BookmarkSubscribeRSS Feed
☑ This topic is solved. Need further help from the community? Please sign in and ask a new question.
Sri_devi
Obsidian | Level 7

i have raw data as below:

 

Subject_ID Date Time_administered Dose_administered __of_capsules_administered Study_day_IP
001-001 4-Mar-21 45:00.0 25 mg 1 TP1-Day1
001-001 5-Mar-21 50:00.0 25 mg 1 TP1-Day2
001-001 6-Mar-21        
001-001 7-Mar-21        
001-001 8-Mar-21        
001-001 9-Mar-21        
001-001 10-Mar-21        
001-001 11-Mar-21        
001-001 12-Mar-21        
001-001 13-Mar-21        
001-001 14-Mar-21        
001-001 15-Mar-21        
001-001 16-Mar-21        
001-001 17-Mar-21        
001-001 18-Mar-21 45:00.0 50 mg 2 TP1-Day15
001-001 19-Mar-21        
001-001 20-Mar-21        
001-001 21-Mar-21        
001-001 22-Mar-21        
001-001 23-Mar-21        
001-001 24-Mar-21        
001-001 25-Mar-21 00:00.0 50 mg 2 TP1-Day22
001-001 26-Mar-21        
001-001 27-Mar-21        
001-001 28-Mar-21        
001-001 29-Mar-21        
001-001 30-Mar-21        
001-001 31-Mar-21 30:00.0 50 mg 2 TP1-Day28
001-001 1-Apr-21 25:00.0 50 mg 2 TP1Washoutday29
001-001 2-Apr-21        
001-001 3-Apr-21        
001-001 4-Apr-21        
001-001 5-Apr-21        
001-001 6-Apr-21        
001-001 7-Apr-21        
001-001 8-Apr-21        
001-001 9-Apr-21        
001-001 10-Apr-21        
001-001 11-Apr-21        
001-001 12-Apr-21        
001-001 13-Apr-21        
001-001 14-Apr-21 00:00.0 25 mg 1 TP2-Day1
001-001 15-Apr-21        
001-001 16-Apr-21        
001-001 17-Apr-21        
001-001 18-Apr-21        
001-001 19-Apr-21        
001-001 20-Apr-21        
001-001 21-Apr-21        
001-001 22-Apr-21 26:00.0 25 mg 1 TP2-Day8
001-001 23-Apr-21        
001-001 24-Apr-21        
001-001 25-Apr-21        
001-001 26-Apr-21        
001-001 27-Apr-21        
001-001 28-Apr-21        
001-001 29-Apr-21 15:00.0 50 mg 2 TP2-Day15
001-002 9-Mar-21 00:00.0 25 mg 1 TP1-Day1
001-002 10-Mar-21 40:00.0 25 mg 1 TP1-Day2
001-002 11-Mar-21        
001-002 12-Mar-21        
001-002 13-Mar-21        
001-002 14-Mar-21        
001-002 15-Mar-21        
001-002 16-Mar-21 10:00.0 25 mg 1 TP1-Day8
001-002 17-Mar-21        
001-002 18-Mar-21        
001-002 19-Mar-21        
001-002 20-Mar-21        
001-002 21-Mar-21        
001-002 22-Mar-21        
001-002 23-Mar-21 00:00.0 50 mg 2 TP1-Day15
001-002 24-Mar-21        
001-002 25-Mar-21        
001-002 26-Mar-21        
001-002 27-Mar-21        
001-002 28-Mar-21        
001-002 29-Mar-21        
001-002 30-Mar-21 50:00.0 75 mg 3 TP1-Day22
001-002 31-Mar-21        
001-002 1-Apr-21        
001-002 2-Apr-21        
001-002 3-Apr-21        
001-002 4-Apr-21        
001-002 5-Apr-21        
001-002 6-Apr-21        
001-002 20-Apr-21 30:00.0 25 mg 1 TP2-Day1
001-002 21-Apr-21 00:00.0 25 mg 1 TP2-Day2
001-002 22-Apr-21        
001-002 23-Apr-21        
001-002 24-Apr-21        
001-002 25-Apr-21        
001-002 26-Apr-21        
001-002 27-Apr-21 00:00.0 25 mg 1 TP2-Day8
001-002 28-Apr-21        
001-002 29-Apr-21        
001-002 30-Apr-21        
001-002 1-May-21        
001-002 2-May-21        
001-002 3-May-21        
001-002 4-May-21        
001-002 5-May-21 00:00.0 50 mg 2 TP2-Day15
001-002 6-May-21        
001-002 7-May-21        
001-002 8-May-21        
001-002 9-May-21        
001-002 10-May-21        
001-002 11-May-21 03:00.0 75 mg 3 TP2-Day22
001-002 12-May-21        
001-002 13-May-21        
001-002 14-May-21        
001-002 15-May-21        
001-002 16-May-21        
001-002 17-May-21        
001-002 18-May-21 30:00.0 75 mg 3 TP2-Day28
001-002 19-May-21 45:00.0 75 mg 3 TP2Washoutday71
001-002 20-May-21        
001-002 21-May-21        
001-002 22-May-21        
001-002 23-May-21        
001-002 24-May-21        
001-002 25-May-21        
001-002 26-May-21        
001-002 27-May-21        
001-002 28-May-21        
001-002 29-May-21        
001-002 30-May-21        
001-002 31-May-21        

