Operations Research topics: SAS/OR,
SAS Optimization, and SAS Simulation Studio

Airline_Rubix_V2

Reply
SAS Employee
Posts: 417

Airline_Rubix_V2

You will probably see better performance if you omit the z_CON constraints (which seem to make the problem infeasible) and rewrite the objective function in a way that leads to a sparse Hessian:

*min MSE = sum{r in RGN_I}

   (z - VALUE_TGT)**2;

var Error {RGN_I};

con Error_CON {r in RGN_I}:

   Error = z - VALUE_TGT;

min MSE = sum{r in RGN_I}

   Error**2;

Occasional Contributor
Posts: 18

Re: Airline Rubix

BTW, how do I mark this question answered?

SAS Employee
Posts: 417

Re: Airline Rubix

Instructions can be found here:

https://communities.sas.com/message/242631#242631

Occasional Contributor
Posts: 18

Re: Airline_Rubix_V2

Hi Rob and others,

I extended the Rubix with more dimensions...

data TABLE1;
input RGN $7. MTH $4. CNTRY $3. CLS $3. MKT $7. MKTTYPE $7. DMD VALUE PRICE;
datalines;
GGGGGG APR JJ RR AAACCC OTHOTH 4.072487387 5073.712404 1245.85098
GGGGGG APR LL RR AAACCC OTHOTH 0.759277544 527.855155 695.2071207
ROMANN APR SS RR ARNSSS TTTTTT 13.6940138 20710.54229 1512.379248
GGGGGG APR BB RR BAADDD OTHOTH 3.858234121 1971.730438 511.044788
BUHBUH APR QQ RR CAAHHH TTTTTT 670.3483179 607903.4554 906.8471407
GGGGGG APR KK RR DEEKKK TTTTTT 22.93870547 11473.72103 500.1904334
LIONNN APR UG RR EEEFFF OTHOTH 1.314052632 1776.681947 1352.063002
ROMANN APR IT RR DDMFCC OTHOTH 18.18630498 34948.34188 1921.684582
NOODLE APR AA RR MMMMUC TTTTTT 38.07123286 107524.5245 2824.298464
ROMANN APR IT WW BBRNNN OTHOTH 6.842336232 3142.693913 459.301298
NOODLE FEB PP RR GGGIII OTHOTH 1.240267277 3507.439478 2827.970665
BUHBUH JUL QQ RR AEEPPP UNDISC 0.610535011 282.9336958 463.419281
;

proc sql;
create table TABLE_RGN as
select unique RGN from TABLE1; quit;

proc sql;
create table TABLE_MN as
select unique MTH from TABLE1; quit;

proc sql;
create table TABLE_PS as
select unique CNTRY from TABLE1; quit;

proc sql;
create table TABLE_CM as
select unique CLS from TABLE1; quit;

proc sql;
create table TABLE_ND as
select unique MKT from TABLE1; quit;

proc sql;
create table TABLE_OT as
select unique MKTTYPE from TABLE1; quit;

/*****************************************************************************************/
/* Dummy data set only to provide constant targets */

proc sql;
create table RGN_TGT as
select unique RGN,
sum(VALUE)*1.3 as RGN_VALUE_TGT format dollar16.0,
0.7*(sum(VALUE)/sum(DMD)) as RGN_PRICE_TGT format dollar16.0,
sum(DMD) as RGN_DMD
from TABLE1
group by RGN;
quit;

------ Now add another dimension to the Rubix -------

proc sql;
create table MTH_TGT as
select unique MTH,
sum(VALUE)*1.3 as MTH_VALUE_TGT format dollar16.0,
0.7*(sum(VALUE)/sum(DMD)) as MTH_PRICE_TGT format dollar16.0,
sum(DMD) as MTH_DMD
from TABLE1
group by MTH;
quit;

data MTH_TGT;
set  MTH_TGT;
if MTH in ('APR', 'MAY', 'JUN', 'JUL', 'AUG', 'SEP') then MTH_VOL_TGT = MTH_DMD*1.05;
else MTH_VOL_TGT = MTH_DMD*0.95;
run;
/*****************************************************************************************/

options missing=0;
proc optmodel;

/* declare index sets and read values from data sets*/

set <str> RGN_I;
read data TABLE_RGN nomiss into RGN_I = [RGN];

set <str> MTH_I;
read data TABLE_MN nomiss into MTH_I = [MTH];

set <str> CNTRY_I;
read data TABLE_PS nomiss into CNTRY_I = [CNTRY];

set <str> CLS_I;
read data TABLE_CM nomiss into CLS_I = [CLS];

set <str> MKT_I;
read data TABLE_ND nomiss into MKT_I = [MKT];

set <str> MKTTYPE_I;
read data TABLE_OT nomiss into MKTTYPE_I = [MKTTYPE];

/* declare parameters and read from data sets */

num DMD {RGN_I, MTH_I, CNTRY_I, CLS_I, MKT_I, MKTTYPE_I}init .;
read data TABLE1 nomiss into [RGN MTH CNTRY CLS MKT MKTTYPE] DMD;

num PRICE {RGN_I, MTH_I, CNTRY_I, CLS_I, MKT_I, MKTTYPE_I}init .;
read data TABLE1 nomiss into [RGN MTH CNTRY CLS MKT MKTTYPE] PRICE;

num RGN_VALUE_TGT {RGN_I}init .;
read data RGN_TGT nomiss into RGN_I =[RGN] RGN_VALUE_TGT;

num RGN_PRICE_TGT {RGN_I}init .;
read data RGN_TGT nomiss into RGN_I =[RGN] RGN_PRICE_TGT;

num MTH_VOL_TGT {MTH_I}init .;
read data MTH_TGT nomiss into MTH_I =[MTH] MTH_VOL_TGT;

/* test that the data is read*/
print RGN_VALUE_TGT RGN_PRICE_TGT;
print MTH_VOL_TGT;
/*print DMD PRICE; */

