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A joint overdispersed marginalized
random-effects model for analyzing two
or more longitudinal ordinal responses

Nasim Vahabi,1,2 Anoshirvan Kazemnejad2 and Somnath Datta1

Abstract

Disease severity is a latent concept which should be observed using a measurement tool; it can be useful in

assessing disease status both cross-sectionally and longitudinally. Medsger scale is a valid instrument for assessing

the systemic sclerosis severity in which the items are categorized from 0 (normal) to 4 (endstage) for each organ

system. We simultaneously analyzed two of the Medsger scale items, namely, general system and skin system as two

correlated ordinal responses using an overdispersed marginalized random-effects model for longitudinal ordinal data

exhibiting an overdispersion pattern. In general, a random-effects approach is implemented to account for the

correlation between these two stochastic processes and to make simultaneous inference; our model also

accounts for temporal correlations amongst observations taken on the same subject. Another important aspect

of our model is its capacity to handle data overdispersion in order to make reliable inference. Last but not least, it

is proved that certain parameters in our joint model have marginal interpretations. We investigate the statistical

properties of our estimators through extensive simulation study. Finally, the methodology is applied to a data of

systemic sclerosis patients.
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1 Introduction

Collecting data from the same subject over time results in longitudinal data. These repeated measurements are not
independent and the corresponding correlation must be taken into account to make accurate inferences. Marginal
regression (i.e., generalized estimating equations) frameworks1 and subject-specific models like generalized linear
mixed models2–4 are two main methods which have received extensive attention for longitudinal outcomes based
on extending the generalized linear models.5,6

More recently, likelihood-based marginalized random-effects models have been introduced for categorical data.
This approach was originally introduced for binary data7,8 and after that developed for ordinal9,10 and count11,12

outcomes. In this approach, a marginal model is used for modeling the population averaged response as a function
of covariates, and a random-effects model is used for modeling the within-subject association. Therefore, both a
population averaged and subject-specific interpretations can be made by fitting just one model instead of two
separate models. This approach also enables us to take advantages of likelihood-based inference, such as the
availability of expression for a full-joint distribution of the observations and relaxing the missing, completely at
random assumption of GEE methods in case of incomplete data.
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Overdispersion is another practical issue in categorical longitudinal data. Although random effects also capture
some amount of data dispersion, single parameter distributions often do not fit data well and model extensions or
more convoluted parameterization may be needed to capture all sources of variability.3 Recently, there has been a
number of attempts to capture the overdispersion in hierarchical categorical data.13–18 One of the extensions is a
so-called combined model which introduces an additional random variable with specific distribution in a random-
effects model. This approach is originally introduced for univariate longitudinal binary and count outcomes17,18

and subsequently extended for an ordinal outcome.19 Joint modeling is a natural way of analyzing two or more
responses on the same individual that are observed in certain applications. It is an effective approach which
provides statistically unbiased inferences and answers to research questions that take multiple outcomes
simultaneously into account.

The motivation behind this work comes from our attempt to analyze a dataset of systemic sclerosis (SSc)
patients and their disease severity based on the general system (GS) and skin system (SS) scores which are
ordered categorical outcomes. Two response variables, namely, GS and SS, were recorded simultaneously and
longitudinally for each SSc patient and categorized based on the Medsger severity scale,20 which we return to in
Section 4. On the other hand, one of the response variables in our dataset also exhibits overdispersion which
should be considered in methodology to ensure reliable inferences. However, to the best of our knowledge,
currently there is no published paper dealing with overdispersion in multivariate longitudinal ordinal data
using likelihood-based approaches. Thus, we propose a novel methodology that incorporates overdispersion
along with joint marginalized modeling of two or more longitudinal ordinal responses extending various
aspects of earlier works.7,19 In order to draw inference from our model, we use approximate maximum
likelihood estimation with the Gaussian–Hermite quadrature method since there is no closed-form of the
likelihood function.

The rest of the paper is arranged as follows. In Section 2, we first introduce an overdispersed marginalized
random-effects (OMRE) model for a single longitudinal ordinal response followed by an extensions of the OMRE
model, called a joint overdispersed marginalized random-effects (JOMRE) model, to handle two or more
longitudinal ordinal responses. This section ends with the description of maximum likelihood estimation for
our models. In Section 3, we investigate the statistical properties of our estimators through a simulation study
and also compare the proposed model with the joint marginalized random-effects model (JMRE) without an
overdispersion component. In Section 4, the methodology is applied to a real data of systemic sclerosis patients.
The paper ends with our conclusions in Section 5.

2 Methods

In this section, we describe our model to handle two or more overdispersed longitudinal ordinal
responses. A marginalized random-effects model is composed of two parts: a marginal and a random-effects
model. The marginal model is a function of covariates and all underlying parameters are fixed and
have population averaged interpretation. The random-effects part is a subject-specific model as a function of
both the fixed and random terms and a connector which relates marginal and random-effects parts. The
connector is a function of the marginal model parameters and variance components of the random-effects
model. Using the ‘‘combined framework,’’ one can also capture the overdispersion in longitudinal categorical
data. For analyzing binary and ordinal responses using a combined model, a beta-distributed random variable
(which assumes to be independent of the normal random term) is added to the random-effects part of the model.

First, we introduce an OMRE model for analyzing longitudinal ordinal data which consists of a marginal
model and overdispersed random-effects model, as stated before. In the marginal part of the model, a logit
link is utilized to connect marginal mean responses with covariates and a probit link is also used in the
random-effects part to model the random intercepts, connector, and overdispersion.

2.1 A univariate overdispersed model for longitudinal ordinal response

Assume that Yij indicates the ordinal response variable for ith subject at jth time of measurement (i ¼ 1, 2, . . . ,N
and j ¼ 1, 2, . . . , ni). Also assume that Yij takes values in R ordered categories where a typical value is denoted by
r ¼ 1, 2, . . . ,R, for simplicity. The response data for the ith subject can be written as an ni � 1 vector
YT

i ¼ ðYi1, . . . ,Yini Þ. Let x
T
ij ¼ ðxij1, . . . , xijpÞ indicate the p� 1 vector of covariate for ith subject at jth time. To

handle overdispersion, we include a random variable � in the random-effects part of the model, where we assume
that � has a beta distribution with parameters � and �. Also, a normal random variable bi � N 0, s2

� �
is used to

2 Statistical Methods in Medical Research 0(0)

f
Highlight



capture the within-subject association. These two random variables (� and bi) are assumed to be independent.
Now, the OMRE model for a longitudinal ordinal response can be written as:

Marginal model : Fijr ¼ P Yij � r xij
��� �
¼ expit �0r þ xTij�

� �
Overdispersed Random� Effects model : Fijr ¼ bi, �ð Þ ¼ P Yij � r xij, bi, �

��� �
¼ � � �ijr þ bi

� � ð1Þ

where expit !ð Þ ¼ expð1þ !�1Þ�1. Here, �0r and�ijr are intercepts, � is a p� 1 vector of fixed-effects parameters and�
is the standard normal cumulative distribution function. We assume that the �0r is strictly monotonic in r which is
needed for modeling a cumulative probability distribution function when xij ¼ 0. It turns out that the other set of
intercepts�ijr automatically inherits this property as shown by the following result whose proof is given inAppendix 1.

Theorem 1. In the OMRE model in equation (1), if �01 5�02 5 � � � 5�0R�1, then �ij1 5�ij2 5 � � � 5�ijR�1.
The intercept, �ijr, connects the marginal and overdispersed random-effects models and can be calculated from

the relationship between the marginal and conditional probabilities as follows:

Fijr ¼

Z
b

Fijr bið Þ f bið Þdbi,

¼

Z
b

Z
�

Fijr bi, �ð Þ p �ð Þ f bið Þd� dbi

ð2Þ

where f ð:Þ is the probability density function of random effects which are assumed to follow a univariate normal
distribution and p :ð Þ is the probability density function of a beta distribution with parameters � and �. The closed-
form of �ijr is

�ijr ¼ ��1 1
�
E �ð Þ expitð�0r þ xTijbÞ

n o
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

pn o
ð3Þ

see Appendix 2 for a proof. The expression shows that �ijr depends on the fixed-effects parameter b and the
variance components s2 and E �ð Þ ¼ �=ð�þ �Þ; more computational details for �ijr are presented in Appendix 2. In
the sequel, we assume � ¼ ev� to avoid over-parameterization in the proposed model. In this case, E �ð Þ ¼ expit vð Þ
and thus, v is the only overdispersion parameter in the likelihood function in the OMRE model.