 

 

 

 

I want the data as below :

 

 

Subject_ID Date Time_administered Dose_administered __of_capsules_administered Study_day_IP
001-001 4-Mar-21 45:00.0 25 mg 1 TP1-Day1
001-001 5-Mar-21 50:00.0 25 mg 1 TP1-Day2
001-001 6-Mar-21       TP1-Day3
001-001 7-Mar-21       TP1-Day4
001-001 8-Mar-21       TP1-Day5
001-001 9-Mar-21       TP1-Day6
001-001 10-Mar-21       TP1-Day7
001-001 11-Mar-21       TP1-Day8
001-001 12-Mar-21       TP1-Day9
001-001 13-Mar-21       TP1-Day10
001-001 14-Mar-21       TP1-Day11
001-001 15-Mar-21       TP1-Day12
001-001 16-Mar-21       TP1-Day13
001-001 17-Mar-21       TP1-Day14
001-001 18-Mar-21 45:00.0 50 mg 2 TP1-Day15
001-001 19-Mar-21       TP1-Day16
001-001 20-Mar-21       TP1-Day17
001-001 21-Mar-21       TP1-Day18
001-001 22-Mar-21       TP1-Day19
001-001 23-Mar-21       TP1-Day20
001-001 24-Mar-21       TP1-Day21
001-001 25-Mar-21 00:00.0 50 mg 2 TP1-Day22
001-001 26-Mar-21       TP1-Day23
001-001 27-Mar-21       TP1-Day24
001-001 28-Mar-21       TP1-Day25
001-001 29-Mar-21       TP1-Day26
001-001 30-Mar-21       TP1-Day27
001-001 31-Mar-21 30:00.0 50 mg 2 TP1-Day28
001-001 1-Apr-21 25:00.0 50 mg 2 TP1Washoutday29
001-001 2-Apr-21       TP1Washoutday30
001-001 3-Apr-21       TP1Washoutday31
001-001 4-Apr-21       TP1Washoutday32
001-001 5-Apr-21       TP1Washoutday33
001-001 6-Apr-21       TP1Washoutday34
001-001 7-Apr-21       TP1Washoutday35
001-001 8-Apr-21       TP1Washoutday36
001-001 9-Apr-21       TP1Washoutday37
001-001 10-Apr-21       TP1Washoutday38
001-001 11-Apr-21       TP1Washoutday39
001-001 12-Apr-21       TP1Washoutday40
001-001 13-Apr-21       TP1Washoutday41
001-001 14-Apr-21 00:00.0 25 mg 1 TP2-Day1
001-001 15-Apr-21       TP2-Day2
001-001 16-Apr-21       TP2-Day3
001-001 17-Apr-21       TP2-Day4
001-001 18-Apr-21       TP2-Day5
001-001 19-Apr-21       TP2-Day6
001-001 20-Apr-21       TP2-Day7
001-001 21-Apr-21        
001-001 22-Apr-21 26:00.0 25 mg 1 TP2-Day8
001-001 23-Apr-21       TP2-Day9
001-001 24-Apr-21       TP2-Day10
001-001 25-Apr-21       TP2-Day11
001-001 26-Apr-21       TP2-Day12
001-001 27-Apr-21       TP2-Day13
001-001 28-Apr-21       TP2-Day14
001-001 29-Apr-21 15:00.0 50 mg 2 TP2-Day15
001-002 9-Mar-21 00:00.0 25 mg 1 TP1-Day1
001-002 10-Mar-21 40:00.0 25 mg 1 TP1-Day2
001-002 11-Mar-21       TP1-Day3
001-002 12-Mar-21       TP1-Day4
001-002 13-Mar-21       TP1-Day5
001-002 14-Mar-21       TP1-Day6
001-002 15-Mar-21       TP1-Day7
001-002 16-Mar-21 10:00.0 25 mg 1 TP1-Day8
001-002 17-Mar-21       TP1-Day9
001-002 18-Mar-21       TP1-Day10
001-002 19-Mar-21       TP1-Day11
001-002 20-Mar-21       TP1-Day12
001-002 21-Mar-21       TP1-Day13
001-002 22-Mar-21       TP1-Day14
001-002 23-Mar-21 00:00.0 50 mg 2 TP1-Day15
001-002 24-Mar-21       TP1-Day16
001-002 25-Mar-21       TP1-Day17
001-002 26-Mar-21       TP1-Day18
001-002 27-Mar-21       TP1-Day19
001-002 28-Mar-21       TP1-Day20
001-002 29-Mar-21       TP1-Day21
001-002 30-Mar-21 50:00.0 75 mg 3 TP1-Day22
001-002 31-Mar-21       TP1-Day23
001-002 1-Apr-21       TP1-Day24
001-002 2-Apr-21       TP1-Day25
001-002 3-Apr-21       TP1-Day26
001-002 4-Apr-21       TP1-Day27
001-002 5-Apr-21       TP1-Day28
001-002 6-Apr-21       TP1-Day29
001-002 20-Apr-21 30:00.0 25 mg 1 TP2-Day1
001-002 21-Apr-21 00:00.0 25 mg 1 TP2-Day2
001-002 22-Apr-21       TP2-Day3
001-002 23-Apr-21       TP2-Day4
001-002 24-Apr-21       TP2-Day5
001-002 25-Apr-21       TP2-Day6
001-002 26-Apr-21       TP2-Day7
001-002 27-Apr-21 00:00.0 25 mg 1 TP2-Day8
001-002 28-Apr-21       TP2-Day9
001-002 29-Apr-21       TP2-Day10
001-002 30-Apr-21       TP2-Day11
001-002 1-May-21       TP2-Day12
001-002 2-May-21       TP2-Day13
001-002 3-May-21       TP2-Day14
001-002 4-May-21        
001-002 5-May-21 00:00.0 50 mg 2 TP2-Day15
001-002 6-May-21       TP2-Day16
001-002 7-May-21       TP2-Day17
001-002 8-May-21       TP2-Day18
001-002 9-May-21       TP2-Day19
001-002 10-May-21        
001-002 11-May-21 03:00.0 75 mg 3 TP2-Day22
001-002 12-May-21       TP2-Day23
001-002 13-May-21       TP2-Day24
001-002 14-May-21       TP2-Day25
001-002 15-May-21       TP2-Day26
001-002 16-May-21       TP2-Day27
001-002 17-May-21        
001-002 18-May-21 30:00.0 75 mg 3 TP2-Day28
001-002 19-May-21 45:00.0 75 mg 3 TP2Washoutday71
001-002 20-May-21       TP2Washoutday72
001-002 21-May-21       TP2Washoutday73
001-002 22-May-21       TP2Washoutday74
001-002 23-May-21       TP2Washoutday75
001-002 24-May-21       TP2Washoutday76
001-002 25-May-21       TP2Washoutday77
001-002 26-May-21       TP2Washoutday78
001-002 27-May-21       TP2Washoutday79
001-002 28-May-21       TP2Washoutday80
001-002 29-May-21       TP2Washoutday81
001-002 30-May-21       TP2Washoutday82
001-002 31-May-21       TP2Washoutday83

