I. The Regression Approach to Portfolio Analysis

In this paper a riskless asset is assumed available for both borrowing and
lending in each period. Excess refurns are calculated by subtracting the re-
turn of this riskless asset from the total return.® There are K risky assets
indexed by £ = 1,...,K. The excess returns on the K assets in some period ¢
in (1,...,T) are denoted by the K elements of the vector x,:

X; = [X14yee Xpeyen s Xie ] (1)
The T observations of excess returns are contained in the T X K matrix X:
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Note that a portfolio of risky assets and a riskless asset has an excess return
that is determined solely by the weights and excess returns of the risky
assets. Thus, given a K-vector of risky asset weights b, the excess return of
this portfolio in period ¢ is simply x; b, where the weights in b need not sum
to one.

Let 1 represent a vector of ones with length conforming to the rules of
matrix algebra. Viewed as a portfolio excess return, the T-vector of ones 1 is
highly desirable as it has positive excess return with zero sample standard
deviation. The regression approach to portfolio selection? is based on mini-
mizing the squared deviations between the excess returns on a constructed
portfolio and the excess returns in 1. This minimization problem can be per-



formed using an artificial ordinary least squares (OLS) regression and the
following proposition states that such a regression recovers the weights of a
sample efficient portfolio.

Turorem 1: OLS regression of a constant 1 onto a set of asset’s excess returns
X without an intercept term,
1 = Xb +  u, @
(Tx1) (Txk)(kx1) (Tx1)
results in an estimated coefficient vector

b=(XX X1, (4)

that is a set of risky-asset-only portfolio weights for a sample efficient
portfolio. The scaled (so that weights sum to one) coefficient vector b/1I'b
is thus the familiar tangency portfolio
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derived from quadratic programming, where the sample mean x = X' VT, and
the (maximum likelihood) sample covariance £ = (X — IX'Y (X — IX' VT, are
used as parameters.

Proof: Using the updating formula for an inverse matrix,®* express the
coefficient vector b from the regression in equation (3) in terms of the sam-
ple mean x and sample covariance X:

b= (X'X) X1
=2+xx')'x
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Scaling b so that the coefficients sum to one results in the tangency portfolio
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when sample means and covariances are used as parameters. Q.E.D.
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Figure 1. Sample mean standard deviation diagram. The peint b is the point on the line
Od that is closast to tha point (0,1) and the point a is the point on tha lina Om that is closest to
(0,1).

The regression in equation (3) 1s unusual. There i1s no intercept, the de-
pendent variable is nonstochastic, and the residual vector u i1s correlated
with the regressors, which are stochastic. However, the regression has a
simple interpretation: The dependent variable 1 1s a sample counterpart to
arbitrage profits—positive excess return with zero standard deviation; the
coefficients b represent the weights on risky assets in the portfolio; Xb rep-
resents excess returns on this portfolio; and the residual vector u shows
deviations in this portfolio’s return from 1.

The estimated portfolio weights b produce a portfolio return vector that is
closest in terms of least squares distance to the arbitrage return vector L
This least squares distance can be illustrated using the familiar mean-
standard deviation diagram. The feasible set, constructed from the sample
mean and (maximum-likelihood) sample covariance, has an efficient bound-
ary shown by the line 0d from the origin passing through the tangency port-
folio (Figure 1). The arbitrage return vector 1 is located at the point (0,1).