2.2 A joint overdispersed model for two or more longitudinal ordinal responses

In this section, we extend the previously proposed model (the OMRE model in Section 2.1) to accommodate two
or more longitudinal ordinal responses. Consider K (�2 potentially correlated) responses observed on the same
subject at the same time points denoted by Y

ðkÞ
ij , ðk ¼ 1, . . . ,KÞ for subject i at time j. We will use the same notations

as in Section 2.1 along with the superscriptðk) to index the response. We specify the marginal part of the JOMRE
model as before:

F
ðkÞ
ijr ¼ P Y

ðkÞ
ij � r xij

��� �
¼ expit �ðkÞ0r þ xTijb

ðkÞ
� �

, k ¼ 1, . . . ,K ð4Þ

where � kð Þ
0r (k ¼ 1, . . . ,K) are intercepts and b kð Þ are vectors of fixed-effects parameters. Next, the overdispersed

random-effects model can be described as:

F
kð Þ
ijr b

kð Þ
i , � kð Þ

� �
¼ P Y

kð Þ
ij � r xij

�� , b
kð Þ
i , � kð Þ

� �
¼ � kð Þ’ �

kð Þ
ijr þ b

kð Þ
i

� �
, k ¼ 1, . . . ,K ð5Þ

where we correlate the normally distributed random effects for all responses by assuming

bTi ¼ b
1ð Þ
i , . . . , b

Kð Þ
i

� �
� N 0,

s21 � � � s1K

..

. . .
. ..

.

sK1 � � � s2K

2
664

3
775

0
BB@

1
CCA ð6Þ

We also assume that response variables are conditionally independent given the normal random effects. By
specifying different but correlated normal random effects for each model and considering the conditional
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independence assumption, we capture the correlation between responses by what is known as the random-effects
approach for joint modeling. For later use in the simulation section, we note that assuming uncorrelated random
effects (skl ¼ 0, k 6¼ l Þis equivalent to the independence model which analyzes each outcome separately using the
OMRE model.

Overdispersion parameters �ðkÞ are considered independent with separate beta distributions
pð� kð ÞÞ ¼ Beta � kð Þ, � kð Þ

� �
for k ¼ 1, . . . ,K, and the same type of constraint as in the univariate case

(�ðkÞ ¼ ev
ðkÞ

�ðkÞ for k ¼ 1, . . . ,K). Using this constraint, the expectation of � kð Þ is equal to expitðvðkÞÞ. Thus,
v ¼ ðv 1ð Þ, . . . , vðKÞÞ are overdispersion parameters which are included in the likelihood function. Moreover,
� ¼ ð�

ð1Þ
ijr , . . . ,�

ðKÞ
ijr Þ are intercepts which can be computed using the equations (2) and (3) for each response as:

�
ðkÞ
ijr ¼ ��1 1

�
E � kð Þ
� �

expitð�ðkÞ0r þ xTijb
ðkÞÞ

n o
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2k

q	 

, k ¼ 1, . . . ,K: ð7Þ

As before, we assume that each set of intercepts (�ðkÞ0r , k ¼ 1, . . . ,KÞ are monotonic in r which implies the same
for �

ðkÞ
ijr following Theorem 1. Therefore � ¼ b, s, vð Þ indicates the set of parameters which should be estimated in

the proposed JOMRE model.

2.3 Joint likelihood and maximum likelihood estimation

Based on the random-effects framework for joint modeling, the likelihood contribution of the ith subject in the
JOMRE model is given by

Li �ð Þ ¼

Z
b

Yni
j¼1

YK
k¼1

f Y
kð Þ
ij jb

kð Þ
i

� �
f bið Þdbi, k ¼ 1, . . . ,K ð8Þ

where f :ð Þ is a joint probability distribution of random effects, a multivariate normal in this case, and f ðY
kð Þ
ij jb

kð Þ
i Þ

for k ¼ 1, . . . ,K is the so-called partially marginalized density. Note that each temporal process has its own time
index and the total number of temporal observation for the two ordinal values processes may differ.

Because the JOMRE model consists of two sets of random effects, we need to integrate over both the normal
and beta random variables. Thus, the partially marginalized density f ðY

kð Þ
ij jb

kð Þ
i Þ is resulted from integrating

conditional probabilities over the beta random effects as follows:

f Y
kð Þ
ij jb

kð Þ
i

� �
¼

Z
� kð Þ

f Y
kð Þ
ij jb

kð Þ
i , � kð Þ

� �
p � kð Þ
� �

d� kð Þ, k ¼ 1, . . . ,K ð9Þ

where

f Y
kð Þ
ij jb

kð Þ
i , � kð Þ

� �
¼
YR
r¼1

Fijr b
kð Þ
i , � kð Þ

� �
� Fijr�1 b

kð Þ
i , � kð Þ

� �� �y kð Þ
ijr

, k ¼ 1, . . . ,K ð10Þ

so that y
kð Þ
ijr ¼ 1 if y

kð Þ
ij ¼ r and y

kð Þ
ijr ¼ 0 otherwise. Note that the partially marginalized density f ðY

kð Þ
ij jb

kð Þ
i Þ has a

closed form:

f Y
kð Þ
ij jb

kð Þ
i

� �
¼

Z
� kð Þ

YR
r¼1

Fijr b
kð Þ
i , � kð Þ

� �
� Fijr�1 b

kð Þ
i , � kð Þ

� �� �y kð Þ
ijr

" #
p � kð Þ
� �

d� kð Þ

¼ E � kð Þ
� �

! kð Þ
ijr

� �y kð Þ
ij1

�
YR�1
r¼2

! kð Þ
ijr � !

kð Þ
ijr�1

� �y kð Þ
ijr

� E�1 � kð Þ
� �

� ! kð Þ
ijR�1

� �y kð Þ
ijR

, k ¼ 1, . . . ,K

ð11Þ

where ! kð Þ
ijr ¼ ’ð�

ðkÞ
ijr þ b

ðkÞ
i Þ. Using equations (8) and (11), the likelihood function L �ð Þ takes the form:

L �ð Þ ¼
YN
i¼1

Z
b

Yni
j¼1

YK
k¼1

expitðvðkÞÞ ! kð Þ
ijr

� �y kð Þ
ij1

�
YR�1
r¼2

!ðkÞijr � !
ðkÞ
ijr�1

� �yðkÞ
ijr

�
1

expitðv kð ÞÞ
� !ðkÞijR�1

� �y
ðkÞ
ijR

" #
f bið Þ dbi ð12Þ

There is no closed form for likelihood function in equation (12). Therefore, we use the Gaussian–Hermite
quadrature method to approximate L �ð Þ. Maximizing the log-likelihood function, logL �ð Þ ¼

PN
i¼1 logðLi �ð ÞÞ, with
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respect to � yields the parameter estimates. To this end, we used a quasi-Newton-Raphson method to maximize the
logL �ð Þ in the SAS NLMIXED procedure by defining tech¼quanew. The ‘‘general’’ option in the MODEL
statement in this procedure has a feature named user-defined likelihood that enables us to define our likelihood
and implement the JOMRE model.

3 Simulations

This section contains two different assessments for our proposed methodology. We considered two longitudinal
ordinal responses for computational ease. First, we study the behaviors of the point estimators in terms of their
absolute bias (AB) and mean squared error (MSE). Next, we conduct a power analysis to test a covariate effect
based on an approximate Wald test using our model.