 

 

Note the for some subject, as per date it study_day_ip should be tp2day29 be due to some condition it occurred on the tpt2day28. in this case please leave the before one as blank. For example in above table for subject 001-001, for date 21 Apr 20221 the study_day_ip should be  tpt2day 8 but due to the some issue at site tpt2day8 occurred on 22 Apr 2021 instead 21 Apr2021, so for this i would like to have blank date or can even if it populates as TPT2day7 is also fine with me.

 

Please let me know this is possible programmatically.

Please let me know if you need any further information or if you are not clear about above points.

 

Really appreciate if anyone can be of any help for me with this regards.

 

 

 

1 ACCEPTED SOLUTION

Accepted Solutions
Shmuel
Garnet | Level 18

It is not clear what you need.

Please define the rules how to correct the data.
Example in this case is not enough.

And please be presize when you mention values to check, as 'TP2-Day8'

does not match 'tpt2day8'.

 

View solution in original post

2 REPLIES 2
Shmuel
Garnet | Level 18

It is not clear what you need.

Please define the rules how to correct the data.
Example in this case is not enough.

And please be presize when you mention values to check, as 'TP2-Day8'

does not match 'tpt2day8'.

 

Sri_devi
Obsidian | Level 7
Thanks and i am so sorry to confuse. I will re-post with clear instructions. thank you.

hackathon24-white-horiz.png

2025 SAS Hackathon: There is still time!

Good news: We've extended SAS Hackathon registration until Sept. 12, so you still have time to be part of our biggest event yet – our five-year anniversary!

Register Now

Mastering the WHERE Clause in PROC SQL

SAS' Charu Shankar shares her PROC SQL expertise by showing you how to master the WHERE clause using real winter weather data.

Find more tutorials on the SAS Users YouTube channel.

Discussion stats
  • 2 replies
  • 690 views
  • 0 likes
  • 2 in conversation