/* declare variables */
var x {RGN_I, MTH_I, CNTRY_I, CLS_I, MKT_I, MKTTYPE_I} >= 0;
for {r in RGN_I, m in MTH_I, p in CNTRY_I, c in CLS_I, k in MKT_I, t in MKTTYPE_I: PRICE[r,m,p,c,k,t] = .}
   fix x[r,m,p,c,k,t] = 0;
var y {RGN_I, MTH_I, CNTRY_I, CLS_I, MKT_I, MKTTYPE_I} >= 0;
for {r in RGN_I, m in MTH_I, p in CNTRY_I, c in CLS_I, k in MKT_I, t in MKTTYPE_I: PRICE[r,m,p,c,k,t] = .}
   fix y[r,m,p,c,k,t] = 0;
impvar z {rc in RGN_I}
= sum{r in RGN_I, m in MTH_I, p in CNTRY_I, c in CLS_I, k in MKT_I, t in MKTTYPE_I}
x[r,m,p,c,k,t]*y[r,m,p,c,k,t];
impvar mn {mt in MTH_I}
= sum{r in RGN_I, m in MTH_I, p in CNTRY_I, c in CLS_I, k in MKT_I, t in MKTTYPE_I}
x[r,m,p,c,k,t];

print x y z mn;

/* define constraints */

con x_CON {r in RGN_I, m in MTH_I, p in CNTRY_I, c in CLS_I, k in MKT_I, t in MKTTYPE_I: PRICE[r,m,p,c,k,t] ne .}:
   DMD[r,m,p,c,k,t]*0.7 <= x[r,m,p,c,k,t] <= DMD[r,m,p,c,k,t]*1.3;


con y_CON {r in RGN_I, m in MTH_I, p in CNTRY_I, c in CLS_I, k in MKT_I, t in MKTTYPE_I: PRICE[r,m,p,c,k,t] ne .}:
   PRICE[r,m,p,c,k,t]*0.7 <= y[r,m,p,c,k,t] <= PRICE[r,m,p,c,k,t]*1.3;

con mn_CON {m in MTH_I}:
    MTH_VOL_TGT*0.98 <= mn <= MTH_VOL_TGT*1.02;

/* objective function */

var Error {RGN_I};
con Error_CON {r in RGN_I}:
    Error = if RGN_VALUE_TGT = . then z else (z - RGN_VALUE_TGT);

min MSE = sum{r in RGN_I}
    Error**2;


solve;

/*print x y mn z;*/

quit;

Why am I getting infeasibility? I thought the constraints have wide enough margin.

And also all I seek in the objective function is min MSE.

Why are all the variables ending up at 0.

Do you foresee a performance issue if I scale this is upto 500,000 rows and add 3-4 more dimensions?

Let me know.

Rgds

Praveen

Attachment
SAS Employee
Posts: 37

Re: Airline_Rubix_V2

Hi Praveen,

You can try the IIS option. If there are linear constraints that are inconsistent, the solver will find them. In your case, the output I get from:

solve with NLP / iis=on;

expand / iis;

is

...

Constraint mn_CON[APR]: 802.70742685 <= mn[APR] <= 835.47099529

Constraint mn_CON[JUL]: 0.6282405263 <= mn[JUL] <= 0.6538829968

I also added new constants so that you can control the deltas over several solves and see what the minimal feasible range is, e.g.:

num tgtDelta init .02;

con mn_CON {m in MTH_I}:

   MTH_VOL_TGT * (1 - tgtDelta)

<= mn

<= MTH_VOL_TGT * (1 + tgtDelta)

;

I have also introduced two intermediary sets so that your code can be a little bit shorter and you only define X and Y variables with the price is non-missing:

set RMCCMM = {RGN_I, MTH_I, CNTRY_I, CLS_I, MKT_I, MKTTYPE_I};

...

set RMCCMMwithPRICE = {<r,m,p,c,k,t> in RMCCMM: price[r,m,p,c,k,t] ~= .};

num dmdAndPriceDelta init 0.3;

var x {<r,m,p,c,k,t> in RMCCMMwithPRICE}

    >= DMD[r,m,p,c,k,t] * (1 - dmdAndPriceDelta)

    <= DMD[r,m,p,c,k,t] * (1 + dmdAndPriceDelta);

var y {<r,m,p,c,k,t> in RMCCMMwithPRICE}

    >= PRICE[r,m,p,c,k,t] * (1 - dmdAndPriceDelta)

    <= PRICE[r,m,p,c,k,t] * (1 + dmdAndPriceDelta);

Here is the new complete (optmodel part only) listing:

proc optmodel;

/* declare index sets and read values from data sets*/

set <str> RGN_I;

read data TABLE_RGN nomiss into RGN_I = [RGN];

set <str> MTH_I;

read data TABLE_MN nomiss into MTH_I = [MTH];

set <str> CNTRY_I;

read data TABLE_PS nomiss into CNTRY_I = [CNTRY];

set <str> CLS_I;

read data TABLE_CM nomiss into CLS_I = [CLS];

set <str> MKT_I;

read data TABLE_ND nomiss into MKT_I = [MKT];

set <str> MKTTYPE_I;

read data TABLE_OT nomiss into MKTTYPE_I = [MKTTYPE];

set RMCCMM = {RGN_I, MTH_I, CNTRY_I, CLS_I, MKT_I, MKTTYPE_I};

/* declare parameters and read from data sets */

num DMD {RMCCMM}init .;

read data TABLE1 nomiss into [RGN MTH CNTRY CLS MKT MKTTYPE] DMD;

num PRICE {RMCCMM}init .;

read data TABLE1 nomiss into [RGN MTH CNTRY CLS MKT MKTTYPE] PRICE;

num RGN_VALUE_TGT {RGN_I}init .;

read data RGN_TGT nomiss into RGN_I =[RGN] RGN_VALUE_TGT;

num RGN_PRICE_TGT {RGN_I}init .;

read data RGN_TGT nomiss into RGN_I =[RGN] RGN_PRICE_TGT;

num MTH_VOL_TGT {MTH_I}init .;

read data MTH_TGT nomiss into MTH_I =[MTH] MTH_VOL_TGT;

/* test that the data is read*/

print RGN_VALUE_TGT RGN_PRICE_TGT;

print MTH_VOL_TGT;

/*print DMD PRICE; */

set RMCCMMwithPRICE = {<r,m,p,c,k,t> in RMCCMM: price[r,m,p,c,k,t] ~= .};

/* declare variables */

num dmdAndPriceDelta init 0.3;

var x {<r,m,p,c,k,t> in RMCCMMwithPRICE}

    >= DMD[r,m,p,c,k,t] * (1 - dmdAndPriceDelta)