3.1 Study of bias and mean squared error

In our primary simulation to study the behaviors of the point estimators of three different marginalized random-
effects models in terms of their AB and MSE, we consider four different sample sizes (N ¼ 10, N ¼ 30, N ¼ 100,
and N ¼ 250) each with the same time points with ni ¼ 6 for the two responses. Bivariate overdispersed
longitudinal ordinal data were generated from the proposed model in equations (4) and (5) with ‘‘time’’ and
‘‘group’’ variables as the covariates. The model was specified as:

logit PðY
ðkÞ
ij � r xij

�� Þ ¼ �ðkÞ0r þ �ðkÞ1 :timeij þ �
ðkÞ
2 :groupi

PðY
kð Þ
ij � r xij

�� , b
kð Þ
i , � kð ÞÞ ¼ � kð Þ’ð�ðkÞijr þ b

ðkÞ
i Þ

ð13Þ

for k ¼ 1, 2, wherej ¼ 1, 2, . . . , 6, timeij ¼ j� 1ð Þ=10, and groupi is a binary covariate (0 or 1) randomly generated

from a Bernoulli distribution with success probability p ¼ 0:4 which was arbitrarily chosen. We considered two
sets of true parameter values for the two responses given by

bð1Þ ¼ ð�ð1Þ01 ,�
ð1Þ
02 ,�

ð1Þ
03 ,�

ð1Þ
1 ,�ð1Þ2 Þ ¼ �0:8, 0:5, 1:6, � 0:4, � 0:1ð Þ and bð2Þ ¼ ð�ð2Þ01 ,�

ð2Þ
02 ,�

ð2Þ
03 ,�

ð2Þ
1 ,�ð2Þ2 Þ ¼ �0:6, 0:8,ð

1:5, 1, � 0:2Þ, respectively. The random effects bTi ¼ ðb
ð1Þ
i , b

ð2Þ
i Þ were generated from a bivariate normal

distribution with mean 0 and s ¼ s1, s12, s2ð Þ ¼ 1:200, 1:040, 1:004ð Þ. These initial values and the coding of the
covariates were motivated in a simulation study of a marginalized model by Lee, Daniels, and Joo10; since
their modeling did not consist of an overdispersion term, we used the arbitrarily chosen values of the true

parameter v ¼ v1, v2
� �

¼ 2:2, 2:3ð Þ for the overdispersion parameters.

We utilized a Monte-Carlo sample size of 1000 and fit three marginalized random-effects models under four
each of the four sample sizes (algorithm and SAS-code for generating simulated data is given in Appendix 3). The
joint marginalized random-effects models with and without overdispersion (JOMRE and JMRE, respectively)
were compared with the independence OMRE model. To fit the independence model, we assumed uncorrelated
random effects, that is, s12 ¼ 0. In order to apply the Gaussian–Hermite quadrature method, we used Q ¼ 50
quadrature points for all models. Note that this is sufficient according to the guidelines put forward by Lesaffre
and Spiessens.22 The results are given in Table 1, where we report the AB and MSE over all 1000 Monte-
Carlo runs.

As can be seen, when the sample size increases, the MSE values reduce for all three models (Figure 1). The AB
and MSE for the proposed JOMRE model were smaller than those in the JMRE model, especially for the variance
components. We can see considerable bias in the joint model without overdispersion (JMRE); for example, the
percentage relative bias for the variance components s1, s2, and s12 in the JMRE model (vs. JOMRE) in the case of
N ¼ 100 are 32.2% (vs. 0.7%), 21.9% (vs. 13.2%), and 54.4% (vs. 2%), respectively. Although, at the first glance
one could not observe a considerable difference between joint and separate models, the joint model could capture
the correlation between responses. In addition, the data analyst can interpret the results using a single joint model
instead of fitting two separate models.

We conducted further secondary simulations and generated bivariate longitudinal ordinal data without
overdispersion from the JMRE model by considering two different sample sizes (N ¼ 30, N ¼ 250) and ni ¼ 6
time points. The true parameter values are the same as the primary simulation, except here the data generating
model does not include the overdispersion term. The JOMRE and JMRE models were compared based on 500
Monte-Carlo runs. The results are given in Table 2 and as can be seen, the MSE values are reduced when the
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Table 1. Simulation results and behavior of parameter estimators obtained from fitting the JOMRE, JMRE, and OMRE models.

Parameter Truth

JMRE JOMRE OMRE

AB MSE AB MSE AB MSE

N¼ 10

Y ð1Þ Int1 �0.8 0.114 0.790 0.108 0.331 0.126 0.611

Int2 0.5 0.070 0.448 0.015 0.200 0.020 0.190

Int3 1.6 0.138 0.617 0.043 0.212 0.035 0.195

Time �0.4 0.060 1.306 0.023 0.548 0.016 0.511

Group �0.1 0.009 0.931 0.018 0.400 0.030 0.386

Overdispersion 2.2 NA NA 1.163 17.792 1.058 15.784

Y ð2Þ Int1 �0.6 0.033 0.808 0.049 0.243 0.046 0.265

Int2 0.8 0.036 1.125 0.066 0.209 0.062 0.220

Int3 1.5 0.000 1.377 0.054 0.220 0.056 0.216

Time 1 0.079 1.556 0.021 0.547 0.024 0.521

Group �0.2 0.069 1.717 0.066 0.428 0.054 0.433

Overdispersion 2.3 NA NA 1.384 19.718 1.291 18.082

Variance Components s1 1.2 0.444 0.320 0.002 0.288 0.011 0.942

s2 1.004 0.271 0.192 0.151 0.134 0.112 0.252

s12 1.04 0.560 0.506 0.154 1.356 NA NA

N¼ 30

Y ð1Þ Int1 �0.8 0.013 0.145 0.020 0.107 0.025 0.108

Int2 0.5 0.056 0.122 0.012 0.085 0.006 0.084

Int3 1.6 0.040 0.132 0.028 0.095 0.020 0.093

Time �0.4 0.026 0.411 0.012 0.251 0.015 0.252

Group �0.1 0.007 0.257 0.017 0.158 0.010 0.160

Overdispersion 2.2 NA NA 0.162 1.323 0.196 2.002

Y ð2Þ Int1 �0.6 0.005 0.138 0.000 0.097 0.001 0.099

Int2 0.8 0.032 0.130 0.063 0.093 0.061 0.093

Int3 1.5 0.065 0.137 0.071 0.100 0.069 0.098

Time 1 0.013 0.486 0.042 0.286 0.037 0.279

Group �0.2 0.039 0.251 0.038 0.155 0.036 0.164

Overdispersion 2.3 NA NA 0.182 1.099 0.174 1.024

Variance Components s1 1.2 0.399 0.188 0.017 0.052 0.014 0.053

s2 1.004 0.236 0.088 0.125 0.071 0.123 0.075

s12 1.04 0.567 0.360 0.006 0.155 NA NA

N¼ 100

Y ð1Þ Int1 �0.8 0.006 0.037 0.010 0.031 0.013 0.031

Int2 0.5 0.043 0.035 0.005 0.027 0.002 0.028

Int3 1.6 0.013 0.037 0.011 0.030 0.007 0.032

Time �0.4 0.022 0.118 0.009 0.085 0.008 0.084

Group �0.1 0.000 0.075 0.000 0.056 0.000 0.058

Overdispersion 2.2 NA NA 0.011 0.048 0.011 0.050

Y ð2Þ Int1 �0.6 0.025 0.039 0.023 0.032 0.021 0.033

Int2 0.8 0.042 0.038 0.063 0.035 0.064 0.036

Int3 1.5 0.087 0.045 0.082 0.039 0.082 0.039

Time 1 0.025 0.136 0.046 0.095 0.044 0.095

Group �0.2 0.022 0.067 0.015 0.049 0.016 0.052

Overdispersion 2.3 NA NA 0.022 0.054 0.021 0.055

Variance components s1 1.2 0.387 0.158 0.009 0.015 0.008 0.015

s2 1.004 0.220 0.057 0.133 0.035 0.131 0.034

s12 1.04 0.566 0.332 0.021 0.048 NA NA

N¼ 250

Y ð1Þ Int1 �0.8 0.010 0.016 0.007 0.013 0.004 0.013

Int2 0.5 0.049 0.016 0.012 0.012 0.009 0.012

(continued)
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Table 1. Continued

