.
Please define the rules how to correct the data.
Example in this case is not enough.
And please be presize when you mention values to check, as 'TP2-Day8'
does not match 'tpt2day8'.
It is not clear what you need.
Please define the rules how to correct the data.
Example in this case is not enough.
And please be presize when you mention values to check, as 'TP2-Day8'
does not match 'tpt2day8'.
Good news: We've extended SAS Hackathon registration until Sept. 12, so you still have time to be part of our biggest event yet – our five-year anniversary!
SAS' Charu Shankar shares her PROC SQL expertise by showing you how to master the WHERE clause using real winter weather data.
Find more tutorials on the SAS Users YouTube channel.