    <= DMD[r,m,p,c,k,t] * (1 + dmdAndPriceDelta);

var y {<r,m,p,c,k,t> in RMCCMMwithPRICE}

    >= PRICE[r,m,p,c,k,t] * (1 - dmdAndPriceDelta)

    <= PRICE[r,m,p,c,k,t] * (1 + dmdAndPriceDelta);

impvar z {rc in RGN_I}

= sum{<r,m,p,c,k,t> in RMCCMMwithPRICE} x[r,m,p,c,k,t] * y[r,m,p,c,k,t];

impvar mn {mt in MTH_I}

= sum{<r,m,p,c,k,t> in RMCCMMwithPRICE} x[r,m,p,c,k,t];

print x y z mn;

/* define constraints */

num tgtDelta init .02;

con mn_CON {m in MTH_I}:

   MTH_VOL_TGT * (1 - tgtDelta)

<= mn

<= MTH_VOL_TGT * (1 + tgtDelta)

;

/* objective function */

var Error {RGN_I};

con Error_CON {r in RGN_I}:

    Error = z - if RGN_VALUE_TGT = . then 0 else RGN_VALUE_TGT;

min MSE = sum{r in RGN_I}

    Error**2;

solve with nlp/iis=on;

expand/iis;

/*print x y mn z;*/

quit;

As for how this would scale, it is always difficult to tell. The best thing to do is experiment. When the problem was feasible the small version was pretty quick, but 500K rows could be different.

When I changed your impvar z and mn declarations to slice by RGN and MTH, I get feasible solutions. See if this makes sense in your application:

impvar z {r in RGN_I}

= sum{<(r),m,p,c,k,t> in RMCCMMwithPRICE} x[r,m,p,c,k,t] * y[r,m,p,c,k,t];

impvar mn {m in MTH_I}

= sum{<r,(m),p,c,k,t> in RMCCMMwithPRICE} x[r,m,p,c,k,t];

Occasional Contributor
Posts: 18

Re: Airline_Rubix_V2

I was able to solve but as I scale up I have Out of memory errors !

I even removed a dimension.

How to manage memory for large scale optimizations?

Log:

NOTE: PROCEDURE PRINTTO used (Total process time):
      real time           0.00 seconds
      cpu time            0.00 seconds
    

17        
18         proc sql;
19         create table TABLE1

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

NOTE: The query requires remerging summary statistics back with the original data.
NOTE: Table WORK.TABLE1 created, with 396,971 rows and 8 columns.

29         quit;
NOTE: PROCEDURE SQL used (Total process time):
      real time           1.48 seconds
      cpu time            2.07 seconds
    

30        
31         proc sql;
32         create table TABLE_RGN as
33         select unique RGN from TABLE1;
NOTE: Table WORK.TABLE_RGN created, with 7 rows and 1 columns.

33       !                                quit;
NOTE: PROCEDURE SQL used (Total process time):
      real time           0.13 seconds
      cpu time            0.20 seconds
    

34        
35         proc sql;
36         create table TABLE_MN as
2                                                          The SAS System                           14:01 Tuesday, December 23, 2014

37         select unique MTH from TABLE1;
NOTE: Table WORK.TABLE_MN created, with 12 rows and 1 columns.

37       !                                quit;
NOTE: PROCEDURE SQL used (Total process time):
      real time           0.11 seconds
      cpu time            0.15 seconds
    

38        
39         proc sql;
40         create table TABLE_PS as
41         select unique CNTRY from TABLE1;
NOTE: Table WORK.TABLE_PS created, with 92 rows and 1 columns.

41       !                                  quit;
NOTE: PROCEDURE SQL used (Total process time):
      real time           0.19 seconds
      cpu time            0.23 seconds
    

41       !                                       
42        
43         proc sql;
44         create table TABLE_CM as
45         select unique CLS from TABLE1;
NOTE: Table WORK.TABLE_CM created, with 2 rows and 1 columns.

45       !                                quit;
NOTE: PROCEDURE SQL used (Total process time):
      real time           0.11 seconds
      cpu time            0.14 seconds
    

46        
47         proc sql;
48         create table TABLE_ND as
49         select unique MKT from TABLE1;
NOTE: Table WORK.TABLE_ND created, with 6952 rows and 1 columns.

49       !                                quit;
NOTE: PROCEDURE SQL used (Total process time):
      real time           0.26 seconds
      cpu time            0.35 seconds
    

50        
51         /*****************************************************************************************/
52         /* Dummy data set only to provide constant targets */
53        
54         proc sql;
55         create table RGN_TGT as
56         select unique RGN,
57          sum(VALUE)*1.1 as RGN_VALUE_TGT format dollar16.0,
58          1.05*(sum(VALUE)/sum(DMD)) as RGN_PRICE_TGT format dollar16.0,
59          sum(DMD) as RGN_DMD
60         from TABLE1
61         group by RGN;
3                                                          The SAS System                           14:01 Tuesday, December 23, 2014

NOTE: Table WORK.RGN_TGT created, with 7 rows and 4 columns.

62         quit;
NOTE: PROCEDURE SQL used (Total process time):
      real time           0.11 seconds
      cpu time            0.10 seconds
    

63        
64         proc sql;
65         create table MTH_TGT as
66         select unique MTH,
67          sum(VALUE) as MTH_VALUE_TGT format dollar16.0,
68          (sum(VALUE)/sum(DMD)) as MTH_PRICE_TGT format dollar16.0,
69          sum(DMD) as MTH_DMD
70         from TABLE1
71         group by MTH;
NOTE: Table WORK.MTH_TGT created, with 12 rows and 4 columns.