Parameter Truth

JMRE JOMRE OMRE

AB MSE AB MSE AB MSE

Int3 1.6 0.012 0.015 0.012 0.013 0.009 0.013

Time �0.4 0.017 0.047 0.004 0.033 0.003 0.033

Group �0.1 0.009 0.027 0.013 0.020 0.010 0.021

Overdispersion 2.2 NA NA 0.011 0.018 0.011 0.019

Y ð2Þ Int1 �0.6 0.035 0.016 0.031 0.014 0.031 0.014

Int2 0.8 0.036 0.016 0.059 0.016 0.060 0.016

Int3 1.5 0.088 0.022 0.084 0.020 0.084 0.020

Time 1 0.036 0.052 0.051 0.040 0.050 0.040

Group �0.2 0.016 0.027 0.009 0.019 0.010 0.020

Overdispersion 2.3 NA NA 0.009 0.018 0.008 0.019

Variance components s1 1.2 0.378 0.146 0.002 0.006 0.002 0.006

s2 1.004 0.211 0.049 0.143 0.027 0.143 0.027

s12 1.04 0.558 0.316 0.009 0.020 NA NA

JMRE: joint marginalized random effects; JOMRE: joint overdispersed marginalized random effects; OMRE: overdispersed marginalized random effects.

Bivariate longitudinal and overdispersed ordinal data were generated from the JOMRE model. Here, AB is absolute value of bias and MSE is mean

squared error based on 1000 Monte-Carlo runs.
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Figure 1. Plot of MSE against sample size based on the 1000 Monte-Carlo replicates. The solid-blue line corresponds to the JMRE

model and the dashed-red line corresponds to the proposed JOMRE model.
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sample size increases. The AB and MSE for the proposed JOMRE model were still smaller than those in the
JMRE model.

We also conducted another secondary simulation and generated bivariate longitudinal ordinal data from the
JOMRE model, in which overdispersion parameter is added to only one of the two responses, Yð1Þ, by considering
two different sample sizes (N ¼ 30, N ¼ 250) and ni ¼ 6 time points. The true parameter values are the same as the
main simulation, except here the generating model does not include the overdispersion parameter for the second
response, Yð2Þ. The JOMRE and JMRE models are compared based on 500 Monte-Carlo runs. The results are
given in Table 3 and as can be seen, the proposed JOMRE model is still superior to the JMRE model in terms of
MSE and AB.

Overall, the simulation shows the considerable biases that can occur in the marginal and subject-specific
parameters when the overdispersion is not captured in longitudinal ordinal data.

3.2 Power analysis for testing a covariate effect

We assess the statistical power of the Wald test for H0 : �ðkÞ1 ¼ 0 (for k ¼ 1, 2) using the JOMRE model with 1000
Monte-Carlo replicates. Further simulations were conducted using additional values of the �ðkÞ1 parameters and
bivariate overdispersed longitudinal ordinal data were generated from the same model as in equation (13). Figure 2

Table 2. Simulation results obtained from fitting the JOMRE and JMRE models.

Parameter Truth

JMRE JOMRE

AB MSE AB MSE

N¼ 30

Y ð1Þ Int1 �0.8 0.0341 0.0835 0.034 0.083

Int2 0.5 0.0028 0.0703 0.002 0.070

Int3 1.6 0.0479 0.0929 0.052 0.093

Time �0.4 0.0329 0.1641 0.034 0.163

Group �0.1 0.0209 0.1606 0.018 0.161

Y ð2Þ Int1 �0.6 0.0107 0.0662 0.011 0.065

Int2 0.8 0.0758 0.0761 0.076 0.075

Int3 1.5 0.0946 0.0920 0.092 0.090

Time 1 0.0104 0.1789 0.018 0.177

Group �0.2 0.0673 0.1522 0.067 0.155

Variance components s1 1.2 0.0220 0.0238 0.002 0.024

s2 1.004 0.1213 0.0382 0.140 0.044

s12 1.04 0.0223 0.0789 0.011 0.082

N¼ 250

Y ð1Þ Int1 �0.8 0.0002 0.0140 0.0000 0.0070

Int2 0.5 0.0059 0.0128 0.0053 0.0064

Int3 1.6 0.0146 0.0170 0.0150 0.0086

Time �0.4 0.0105 0.0323 0.0106 0.0162

Group �0.1 0.0016 0.0306 0.0016 0.0153

Y ð2Þ Int1 �0.6 0.0435 0.0154 0.0437 0.0086

Int2 0.8 0.0527 0.0174 0.0529 0.0101

Int3 1.5 0.1055 0.0291 0.1050 0.0200

Time 1 0.0793 0.0428 0.0805 0.0248

Group �0.2 0.0241 0.0311 0.0240 0.0157

Variance components s1 1.2 0.0042 0.0054 0.0014 0.0027

s2 1.004 0.1450 0.0265 0.1515 0.0258

s12 1.04 0.0112 0.0176 0.0006 0.0088

JMRE: joint marginalized random effects; JOMRE: joint overdispersed marginalized random effects. Bivariate longitudinal ordinal data without

overdispersion were generated from the JMRE model. Here AB is absolute value of bias and MSE is mean squared error based on 500 Monte-

Carlo runs.
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shows the power curves corresponding to the JOMRE model for two sample sizes, namely, N ¼ 30 and N ¼ 250.
Clearly, the power increases as the alternative values are further away from the null. We can also see that the
power improves as the sample size increases.

When the true values of �ðkÞ1 are 0, the empirical size (95% CI for size) of the tests for �ð1Þ1 and �ð2Þ1 are 0.044
(0.032, 0.056) and 0.050 (0.037, 0.063), respectively, which are extremely close to the target nominal size � ¼ 0:05.

4 Analysis of SSc data

4.1 Data

We use data from 156 systemic sclerosis patients from Firoozgar General Hospital in Tehran to make inference
about SSc severity based on the Medsger severity scale.20 For each patient, we selected two of the most important
Medsger scale items, namely, GS and SS, as two correlated responses measured three times from 2013 to 2015.
Severity scale items were categorized from 0 (no documented involvement) to 4 (endstage disease) for each organ
system. GS was categorized based on the hemoglobin (Hb) as follows: ‘‘0’’ (normal) when Hb is 12.3 Gm/dl or
greater, ‘‘1’’ (mild) when Hb is 11.0–12.3 Gm/dl, ‘‘2’’ (moderate) when Hb is 9.7–11.0 Gm/dl, ‘‘3’’ (severe) when
Hb is 8.3–9.7 Gm/dl, and ‘‘4’’ (endstage) when Hb is less than 8.3 Gm/dl. SS variable was also categorized based

Table 3. Simulation results obtained from fitting the JOMRE and JMRE models.