72         quit;
NOTE: PROCEDURE SQL used (Total process time):
      real time           0.11 seconds
      cpu time            0.21 seconds
    

73        
74         data MTH_TGT;
75         set  MTH_TGT;
76         if MTH in ('APR', 'MAY', 'JUN', 'JUL', 'AUG', 'SEP') then MTH_VOL_TGT = MTH_DMD*1.05;
77         else MTH_VOL_TGT = MTH_DMD*0.95;
78         run;

NOTE: There were 12 observations read from the data set WORK.MTH_TGT.
NOTE: The data set WORK.MTH_TGT has 12 observations and 5 variables.
NOTE: DATA statement used (Total process time):
      real time           0.01 seconds
      cpu time            0.01 seconds
    

78       !     
79         /*****************************************************************************************/
80        
81         options missing=0;
82         proc optmodel/*presolver=none*/;
83        
84         /* declare index sets and read values from data sets*/
85        
86         set <str> RGN_I;
87         read data TABLE_RGN nomiss into RGN_I = [RGN];
NOTE: There were 7 observations read from the data set WORK.TABLE_RGN.
88        
89         set <str> MTH_I;
90         read data TABLE_MN nomiss into MTH_I = [MTH];
NOTE: There were 12 observations read from the data set WORK.TABLE_MN.
91        
92         set <str> CNTRY_I;
93         read data TABLE_PS nomiss into CNTRY_I = [CNTRY];
NOTE: There were 92 observations read from the data set WORK.TABLE_PS.
4                                                          The SAS System                           14:01 Tuesday, December 23, 2014

94        
95         set <str> CLS_I;
96         read data TABLE_CM nomiss into CLS_I = [CLS];
NOTE: There were 2 observations read from the data set WORK.TABLE_CM.
97        
98         set <str> MKT_I;
99         read data TABLE_ND nomiss into MKT_I = [MKT];
NOTE: There were 6952 observations read from the data set WORK.TABLE_ND.
100       
101        set RMCCM = {RGN_I, MTH_I, CNTRY_I, CLS_I, MKT_I};
102       
103        /* declare parameters and read from data sets */
104       
105        num DMD {RMCCM}init .;
106        read data TABLE1 nomiss into [RGN MTH CNTRY CLS MKT] DMD;
ERROR: Out of memory during expression evaluation.
NOTE: There were 1 observations read from the data set WORK.TABLE1.
107       
108        num PRICE {RMCCM}init .;
109        read data TABLE1 nomiss into [RGN MTH CNTRY CLS MKT] PRICE;
ERROR: The symbol 'RMCCM' has no value at line 108 column 12.
NOTE: There were 1 observations read from the data set WORK.TABLE1.
110       
111        num RGN_VALUE_TGT {RGN_I}init .;
112        read data RGN_TGT nomiss into RGN_I =[RGN] RGN_VALUE_TGT;
NOTE: There were 7 observations read from the data set WORK.RGN_TGT.
113       
114        num RGN_PRICE_TGT {RGN_I}init .;
115        read data RGN_TGT nomiss into RGN_I =[RGN] RGN_PRICE_TGT;
NOTE: There were 7 observations read from the data set WORK.RGN_TGT.
116       
117        num MTH_VOL_TGT {MTH_I}init .;
118        read data MTH_TGT nomiss into MTH_I =[MTH] MTH_VOL_TGT;
NOTE: There were 12 observations read from the data set WORK.MTH_TGT.
119       
120        /* test that the data is read*/
121       
122        print RGN_VALUE_TGT RGN_PRICE_TGT;
                                                                                                 14:01 Tuesday, December 23, 2014   1

                                            
124        /*print DMD PRICE; */
125       
126        set RMCCMMwithPRICE = {<r,m,p,c,k> in RMCCM: price[r,m,p,c,k] ~= .};
127       
128        /* declare variables */
129       
130        num dmdAndPriceDelta init 0.3;
131       
132        var x {<r,m,p,c,k> in RMCCMwithPRICE}
                                 _______________
                                 537           526
ERROR 537-782: The symbol 'RMCCMwithPRICE' is unknown.

ERROR 526-782: An indexing set subexpression may not be a number.

133            >= DMD[r,m,p,c,k] * (1 - dmdAndPriceDelta)
                        _      _
                        537    653
ERROR 537-782: The symbol 'm' is unknown.

ERROR 653-782: Subscript 1 must be a string, found a number.
5                                                          The SAS System                           14:01 Tuesday, December 23, 2014


133      !     >= DMD[r,m,p,c,k] * (1 - dmdAndPriceDelta)
                          _    _
                          537  653
ERROR 537-782: The symbol 'p' is unknown.

ERROR 653-782: Subscript 2 must be a string, found a number.

133      !     >= DMD[r,m,p,c,k] * (1 - dmdAndPriceDelta)
                            _
                            537
ERROR 537-782: The symbol 'c' is unknown.

                               _
                               653
ERROR 653-782: Subscript 3 must be a string, found a number.

133      !     >= DMD[r,m,p,c,k] * (1 - dmdAndPriceDelta)
                              _
                              537
ERROR 537-782: The symbol 'k' is unknown.

                               _
                               653
ERROR 653-782: Subscript 4 must be a string, found a number.

133      !     >= DMD[r,m,p,c,k] * (1 - dmdAndPriceDelta)
                               _
                               653
ERROR 653-782: Subscript 5 must be a string, found a number.

134            <= DMD[r,m,p,c,k] * (1 + dmdAndPriceDelta);
                        _      _
                        537    653
ERROR 537-782: The symbol 'm' is unknown.

ERROR 653-782: Subscript 1 must be a string, found a number.

134      !     <= DMD[r,m,p,c,k] * (1 + dmdAndPriceDelta);
                          _    _
                          537  653
ERROR 537-782: The symbol 'p' is unknown.

ERROR 653-782: Subscript 2 must be a string, found a number.

134      !     <= DMD[r,m,p,c,k] * (1 + dmdAndPriceDelta);
                            _
                            537
ERROR 537-782: The symbol 'c' is unknown.

                               _
                               653
ERROR 653-782: Subscript 3 must be a string, found a number.

134      !     <= DMD[r,m,p,c,k] * (1 + dmdAndPriceDelta);
                              _
                              537
ERROR 537-782: The symbol 'k' is unknown.

6                                                          The SAS System                           14:01 Tuesday, December 23, 2014

                               _
                               653
ERROR 653-782: Subscript 4 must be a string, found a number.

134      !     <= DMD[r,m,p,c,k] * (1 + dmdAndPriceDelta);
                               _
                               653
ERROR 653-782: Subscript 5 must be a string, found a number.

135       
136        var y {<r,m,p,c,k> in RMCCMwithPRICE}
                                 _______________
                                 537           526
ERROR 537-782: The symbol 'RMCCMwithPRICE' is unknown.