Parameter Truth

JMRE JOMRE

AB MSE AB MSE

N¼ 30

Y ð1Þ Int1 �0.8 0.018 0.075 0.020 0.063

Int2 0.5 0.056 0.063 0.021 0.051

Int3 1.6 0.047 0.069 0.046 0.060

Time �0.4 0.045 0.209 0.029 0.145

Group �0.1 0.014 0.131 0.008 0.096

Overdispersion 2.2 NA NA 0.260 1.108

Y ð2Þ Int1 �0.6 0.008 0.068 0.011 0.059

Int2 0.8 0.073 0.077 0.084 0.070

Int3 1.5 0.092 0.093 0.105 0.086

Time 1 0.011 0.179 0.034 0.166

Group �0.2 0.065 0.160 0.057 0.138

Variance components s1 1.2 0.393 0.169 0.019 0.027

s2 1.004 0.122 0.038 0.152 0.046

s12 1.04 0.342 0.155 0.009 0.084

N¼ 250

Y ð1Þ Int1 �0.8 0.007 0.007 0.003 0.006

Int2 0.5 0.048 0.009 0.009 0.006

Int3 1.6 0.014 0.007 0.013 0.006

Time �0.4 0.018 0.023 0.009 0.016

Group �0.1 0.005 0.014 0.008 0.010

Overdispersion 2.2 NA NA 0.011 0.009

Y ð2Þ Int1 �0.6 0.043 0.009 0.044 0.009

Int2 0.8 0.054 0.011 0.053 0.010

Int3 1.5 0.107 0.021 0.105 0.020

Time 1 0.080 0.025 0.081 0.025

Group �0.2 0.024 0.017 0.021 0.015

Variance components s1 1.2 0.380 0.146 0.004 0.003

s2 1.004 0.145 0.024 0.152 0.026

s12 1.04 0.336 0.117 0.004 0.009

JMRE: joint marginalized random effects; JOMRE: joint overdispersed marginalized random effects. Bivariate longitudinal ordinal data were generated

from the proposed model and overdispersion parameter is added to only one of two responses (Y ð1Þ). Here, AB is absolute value of bias and MSE is

mean squared error based on 500 Monte-Carlo runs.
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on the modified Rodnan Total Skin thickness Score (TSS) as follows: ‘‘0’’ when TSS is 0, ‘‘1’’ when TSS is 1–14,
‘‘2’’ when TSS is 15–29, ‘‘3’’ when TSS is 30–39, and ‘‘4’’ when TSS is greater than or equal to 40. Table 4 presents
the frequency distribution of GS and SS over time.

4.2 Model fit

Let Y
ð1Þ
ij and Y

ð2Þ
ij indicate the GS and SS variables, respectively, with r ¼ 0, . . . , 4 ordered categories for the ith

subject at the jth time of measurements (i ¼ 1, 2, . . . , 156; j ¼ 1, 2, 3). We coded gender as a covariate taking values
‘‘0’’ for female and ‘‘1’’ for male. We fitted three models, namely, JMRE, JOMRE, and OMRE. The JMRE and
JOMRE models include correlated normal intercepts to account the correlation between two organs (GS and SS)
for the same patient and additionally, the JOMRE model includes independent beta random variables to model
potential overdispersion in our longitudinal ordinal data. Applying our model (equation (4)), the marginal parts of
these models can be written as:

logitP GSij � r xij
��� �
¼ �ð1Þ0r þ �

ð1Þ
1 timeij þ �

ð1Þ
2 genderi

logitP SSij � r xij
��� �
¼ �ð2Þ0r þ �

ð2Þ
1 timeij þ �

ð2Þ
2 genderi

where �ðkÞ0r , k ¼ 1, 2, are intercepts and ð�ðkÞ1 ,�ðkÞ2 Þ are fixed effects with population-averaged interpretation.
We used the SAS NLMIXED procedure for fitting these models. The initial values of the parameters were
obtained from fitting the univariate fixed-effects models. SAS code for all models in both univariate and
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Figure 2. The power plots for testing the effect of covariate time using the JOMRE model based on the Monte-Carlo sample size of

1000. The solid-blue line corresponds to N¼ 250 and the dashed-red line corresponds to N¼ 30. Also, the left curve corresponds to

the first response and the right curve corresponds to the second response. The horizontal lines denote the nominal sizes.
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bivariate cases are given in Appendix 4. Table 5 provides the maximum likelihood estimates and goodness of fit
statistics for these three models.

From the perspective of model selection, both Loglik and AIC indicate that the JOMRE model offers the
best fit for these data, although the JOMRE and OMRE models resulted in similar estimates. Presumably,
it means that the joint marginalized random-effects model was improved by considering the overdispersion

Table 4. Frequency distribution of general system (GS) and skin system (SS) of SSc patients (N ¼ 156).

Category

Time

2013 2014 2015

GS SS GS SS GS SS

0 (Normal) 95 (61.3) 18 (11.7) 92 (59.7) 25 (16.1) 89 (57.1) 31 (20.0)

1 (Mild) 56 (36.1) 108 (70.1) 53 (34.4) 112 (72.3) 56 (35.9) 98 (63.3)

2 (Moderate) 2 (1.4) 26 (16.8) 7 (4.5) 17 (11.0) 9 (5.8) 25 (16.1)

3 (Severe) 1 (0.6) 2 (1.4) 2 (1.4) 1 (0.6) 1 (0.6) 1 (0.6)

4 (Endstage) 1 (0.6) 0 0 0 1 (0.6) 0

Total 155 154 154 155 156 155

an (%)

Table 5. Maximum likelihood estimates for SSc data.

Parameter

JMRE JOMRE OMRE

Estimate (SE) P-value Estimate (SE) P-value Estimate (SE) P-value

General system (SS)

Intercept 0 �ð1Þ01

� �
�2.0 (0.26) <0.001 �1.9 (0.24) <0.001 �1.9 (0.24) <0.001

Intercept 1 �ð1Þ02

� �
1.3 (0.23) <0.001 1.4 (0.22) <0.001 1.4 (0.23) <0.001

Intercept 2 �ð1Þ03

� �
4.0 (0.53) <0.001 4.3 (0.50) <0.001 4.3 (0.50) <0.001

Time �ð1Þ1

� �
0.2 (0.08) 0.014 0.1 (0.07) 0.033 0.1 (0.07) 0.033

Gender �ð1Þ2

� �
0.1 (0.44) 0.849 0.2 (0.45) 0.729 0.1 (0.46) 0.786

Overdispersion (�ð1Þ) NA NA 5.3 (0.71) <0.001 5.3 (0.71) <0.001

Skin system (GS)

Intercept 0 �ð2Þ01

� �
0.5 (0.20) 0.015 0.5 (0.20) 0.016 0.5 (0.20) 0.016

Intercept 1 �ð2Þ02

� �
3.0 (0.32) <0.001 3.0 (0.32) <0.001 3.0 (0.32) <0.001

Intercept 2 �ð2Þ03

� �
4.6 (0.55) <0.001 4.6 (0.55) <0.001 4.6 (0.52) <0.001

Intercept 3 �ð2Þ04

� �
5.8 (0.82) <0.001 5.8 (0.82) <0.001 5.7 (0.77) <0.001

Time �ð2Þ1

� �
�0.1 (0.07) 0.102 �0.1 (0.07) 0.103 �0.1 (0.07) 0.104

Gender �ð2Þ2

� �
1.5 (0.53) 0.005 1.5 (0.52) 0.005 1.5 (0.54) 0.005

Overdispersion (�ð2Þ) NA NA 19.5 (941.57) 0.983 18.0 (439.28) 0.967

Variance components

s1 1.8 (0.20) <0.001 2.4 (0.38) <0.001 2.4 (0.38) <0.001

s2 1.8 (0.21) <0.001 1.8 (0.21) <0.001 1.8 (0.23) <0.001

Rho 0.2 (0.10) 0.054 0.2 (0.10) 0.067 NA NA

Fit statistics

AIC 1322.4 1303.8 1305.2

Loglik �647.2 �635.9 �637.6

SSc: systemic sclerosis; JMRE: joint marginalized random effects; JOMRE: joint overdispersed marginalized random effects; OMRE: overdispersed

marginalized random effects.
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parameter. The difference in deviance for the JMRE versus the JOMRE model is 22.6 (P-value<0.001 on one
degree of freedom) which shows that the joint model with overdispersion has a statistically significantly better
fit than the simple model without overdispersion. On the other hand, the difference in deviance for the
JOMRE versus the OMRE model is 3.4 (P-value¼ 0.065 on one degree of freedom) which is borderline
non-significant.

The point estimate of the overdispersion parameter in the JOMRE model was significant for SS response
(vð1Þ ¼ 5:3, SE ¼ 0:71, P-value <0.001). There were some differences in the marginal and random-effects
parameter estimates between the JOMRE and JMRE models for SS response variable due to the significant
overdispersion in this outcome. On the other hand, the overdispersion parameter was not significant for GS
response (vð2Þ ¼ 19:5, SE ¼ 941:57, P-value¼ 0.983) and, as a result, both the JMRE and JOMRE models
produced almost the same parameter estimates for this outcome. The variance components, s1 and s2, were both
significant which confirms the use of random-effects parts in the marginalized models. The effect of gender on GS
was significant (�ð2Þ2 ¼ 1:5, SE ¼ 0:52, P-value¼ 0.005) which indicates that the log-odds of GS below any given level
was higher for males than for females. Finally, the effect of time on SS was significant (�ð2Þ2 ¼ 0:1, SE ¼ 0:07, P-
value¼ 0.033) which shows that the log-odds of SS below any given level increases as time increases.

5 Conclusion

We have considered analyzing two or more correlated longitudinal ordinal outcome processes and proposed a
joint overdispersed marginalized random-effects model for the same. This model combines the advantages of
marginalized random-effects framework to directly model the marginal probabilities as a function of covariates.
In addition, this model uses normal random effects to handle the correlation between responses, as well as beta
random effects to deal with overdispersion in longitudinal-ordered categorical data.

Using simulations, we demonstrated superior performance of the JOMRE model compared with the JMRE
model and also showed that both the bias and the overall mean squared error of our estimators diminish as the
number of subject increases. Our position is that having it does not hurt and generally produces better results,
albeit slightly in some cases. At the end, we leave it up to the modeler to decide whether to include the
overdispersion term or not by looking at the model result.

On the data analysis front, we showed that the proposed JOMRE model had a better fit than the simpler JMRE
model. We also found that higher levels of skin system and SSc severity is higher in females than males.

In principle, this methodology can directly be fitted for more than two responses; however, a limitation of
likelihood-based approach is the difficulty of incorporating several random effects since the dimension of the
integrals is high and computationally expensive. Extending this methodology to a Bayesian framework may be
a way around in such situations. We also can extend this model to allow the correlated beta random effects
through the multivariate beta distribution. We will explore these possibilities elsewhere.
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Appendix 1

The proof of Theorem 1 in Section 2.1
Theorem 1. In the OMRE model given by equation (1), if �01 5 � � � 5�0R�1, then �ij1 5 � � � 5�ijR�1.
Proof. Based on the closed form of �ijr in equation (3) we can write that

�ijr ¼ ��1 1
�
E �ð Þ expitð�0r þ xTijbÞ

n o
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

pn o
� ��1ðexpitð�0rÞÞ ð14Þ

where expit �0rð Þ ¼
expð�0rÞ

1þ expð�0rÞ
is an increasing function between 0 and 1 for all �0r, thus if �01 5 � � � 5�0R�1 then

expit �01ð Þ5 � � � 5 expit �0R�1ð Þ ð15Þ

Also, ��1 :ð Þ is an increasing function and thus

��1 expitð�01Þð Þ5 � � � 5��1 expit �0R�1ð Þð Þ ð16Þ

Thus, relation (16) results in �ij1 5 � � � 5�ijR�1.

Appendix 2

This Appendix consists of computational details of the connector in the OMRE and JOMRE models. We
substantially added some arguments to extend the definition and closed form of the connector from the binary
response21 to the ordinal response.

Vahabi et al. 13



Appendix 2.1

Computational details of the connector �ijr: Combining marginal and overdispersed random-effects models into a
single OMRE model.

The connector, �ijr, connects the marginal and overdispersed random-effects models and can be calculated from
the relationship between the marginal and conditional probabilities as follows:

Fijr ¼

Z
b

Z
�

Fijr bi, �ð Þ p �ð Þ f bið Þ d� dbi

then based on equation (1) we can write:

�0r þ xTijb ¼ Logit

Z
b

Z
�

�� �ijr þ bi
� �

p �ð Þ f bið Þ d� dbi

 �

�0r þ xTijb ¼ Logit

Z
b

E �ð Þ� �ijr þ bi
� �

f bið Þ dbi

 �
,

�0r þ xTijb ¼ Logit E �ð Þ

Z
b

� �ijr þ bi
� �

f bið Þ dbi

 � ð17Þ

where
R

� �ijr þ bi
� �

f bið Þ dbi¼�ð
�ijrffiffiffiffiffiffiffiffi
1þs2
p Þ (calculation detail is given in sub-section 2.2)

�0r þ xTijb ¼ Logit E �ð Þ�ð
�ijrffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2
p Þ

 �
,

expit �0r þ xTijb
h i

¼ E �ð Þ�
�ijrffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2
p

� �
,

1

E �ð Þ
expit �0r þ xTijb

h i
¼ �

�ijrffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2
p

� �
,

��1
1

E �ð Þ
expit �0r þ xTijb

n o �
¼

�ijrffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2
p ,

�ijr ¼ ��1
1

E �ð Þ
expit �0r þ xTijb

n o �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2

p

Appendix 2.2

Proof of
R

� �ijr þ bi
� �

f bið Þ dbi ¼ �ð
�ijrffiffiffiffiffiffiffiffi
1þs2
p Þ in equation (17)

We know that

� xð Þ ¼

Z x

�1

1ffiffiffiffiffiffi
2�
p expð

�t2

2
Þdt

then Z
� �ijr þ bi
� �

f bið Þ dbi ¼

Z þ1
�1

Z �ijrþbi

�1

1ffiffiffiffiffiffi
2�
p exp

�t2

2

� �
:

1ffiffiffiffiffiffi
2�
p

s
exp
�b2i
2s2

� �
dtdbi,

¼

Z þ1
�1

Z �ijrþbi

�1

1ffiffiffiffiffiffi
2�
p

� �2
1

s
exp
�1

2
b2i s
�2 þ t2

� �� �	 

dtdbi

Here, we make a change of variable z ¼ t� bi and then

¼

Z þ1
�1

Z �rij

�1

1ffiffiffiffiffiffi
2�
p

� �2
1

s
exp
�1

2
b2i s
�2 þ zþ bið Þ

2
� �	 


dzdbi
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Further, let us define:

A ¼ 1þ s�2

B ¼ � z
s�2

C ¼ z2E

E ¼ 1
1þs2

8>>>><
>>>>:

then

¼

Z þ1
�1

Z �rij

�1

1ffiffiffiffiffiffi
2�
p

� �2
1

s
exp
�1

2
b2i Aþ 2zbi þ z2
� �	 


dzdbi

Consider that b2i s
�2 þ zþ bið Þ

2
¼ b2i Aþ 2zbi þ z2 ¼ bi � Bð Þ

2Aþ C, and then

¼

Z þ1
�1

Z �rij

�1

1ffiffiffiffiffiffi
2�
p

� �2
1

s
exp
�1

2

bi � Bð Þ
2

1
A

( )
:exp

�1

2

z2

1
E

( )
dzdbi

by multiplying the above formula with 1

A
1
2A
�1
2 E

1
2E
�1
2

, we then have

¼

Z þ1
�1

Z �rij

�1

1

A
1
2A
�1
2 E

1
2E�

1
2

:
1ffiffiffiffiffiffi
2�
p

� �2
1

s
exp
�1

2

bi � Bð Þ
2

1
A

( )
:exp

�1

2

z2

1
E

( )
dzdbi

¼
1

A
1
2E

1
2s

Z þ1
�1

Z �rij

�1

1ffiffiffiffiffiffi
2�
p

A
�1
2

exp
�1

2

bi � Bð Þ
2

1
A

( )
:

1ffiffiffiffiffiffi
2�
p

E
�1
2

exp
�1

2

z2

1
E

( )
dzdbi

¼ 1�

Z þ1
�1

1ffiffiffiffiffiffi
2�
p

A
�1
2

exp
�1

2

bi � Bð Þ
2

1
A

( )
dbi

Z �rij

�1

1ffiffiffiffiffiffi
2�
p

E
�1
2

exp
�1

2

z
1
E

( )
dz

¼ 1� 1�

Z �rij

�1

1ffiffiffiffiffiffi
2�
p

E
�1
2

exp
�1

2

z2

1
E

( )
dz

Here, we make a change of variable ¼ z 1ffiffiffi
E
p , and then

¼ 1� 1�

Z �rijffiffiffiffiffiffi
1þs2
p

�1

1ffiffiffiffiffiffi
2�
p

E
�1
2

exp
�1

2
q2

	 

E
�1
2 dq,

¼ 1� 1�

Z �rijffiffiffiffiffiffi
1þs2
p

�1

1ffiffiffiffiffiffi
2�
p exp

�q2

2

	 

dq,

¼ �
�rijffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s2
p

� �

Appendix 3

SAS code for generating simulated data based on the proposed JOMRE model.
data sim;

call streaminit(1234);

do ss¼1 to 1000 ; *Monte-Carlo Sample Size;

mean1¼0; *Mean for random-effect u1;

mean2¼0; *Mean for random-effect u2;
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sig1¼1.20; *SD for u1;

sig2¼1.004; *SD for u2;

rho¼0.86; *Correlation between u1 & u2;

a01¼-0.8; *Initial value for intercept_cat_1_for y1;

a02¼0.5; *Initial value for intercept_cat_2_for y1;

a03¼1.6; *Initial value for intercept_cat_3_for y1;

a1¼-0.4; *Initial value for time for y1;

a2¼-0.1; *Initial value for group for y1;

q1¼2.2; *Initial value for Overdispersion par. for y1;

nu1¼exp(q1)/(1þexp(q1));

c01¼-0.6; *Initial value for intercept_cat_1_for y2;

c02¼0.8; *Initial value for intercept_cat_2_for y2;

c03¼1.5; *Initial value for intercept_cat_3_for y2;

c1¼1; *Initial value for time for y2;

c2¼-0.2; *Initial value for group for y2;

q2¼2.3; *Initial value for Overdispersion par. for y2;

nu2 ¼ exp(q2)/(1þexp(q2));

do kk¼1 to 250; *IndividualNumber_N;

group ¼ rand(‘‘Bernoulli’’,0.4); *Generating a group variable;

r1 ¼ rand(‘‘Normal’’,0,1);

r2 ¼ rand(‘‘Normal’’,0,1.5);

u1 ¼ mean1 þ r1*sig1;

u2 ¼ (mean2 þ sig2*rho*r1) þ (sqrt(sig2*sig2-sig2*sig2*rho*rho)*r2);

do TT¼1 to 6; *TimePoints_J;

sim¼ss;

id¼kk;

time¼(TT-1)/10;

*__Mimic-Model for Y1__*;

eta1_1 ¼ a01 þ a1*time þ a2*group;

pm1_1¼exp(eta1_1)/(1þexp(eta1_1));

eta1_2 ¼ a02 þ a1*time þ a2*group;

pm1_2¼exp(eta1_2)/(1þexp(eta1_2));

eta1_3 ¼ a03 þ a1*time þ a2*group;

pm1_3¼exp(eta1_3)/(1þexp(eta1_3));

delta1_1 ¼ sqrt(1þ(sig1*sig1)) * probit((1/nu1)*pm1_1);

delta1_2 ¼ sqrt(1þ(sig1*sig1)) * probit((1/nu1)*pm1_2);

delta1_3 ¼ sqrt(1þ(sig1*sig1)) * probit((1/nu1)*pm1_3);

p1¼nu1 * probnorm(delta1_1 þ u1);

p2¼(nu1 * probnorm(delta1_2 þ u1))- (nu1 * probnorm(delta1_1 þ u1));

p3¼(nu1 * probnorm(delta1_3 þ u1))- (nu1 * probnorm(delta1_2 þ u1));

p4¼1- (nu1 * probnorm(delta1_3 þ u1));

*__Mimic-Model for Y2__*;

eta2_1 ¼ c01 þ c1*time þ c2*group;

pm2_1¼exp(eta2_1)/(1þexp(eta2_1));

eta2_2 ¼ c02 þ c1*time þ c2*group;

pm2_2¼exp(eta2_2)/(1þexp(eta2_2));

eta2_3 ¼ c03 þ c1*time þ c2*group;

pm2_3¼exp(eta2_3)/(1þexp(eta2_3));

delta2_1 ¼ sqrt(1þ(sig2*sig2)) * probit((1/nu2)*pm2_1);
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delta2_2 ¼ sqrt(1þ(sig2*sig2)) * probit((1/nu2)*pm2_2);

delta2_3 ¼ sqrt(1þ(sig2*sig2)) * probit((1/nu2)*pm2_3);

p5¼nu2 * probnorm(delta2_1 þ u2);

p6¼(nu2 * probnorm(delta2_2 þ u2))- (nu2 * probnorm(delta2_1 þ u2));

p7¼(nu2 * probnorm(delta2_3 þ u2))- (nu2 * probnorm(delta2_2 þ u2));

p8¼1- (nu2 * probnorm(delta2_3 þ u2));

array prob1 {4} p1-p4;

y1 ¼ rand(‘‘Table", of prob1[*]);

array prob2 {4} p5-p8;

y2 ¼ rand(‘‘Table", of prob2[*]);

output;

end;

end;

end;

data sim;

set sim;

run;

Appendix 4

SAS code for fitting univariate and bivariate marginalized random-effects models with and without overdispersion
parameter.

Appendix 4.1

SAS code for independence overdispersed marginalized random-effects model (the proposed OMRE model in
Section 2.1)

proc nlmixed data¼SSc qpoints¼50 noad;

parms a1¼-1.93 a2¼1.38 a3¼4.32 ta¼0.14 a_sex¼0.1 q1¼5.36

b1¼0.54 b2¼3.07 b3¼4.65 b4¼5.8 tb¼-1 b_sex¼1.1 q2¼8.3

s1¼2.4 s2¼1.7;

*y1¼SS;

if j in (1,2,3) then do;

nu1¼exp(q1)/(1þexp(q1));

eta1 ¼ ta*time þ a_sex*sex;

delta11¼ sqrt(1þs1**2) * PROBIT( (1/nu1) * exp(a1þeta1)/(1þexp(a1þeta1)));

delta12¼ sqrt(1þs1**2) * PROBIT( (1/nu1) * exp(a2þeta1)/(1þexp(a2þeta1)));

delta13¼ sqrt(1þs1**2) * PROBIT( (1/nu1) * exp(a3þeta1)/(1þexp(a3þeta1)));

if ordinal ¼ 0 then do;

lik ¼ nu1*PROBNORM(delta11þu1);

end;

if ordinal ¼ 1 then do;

lik ¼ nu1*PROBNORM(delta12þu1) - nu1*PROBNORM(delta11þu1);

end;

if ordinal ¼ 2 then do;

lik ¼ nu1*PROBNORM(delta13þu1) - nu1*PROBNORM(delta12þu1);

end;

if ordinal ¼ 3 then do;

lik ¼ 1 - nu1*PROBNORM(delta13þu1);

end;

if (lik > 1e-10) then loglik ¼ log(lik);

else loglik ¼ �1e100;

end;
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*y2¼GS;

if j in (4,5,6) then do;

nu2¼exp(q2)/(1þexp(q2));

eta2 ¼ tb*time þ b_sex*sex;

delta21¼ sqrt(1þs2**2) * PROBIT( (1/nu2) * exp(b1þeta2)/(1þexp(b1þeta2)));

delta22¼ sqrt(1þs2**2) * PROBIT( (1/nu2) * exp(b2þeta2)/(1þexp(b2þeta2)));