ERROR 526-782: An indexing set subexpression may not be a number.

137            >= PRICE[r,m,p,c,k] * (1 - dmdAndPriceDelta)
                          _      _
                          537    653
ERROR 537-782: The symbol 'm' is unknown.

ERROR 653-782: Subscript 1 must be a string, found a number.

137      !     >= PRICE[r,m,p,c,k] * (1 - dmdAndPriceDelta)
                            _    _
                            537  653
ERROR 537-782: The symbol 'p' is unknown.

ERROR 653-782: Subscript 2 must be a string, found a number.

137      !     >= PRICE[r,m,p,c,k] * (1 - dmdAndPriceDelta)
                              _
                              537
ERROR 537-782: The symbol 'c' is unknown.

                                 _
                                 653
ERROR 653-782: Subscript 3 must be a string, found a number.

137      !     >= PRICE[r,m,p,c,k] * (1 - dmdAndPriceDelta)
                                _
                                537
ERROR 537-782: The symbol 'k' is unknown.

                                 _
                                 653
ERROR 653-782: Subscript 4 must be a string, found a number.

137      !     >= PRICE[r,m,p,c,k] * (1 - dmdAndPriceDelta)
                                 _
                                 653
ERROR 653-782: Subscript 5 must be a string, found a number.

138            <= PRICE[r,m,p,c,k] * (1 + dmdAndPriceDelta);
                          _      _
                          537    653
ERROR 537-782: The symbol 'm' is unknown.

ERROR 653-782: Subscript 1 must be a string, found a number.

7                                                          The SAS System                           14:01 Tuesday, December 23, 2014

138      !     <= PRICE[r,m,p,c,k] * (1 + dmdAndPriceDelta);
                            _    _
                            537  653
ERROR 537-782: The symbol 'p' is unknown.

ERROR 653-782: Subscript 2 must be a string, found a number.

138      !     <= PRICE[r,m,p,c,k] * (1 + dmdAndPriceDelta);
                              _
                              537
ERROR 537-782: The symbol 'c' is unknown.

                                 _
                                 653
ERROR 653-782: Subscript 3 must be a string, found a number.

138      !     <= PRICE[r,m,p,c,k] * (1 + dmdAndPriceDelta);
                                _
                                537
ERROR 537-782: The symbol 'k' is unknown.

                                 _
                                 653
ERROR 653-782: Subscript 4 must be a string, found a number.

138      !     <= PRICE[r,m,p,c,k] * (1 + dmdAndPriceDelta);
                                 _
                                 653
ERROR 653-782: Subscript 5 must be a string, found a number.

139       
140        impvar z {r in RGN_I}
141        = sum{<(r),m,p,c,k> in RMCCMwithPRICE} x[r,m,p,c,k] * y[r,m,p,c,k];
                                  _______________            _
                                  537           526          650
                                                637
                                                828
ERROR 537-782: The symbol 'RMCCMwithPRICE' is unknown.

ERROR 526-782: An indexing set subexpression may not be a number.

ERROR 650-782: The subscript count does not match array 'x', 5 NE 1.

ERROR 637-782: The right operand of 'SLICE' must be a set, found a number.

ERROR 828-782: An index tuple must specify at least one dummy parameter.

141      ! = sum{<(r),m,p,c,k> in RMCCMwithPRICE} x[r,m,p,c,k] * y[r,m,p,c,k];
                                                      _              _      _
                                                      537            537    650
ERROR 537-782: The symbol 'm' is unknown.

ERROR 650-782: The subscript count does not match array 'y', 5 NE 1.

141      ! = sum{<(r),m,p,c,k> in RMCCMwithPRICE} x[r,m,p,c,k] * y[r,m,p,c,k];
                                                        _              _
                                                        537            537
ERROR 537-782: The symbol 'p' is unknown.
8                                                          The SAS System                           14:01 Tuesday, December 23, 2014


141      ! = sum{<(r),m,p,c,k> in RMCCMwithPRICE} x[r,m,p,c,k] * y[r,m,p,c,k];
                                                          _              _
                                                          537            537
ERROR 537-782: The symbol 'c' is unknown.

141      ! = sum{<(r),m,p,c,k> in RMCCMwithPRICE} x[r,m,p,c,k] * y[r,m,p,c,k];
                                                            _              _
                                                            537            537
ERROR 537-782: The symbol 'k' is unknown.

142       
143        impvar mn {m in MTH_I}
144        = sum{<r,(m),p,c,k> in RMCCMwithPRICE} x[r,m,p,c,k];
                                  _______________            _
                                  537           526          650
                                                637
ERROR 537-782: The symbol 'RMCCMwithPRICE' is unknown.

ERROR 526-782: An indexing set subexpression may not be a number.

ERROR 650-782: The subscript count does not match array 'x', 5 NE 1.

ERROR 637-782: The right operand of 'SLICE' must be a set, found a number.

144      ! = sum{<r,(m),p,c,k> in RMCCMwithPRICE} x[r,m,p,c,k];
                                                        _
                                                        537
ERROR 537-782: The symbol 'p' is unknown.

144      ! = sum{<r,(m),p,c,k> in RMCCMwithPRICE} x[r,m,p,c,k];
                                                          _
                                                          537
ERROR 537-782: The symbol 'c' is unknown.

144      ! = sum{<r,(m),p,c,k> in RMCCMwithPRICE} x[r,m,p,c,k];
                                                            _
                                                            537
ERROR 537-782: The symbol 'k' is unknown.