delta23¼ sqrt(1þs2**2) * PROBIT( (1/nu2) * exp(b3þeta2)/(1þexp(b3þeta2)));

delta24¼ sqrt(1þs2**2) * PROBIT( (1/nu2) * exp(b4þeta2)/(1þexp(b4þeta2)));

if ordinal ¼ 0 then do;

lik ¼ nu2*PROBNORM(delta21þu2);

end;

if ordinal ¼ 1 then do;

lik ¼ nu2*PROBNORM(delta22þu2) - nu2*PROBNORM(delta21þu2);

end;

if ordinal ¼ 2 then do;

lik ¼ nu2*PROBNORM(delta23þu2) - nu2*PROBNORM(delta22þu2);

end;

if ordinal ¼ 3 then do;

lik ¼ nu2*PROBNORM(delta24þu2) - nu2*PROBNORM(delta23þu2);

end;

if ordinal ¼ 4 then do;

lik ¼ 1 - nu2*PROBNORM(delta24þu2);

end;

if (lik > 1e-10) then loglik ¼ log(lik);

else loglik ¼ �1e100;

end;

model ordinal � general(loglik);

random u1 u2 � normal ([0,0] , [s1**2,0,s2**2]) subject¼id;

run;

Appendix 4.2

SAS code for joint overdispersed marginalized random-effects model (the proposed JOMRE model in Section 2.2).
proc nlmixed data¼SSc qpoints¼50 noad;

parms a1¼-1.93 a2¼1.38 a3¼4.32 ta¼0.14 a_sex¼0.1 q1¼5.36

b1¼0.54 b2¼3.07 b3¼4.65 b4¼5.8 tb¼-1 b_sex¼1.1 q2¼8.3

s1¼2.4 s12¼1 s2¼1.7;

*y1¼SS;

if j in (1,2,3) then do;

nu1¼exp(q1)/(1þexp(q1));

eta1 ¼ ta*time þ a_sex*sex;

delta11¼ sqrt(1þs1**2) * PROBIT( (1/nu1) * exp(a1þeta1)/(1þexp(a1þeta1)));

delta12¼ sqrt(1þs1**2) * PROBIT( (1/nu1) * exp(a2þeta1)/(1þexp(a2þeta1)));

delta13¼ sqrt(1þs1**2) * PROBIT( (1/nu1) * exp(a3þeta1)/(1þexp(a3þeta1)));

if ordinal ¼ 0 then do;

lik ¼ nu1*PROBNORM(delta11þu1);

end;

if ordinal ¼ 1 then do;

lik ¼ nu1*PROBNORM(delta12þu1) - nu1*PROBNORM(delta11þu1);

end;

if ordinal ¼ 2 then do;

lik ¼ nu1*PROBNORM(delta13þu1) - nu1*PROBNORM(delta12þu1);

end;

if ordinal ¼ 3 then do;

lik ¼ 1 - nu1*PROBNORM(delta13þu1);
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end;

if (lik > 1e-10) then loglik ¼ log(lik);

else loglik ¼ �1e100;

end;

*y2¼GS;

if j in (4,5,6) then do;

nu2¼exp(q2)/(1þexp(q2));

eta2 ¼ tb*time þ b_sex*sex;

delta21¼ sqrt(1þs2**2) * PROBIT( (1/nu2) * exp(b1þeta2)/(1þexp(b1þeta2)));

delta22¼ sqrt(1þs2**2) * PROBIT( (1/nu2) * exp(b2þeta2)/(1þexp(b2þeta2)));

delta23¼ sqrt(1þs2**2) * PROBIT( (1/nu2) * exp(b3þeta2)/(1þexp(b3þeta2)));

delta24¼ sqrt(1þs2**2) * PROBIT( (1/nu2) * exp(b4þeta2)/(1þexp(b4þeta2)));

if ordinal ¼ 0 then do;

lik ¼ nu2*PROBNORM(delta21þu2);

end;

if ordinal ¼ 1 then do;

lik ¼ nu2*PROBNORM(delta22þu2) - nu2*PROBNORM(delta21þu2);

end;

if ordinal ¼ 2 then do;

lik ¼ nu2*PROBNORM(delta23þu2) - nu2*PROBNORM(delta22þu2);

end;

if ordinal ¼ 3 then do;

lik ¼ nu2*PROBNORM(delta24þu2) - nu2*PROBNORM(delta23þu2);

end;

if ordinal ¼ 4 then do;

lik ¼ 1 - nu2*PROBNORM(delta24þu2);

end;

if (lik > 1e-10) then loglik ¼ log(lik);

else loglik ¼ �1e100;

end;

model ordinal � general(loglik);

random u1 u2 � normal ([0,0] , [s1**2,s12,s2**2]) subject¼id;

estimate ‘‘Rho’’ s12/(s1*s2);

run;

Appendix 4.3

SAS code for joint marginalized random-effects model (the JMRE model without an overdispersion).
proc nlmixed data¼SSc qpoints¼50 noad;

parms a1¼-1.93 a2¼1.38 a3¼4.32 ta¼0.14 a_sex¼0.1

b1¼0.54 b2¼3.07 b3¼4.65 b4¼5.8 tb¼-1 b_sex¼1.1

s1¼2.4 s12¼1 s2¼1.7;

*y1¼SS;

if j in (1,2,3) then do;

eta1 ¼ ta*time þ a_sex*sex;

delta11¼ sqrt(1þs1**2) * PROBIT( exp(a1þeta1)/(1þexp(a1þeta1)));

delta12¼ sqrt(1þs1**2) * PROBIT( exp(a2þeta1)/(1þexp(a2þeta1)));

delta13¼ sqrt(1þs1**2) * PROBIT( exp(a3þeta1)/(1þexp(a3þeta1)));

if ordinal ¼ 0 then do;

lik ¼ PROBNORM(delta11þu1);

end;

if ordinal ¼ 1 then do;

lik ¼ PROBNORM(delta12þu1) - PROBNORM(delta11þu1);

end;

if ordinal ¼ 2 then do;
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lik ¼ PROBNORM(delta13þu1) - PROBNORM(delta12þu1);

end;

if ordinal ¼ 3 then do;

lik ¼ 1 - PROBNORM(delta13þu1);

end;

if (lik > 1e-10) then loglik ¼ log(lik);

else loglik ¼ �1e100;

end;

*y2¼GS;

if j in (4,5,6) then do;

eta2 ¼ tb*time þ b_sex*sex;

delta21¼ sqrt(1þs2**2) * PROBIT( exp(b1þeta2)/(1þexp(b1þeta2)));

delta22¼ sqrt(1þs2**2) * PROBIT( exp(b2þeta2)/(1þexp(b2þeta2)));

delta23¼ sqrt(1þs2**2) * PROBIT( exp(b3þeta2)/(1þexp(b3þeta2)));

delta24¼ sqrt(1þs2**2) * PROBIT( exp(b4þeta2)/(1þexp(b4þeta2)));

if ordinal ¼ 0 then do;

lik ¼ PROBNORM(delta21þu2);

end;

if ordinal ¼ 1 then do;

lik ¼ PROBNORM(delta22þu2) - PROBNORM(delta21þu2);

end;

if ordinal ¼ 2 then do;

lik ¼ PROBNORM(delta23þu2) - PROBNORM(delta22þu2);

end;

if ordinal ¼ 3 then do;

lik ¼ PROBNORM(delta24þu2) - PROBNORM(delta23þu2);

end;

if ordinal ¼ 4 then do;

lik ¼ 1 - PROBNORM(delta24þu2);

end;

if (lik > 1e-10) then loglik ¼ log(lik);

else loglik ¼ �1e100;

end;

model ordinal � general(loglik);

random u1 u2 � normal ([0,0] , [s1**2,s12,s2**2]) subject¼id;

estimate ‘‘Rho’’ s12/(s1*s2);

run;
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