145       
146        /* define constraints */
147        num tgtDelta init .05;
148       
149        con mn_CON {m in MTH_I}:
150           MTH_VOL_TGT * (1 - tgtDelta)
151         <= mn
152         <= MTH_VOL_TGT * (1 + tgtDelta);
153       
154        /* objective function */
155       
156        var Error {RGN_I};
157        con Error_CON {r in RGN_I}:
158            Error = z - if RGN_VALUE_TGT = . then 0 else RGN_VALUE_TGT;
159       
160        min MSE = sum{r in RGN_I}
161            Error**2;
162       
9                                                          The SAS System                           14:01 Tuesday, December 23, 2014

163        /*solve;*/
164       
165        solve with nlp/iis=on;
NOTE: The OPTMODEL presolver is disabled when the IIS= option is enabled.
NOTE: Problem generation will use 4 threads.
NOTE: Previous errors might cause the problem to be resolved incorrectly.
ERROR: The implicit variable 'z' has an incomplete declaration.
ERROR: The implicit variable 'mn' has an incomplete declaration.
NOTE: The problem has 7 variables (7 free, 0 fixed).
NOTE: The problem uses 19 implicit variables.
NOTE: The problem has 0 linear constraints (0 LE, 0 EQ, 0 GE, 0 range).
NOTE: The problem has 19 nonlinear constraints (0 LE, 7 EQ, 0 GE, 12 range).
NOTE: Unable to create problem instance due to previous errors.

NOTE: Previous errors might cause the problem to be resolved incorrectly.

                                                                                                 14:01 Tuesday, December 23, 2014   2

                                                       The OPTMODEL Procedure

                                                          Solution Summary

                                                Solver                           NLP
                                                Objective Function           Unknown
                                                Solution Status       Semantic Error
                                                                                   
                                                Iterations                         0
                                                Presolve Time                   0.00
                                                Solution Time                   0.00
166        /*expand/iis;*/
167       
168        print x y mn z;
ERROR: The symbol 'x' has an incomplete declaration at line 168 column 7.
169       
170        quit;
NOTE: The SAS System stopped processing this step because of errors.
NOTE: The PROCEDURE OPTMODEL printed pages 1-2.
NOTE: PROCEDURE OPTMODEL used (Total process time):
      real time           16.42 seconds
      cpu time            16.34 seconds
     
171       
172      


173        proc printto;
174        run;

Occasional Contributor
Posts: 18

Re: Airline_Rubix_V2

As I tried to reduce the dimensions by dropping MKT MKTTYPE, resulting in just 2000+ rows, it's executing but reaching iteration limit.

How do I increase the limit?

I am currently on a PC Win7, 64bit, 8GB RAM, 400 GB hard-disk.

The OPTMODEL Procedure

                                                         Solution Summary

                                           Solver                                    NLP
                                           Algorithm                      Interior Point
                                           Objective Function                        MSE
                                           Solution Status       Iteration Limit Reached
                                           Objective Value                  1.3104746E25
                                                                                       
                                           Optimality Error                 1.8482552E17
                                           Infeasibility                    6922978.3345
                                                                                       
                                           Iterations                               5000
                                           Presolve Time                            0.00
                                           Solution Time                          663.41

Thank you for your help.

BRgds

Praveen

SAS Employee
Posts: 37

Re: Airline_Rubix_V2

To save memory, the first thing I would try is to read table1 directly. That way you will read in ~400K items instead of the ~100M you get by the set cross product. It also makes your code simpler as you can dispose of the withPRICE variant:

data TABLE1;

input RGN $7. MTH $4. CNTRY $3. CLS $3. MKT $7. MKTTYPE $7. DMD VALUE PRICE;

datalines;

GGGGGG APR JJ RR AAACCC OTHOTH 4.072487387 5073.712404 1245.85098

GGGGGG APR LL RR AAACCC OTHOTH 0.759277544 527.855155 695.2071207

ROMANN APR SS RR ARNSSS TTTTTT 13.6940138 20710.54229 1512.379248

GGGGGG APR BB RR BAADDD OTHOTH 3.858234121 1971.730438 511.044788

BUHBUH APR QQ RR CAAHHH TTTTTT 670.3483179 607903.4554 906.8471407

GGGGGG APR KK RR DEEKKK TTTTTT 22.93870547 11473.72103 500.1904334

LIONNN APR UG RR EEEFFF OTHOTH 1.314052632 1776.681947 1352.063002

ROMANN APR IT RR DDMFCC OTHOTH 18.18630498 34948.34188 1921.684582

NOODLE APR AA RR MMMMUC TTTTTT 38.07123286 107524.5245 2824.298464

ROMANN APR IT WW BBRNNN OTHOTH 6.842336232 3142.693913 459.301298

NOODLE FEB PP RR GGGIII OTHOTH 1.240267277 3507.439478 2827.970665

BUHBUH JUL QQ RR AEEPPP UNDISC 0.610535011 282.9336958 463.419281

;

proc optmodel;

    set<str,str,str,str,str,str> RMCCMM;

    num dmd{RMCCMM}, price{RMCCMM};

    read data table1 into RMCCMM=[RGN MTH CNTRY CLS MKT MKTTYPE] dmd price;

    print dmd price;

quit;

You can change the iteration limit, as well as experiment with other options using these solver options.

Occasional Contributor
Posts: 18

Re: Airline_Rubix_V2

Hi,

I tried the above.

For 12 rows it solved in less than a second and just 185 interations.

However when I use 400K rows it returns out of memory.

Below is the log. Anything I can do to improve?

Would be glad if someone could help.

Rgds

Praveen

NOTE: PROCEDURE PRINTTO used (Total process time):

      real time           0.00 seconds

      cpu time            0.00 seconds

    

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

NOTE: Table WORK.TABLE1 created, with 396971 rows and 8 columns.

29         quit;

NOTE: PROCEDURE SQL used (Total process time):

      real time           1.61 seconds

      cpu time            2.16 seconds

30       

31         /* Dummy data set only to provide constant targets */

32       

33         proc sql;

34         create table RGN_TGT as

35         select unique RGN,

36         sum(VALUE)*1.1 as RGN_VALUE_TGT format dollar16.0,

37         1.05*(sum(VALUE)/sum(DMD)) as RGN_PRICE_TGT format dollar16.0,

38         sum(DMD) as RGN_DMD

39         from TABLE1

40         group by RGN;

NOTE: Table WORK.RGN_TGT created, with 7 rows and 4 columns.

41         quit;

NOTE: PROCEDURE SQL used (Total process time):

2                                                          The SAS System                         14:44 Wednesday, December 24, 2014

      real time           0.07 seconds

      cpu time            0.06 seconds

42       

43         proc sql;

44         create table MTH_TGT as

45         select unique MTH,

46         sum(VALUE) as MTH_VALUE_TGT format dollar16.0,

47         (sum(VALUE)/sum(DMD)) as MTH_PRICE_TGT format dollar16.0,

48         sum(DMD) as MTH_DMD

49         from TABLE1

50         group by MTH;

NOTE: Table WORK.MTH_TGT created, with 12 rows and 4 columns.

51         quit;

NOTE: PROCEDURE SQL used (Total process time):

      real time           0.15 seconds

      cpu time            0.28 seconds

52       

53         data MTH_TGT;

54         set MTH_TGT;

55         if MTH in ('APR', 'MAY', 'JUN', 'JUL', 'AUG', 'SEP') then MTH_VOL_TGT = MTH_DMD*1.05;

56         else MTH_VOL_TGT = MTH_DMD*0.95;

57         run;

NOTE: There were 12 observations read from the data set WORK.MTH_TGT.

NOTE: The data set WORK.MTH_TGT has 12 observations and 5 variables.

NOTE: DATA statement used (Total process time):

      real time           0.00 seconds

      cpu time            0.00 seconds

57       !  

58         /*****************************************************************************************/

59       

60         proc optmodel;

61       

62         set<str,str,str,str,str> RMCCM;

63         num dmd{RMCCM}, price{RMCCM};

64         read data table1 into RMCCM=[RGN MTH CNTRY CLS MKT] dmd price;

NOTE: There were 396971 observations read from the data set WORK.TABLE1.

65       

66         /* print dmd price; */

67         set <str> RGN_I;

68         num RGN_VALUE_TGT {RGN_I}init .;

69         read data RGN_TGT nomiss into RGN_I =[RGN] RGN_VALUE_TGT;

NOTE: There were 7 observations read from the data set WORK.RGN_TGT.

70         num RGN_PRICE_TGT {RGN_I}init .;

71         read data RGN_TGT nomiss into RGN_I =[RGN] RGN_PRICE_TGT;

NOTE: There were 7 observations read from the data set WORK.RGN_TGT.

72       

73         set <str> MTH_I;

74         num MTH_VOL_TGT {MTH_I}init .;

75         read data MTH_TGT nomiss into MTH_I =[MTH] MTH_VOL_TGT;

NOTE: There were 12 observations read from the data set WORK.MTH_TGT.

3                                                          The SAS System                         14:44 Wednesday, December 24, 2014

76       

77         /* test that the data is read*/

78       

79         /*print RGN_VALUE_TGT RGN_PRICE_TGT;

80         print MTH_VOL_TGT;

81         print DMD PRICE; */

82       

83         /* declare variables */

84       

85         num dmdAndPriceDelta init 0.3;

86       

87         var x {<r,m,p,c,k> in RMCCM}

88             >= DMD[r,m,p,c,k] * (1 - dmdAndPriceDelta)

89             <= DMD[r,m,p,c,k] * (1 + dmdAndPriceDelta);

90       

91         var y {<r,m,p,c,k> in RMCCM}

92             >= PRICE[r,m,p,c,k] * (1 - dmdAndPriceDelta)

93             <= PRICE[r,m,p,c,k] * (1 + dmdAndPriceDelta);

94       

95         impvar z {r in RGN_I}

96         = sum{<(r),m,p,c,k> in RMCCM} x[r,m,p,c,k] * y[r,m,p,c,k];

97       

98         impvar mn {m in MTH_I}

99         = sum{<r,(m),p,c,k> in RMCCM} x[r,m,p,c,k];

100      

101        /* define constraints */

102        num tgtDelta init .05;

103      

104        con mn_CON {m in MTH_I}:

105           MTH_VOL_TGT * (1 - tgtDelta)

106         <= mn

107         <= MTH_VOL_TGT * (1 + tgtDelta);

108      

109        /* objective function */

110      

111        var Error {RGN_I};

112        con Error_CON {r in RGN_I}:

113            Error = z - if RGN_VALUE_TGT = . then 0 else RGN_VALUE_TGT;

114      

115        min MSE = sum{r in RGN_I}

116            Error**2;

117      

118        solve;

NOTE: Problem generation will use 4 threads.

NOTE: The problem has 793949 variables (7 free, 0 fixed).

NOTE: The problem uses 19 implicit variables.

NOTE: The problem has 12 linear constraints (0 LE, 0 EQ, 0 GE, 12 range).

NOTE: The problem has 396971 linear constraint coefficients.

NOTE: The problem has 7 nonlinear constraints (0 LE, 7 EQ, 0 GE, 0 range).

NOTE: The OPTMODEL presolver removed 0 variables, 0 linear constraints, and 0 nonlinear constraints.

                                                                                               14:44 Wednesday, December 24, 2014   1

                                                       The OPTMODEL Procedure

                                                          Problem Summary

                                              Objective Sense            Minimization

                                              Objective Function                  MSE

                                              Objective Type                Quadratic

                                                                                   

                                              Number of Variables              793949

                                              Bounded Above                         0

                                              Bounded Below                         0

                                              Bounded Below and Above          793942

                                              Free                                  7

                                              Fixed                                 0

                                                                                   

                                              Number of Constraints                19

                                              Linear LE (<=)                        0

                                              Linear EQ (=)                         0

                                              Linear GE (>=)                        0

                                              Linear Range                         12

                                              Nonlinear LE (<=)                     0

                                              Nonlinear EQ (=)                      7

                                              Nonlinear GE (>=)                     0

                                              Nonlinear Range                       0

                                                      Performance Information

                                                Execution Mode       Single-Machine

                                                Number of Threads    4           

NOTE: Using analytic derivatives for objective.

NOTE: Using analytic derivatives for nonlinear constraints.

NOTE: Using 4 threads for nonlinear evaluation.

NOTE: The NLP solver is called.

NOTE: The Interior Point algorithm is used.

ERROR: Out of memory in solver.

                                                                                               14:44 Wednesday, December 24, 2014   2

                                                       The OPTMODEL Procedure

                                                          Solution Summary

                                                Solver                           NLP

                                                Algorithm             Interior Point

                                                Objective Function               MSE

                                                Solution Status        Out of Memory

                                                Objective Value                    0

                                                                                  

                                                Optimality Error        1822716549.5

                                                Infeasibility           1822716549.5

                                                                                  

                                                Iterations                         0

                                                Presolve Time                   0.15

                                                Solution Time                   0.84

119      

120        /*solve with nlp/iis=on;*/

4                                                          The SAS System                         14:44 Wednesday, December 24, 2014

121        /*expand/iis;*/

122      

123        /*print x y mn z;*/

124      

125        quit;

NOTE: The PROCEDURE OPTMODEL printed pages 1-2.

NOTE: PROCEDURE OPTMODEL used (Total process time):

      real time           7.65 seconds

      cpu time            7.66 seconds

    

126      

127        proc printto;

128        run;

Occasional Contributor
Posts: 18

Re: Airline_Rubix_V2

Further to the response, as I removed one of the dimensions, thus reducing the rows to 2,200 it solved in 12 mins and stopped at iteration limit which already is a very decent solution. How do I solve 400K rows?

Thanks in anticipation.

Praveen

SAS Employee
Posts: 37

Re: Airline_Rubix_V2

I am glad that you are happy with the quality of the solution for 2200 rows. Going from 2200 to 400,000 rows can be difficult. You can try some of the solver options, including some that invoke completely different search strategies, and you can also set stopping conditions with which you would be satisfied. You can also try to get more RAM, but it is often difficult to predict the amount needed.

Beyond option tuning, the finest way to improve performance is to carefully tune the model, ideally with some understanding of the underlying business problem. SAS has a team that specializes in that service. Please contact me via pm if you would like to be put in touch with the right people, or you could reach out to your usual SAS point of contact.

Cheers, Leo.

Occasional Contributor
Posts: 18

Re: Airline_Rubix_V2

Hi,

Thanks for your response.

My happiness was short lived.

As I started analyzing the results I realized that x & y had -ve values. NOT when I used the smaller data set but in the full scale 400 K input. (Which cannot be posted here.)

The original input of DMD & PRICE are always > 0, so the original variable declaration itself should have prevented -ves.

-------- Previous declaration -----------------------------------------------------

num dmdAndPriceDelta init 0.3;

var x {<r,m,p,c,k> in RMCCM}

    >= DMD[r,m,p,c,k] * (1 - dmdAndPriceDelta)

    <= DMD[r,m,p,c,k] * (1 + dmdAndPriceDelta);

var y {<r,m,p,c,k> in RMCCM}

    >= PRICE[r,m,p,c,k] * (1 - dmdAndPriceDelta)

    <= PRICE[r,m,p,c,k] * (1 + dmdAndPriceDelta);

--------------------------------------------------------------------------

I even tried forcing a constraint for x & y

-----------------------------------------------------------------------------

proc optmodel;

set<str,str,str,str> RMCC;

num dmd{RMCC}, price{RMCC};

read data table1 into RMCC=[RGN MTH CNTRY CLS] dmd price;

print dmd price;

set <str> RGN_I;

num RGN_VALUE_TGT {RGN_I}init .;

read data RGN_TGT nomiss into RGN_I =[RGN] RGN_VALUE_TGT;

num RGN_PRICE_TGT {RGN_I}init .;

read data RGN_TGT nomiss into RGN_I =[RGN] RGN_PRICE_TGT;

set <str> MTH_I;

num MTH_VOL_TGT {MTH_I}init .;

read data MTH_TGT nomiss into MTH_I =[MTH] MTH_VOL_TGT;

/* declare variables */

num dmdAndPriceDelta init 0.3;

var x {<r,m,p,c> in RMCC} >= 0;

con x_CON {<r,m,p,c> in RMCC}:  

max(DMD[r,m,p,c] * (1 - dmdAndPriceDelta),0)

<= x[r,m,p,c]

<= DMD[r,m,p,c] * (1 + dmdAndPriceDelta);

var y {<r,m,p,c> in RMCC} >= 0;

con y_CON {<r,m,p,c> in RMCC}:

max(PRICE[r,m,p,c] * (1 - dmdAndPriceDelta),0)

<= y[r,m,p,c]

<= PRICE[r,m,p,c] * (1 + dmdAndPriceDelta);

impvar z {r in RGN_I}

= sum{<(r),m,p,c> in RMCC} x[r,m,p,c] * y[r,m,p,c];

impvar mn {m in MTH_I}

= sum{<r,(m),p,c> in RMCC} x[r,m,p,c];

/* define constraints */

num tgtDelta init .05;

con mn_CON {m in MTH_I}:

   MTH_VOL_TGT * (1 - tgtDelta)

  <= mn

  <= MTH_VOL_TGT * (1 + tgtDelta);

/* objective function */

var Error {RGN_I};

con Error_CON {r in RGN_I}:

    Error = z - if RGN_VALUE_TGT = . then 0 else RGN_VALUE_TGT;

min MSE = sum{r in RGN_I}

    Error**2;

solve/*with nlp/maxiter=10000*/;

/*solve with nlp/iis=on;*/

/*expand/iis;*/

print mn z;

create data resdata from [r m p c]= {<r,m,p,c> in RMCC}x y;

quit;

sample result .....................

x                    y

2232.353411599681.4415
150190.96533172977.48667
128.6005775245299.764902
1440.1465745184144.91105
13805.955422198567.11325
202.0412767421097.559601
-92411.95867-149976.2581
1438.75345351328218.4977
7092.6645369455946.06376
1165.261280698285.518642
4866.90986587093.409671
676.20959556181475.3109
5845.953075473603.47642
66.72415988432526.662853
503.07296274196763.72642
187.3580075822049.033852
281.0004487249734.016545
1478.6442372-116693.3107
16059.923883658422.89405
171.1803585948034.748391
811.16022955186996.83904
166.4653105444548.480668
654.15825652231850.25408
19802.054651245196.44001
9975.8473189128623.8133
1076.45078497583.072647
3365.0226586105558.49572
1640.9166064167176.97321
5901.7805195148139.6536
859.079574791408674.6063
3350.4378749-561854.0849
1522.8057028152951.54845
16396.024953132977.4923
1999.610167287987.233455
-14847.33627627388.89381

Any idea how this can happen?

Thanks for your help.

Rgds

Praveen

SAS Employee
Posts: 37

Re: Airline_Rubix_V2

You might need to check the solver termination status. It should be some variation on infeasible, or some limit exceeded. You can try focusing on feasibility and giving the solver more time.

Ask a Question
Discussion stats
  • 12 replies
  • 731 views
  • 5 likes
  • 3 in conversation