
1

Paper SAS157-2022

Five Secrets of The SQL Goddess
Charu Shankar, SAS® Institute Inc.

ABSTRACT

PROC SQL is a powerful language that can express many of your queries simply and with clarity. Users who
are continuously improving process and looking to stay within PROC SQL to analyze and process data will
benefit from this HOW. Come learn to maximize human & computing efficiency elegantly. Readers will learn to

join tables dynamically, Create Inline views for joins, Pivot like a dancer with the Boolean, recognize patterns in
data and to create running totals. This paper is aimed at all levels of learning.

INTRODUCTION

PROC SQL is the language of databases. After teaching at SAS for over 15 years to thousands of
learners, Charu got an awesome compliment when a user ordained her ‘The SQL Goddess’ as he had
found her instruction via user groups, white papers, YouTube videos instrumental in his SQL learning.
This paper was thus titled tongue in cheek. Though the intent to secrets and best practices still remains
the purpose of this paper.

SQL OVERVIEW

Every computer language has syntax order that is uniquely its own. Trying to remember the syntax is
sometimes not easy for beginners and even those fluent in multiple languages: human or computer. For
some help in memory recall, try my mnemonic to remember the syntax order of SQL.

Figure 1: PROC SQL Mnemonic

Here is a PROC SQL query in its entirety. The SELECT and FROM are mandatory statements in any
SQL query. Anything in triangular brackets is optional.

Figure 2: PROC SQL Syntax order

SELECT object-item <, ...object-item>
 FROM from-list
 <WHERE sql-expression>
 <GROUP BY object-item <, … object-item
>>
 <HAVING sql-expression>

PROC SQL;
 SELECT object-item <, ...object-item>
 FROM from-list
 <WHERE sql-expression>
 <GROUP BY object-item <, … object-item >>
 <HAVING sql-expression>
 <ORDER BY order-by-item <DESC>
 <, …order-by-item>>;

2

A SELECT statement is used to query one or more tables.
The FROM clause specifies the tables that are required for the query
The WHERE clause specifies data that meets certain conditions.
The GROUP BY clause groups data for processing.
The HAVING clause specifies groups that meet certain conditions.
The ORDER BY clause specifies an order for the data.

1 JOIN TABLES DYNAMICALLY

One of the questions I get asked a lot in the SQL classroom is this. ‘How can I join my tables dynamically
with the least bit of sweat’? I hear you dear user/learner. Who wants to go poking around in each table
finding out the columns that exist and then the whole manual process of exploring & trying to find other
tables with matching columns?

I will certainly share my secret here. And will begin with an admonition.

There is no magic pill that will forgive us for not knowing our data. ”Know thy data” must be the most
fundamental principle that cannot be ignored. In fact, I am going to go out on a limb here and say, this is
the only rule that data workers must know. Everything else is SAS!

To help navigate through the inherited, sometimes messy data, my go to suggestion is dictionary tables.
With the amount of heavy-duty metadata scouring, data workers do to get data intelligence, this is one
technique I simply must make. I LOVE dictionary tables and cannot imagine life without them. When you
see this secret revealed, I’m positive you will also feel the same way.

KNOW YOUR DICTIONARY TABLES

There can be over 30 Dictionary tables that provide metadata information. Our focus in this
presentation will be on using data from three of the tables:

DICTIONARY.TABLES

detailed information about tables

DICTIONARY.COLUMNS
detailed information about all columns in all tables

DICTIONARY.MEMBERS
general information about SAS library members

To get to know the columns and what they stand for, query the dictionary table first using the following
code.

Code to describe dictionary tables

Log
NOTE: SQL table DICTIONARY.TABLES was created like:
create table DICTIONARY.TABLES
 (libname char(8) label='Library Name',
 memname char(32) label='Member Name',
 ...
 crdate num format=DATETIME informat=DATETIME label='Date Created',
 modate num format=DATETIME informat=DATETIME label='Date Modified',
 nobs num label='Number of Physical Observations',
 obslen num label='Observation Length',
 nvar num label='Number of Variables', ...);

describe table dictionary.tables;

3

Display information about tables in SASHELP

FINDING SAME NAMED COLUMNS

4

However, you may have observed, that this is something that Proc contents can easily do. Its not
something that impresses us about a niche value that dictionary tables can add.

Also these past techniques to explore DICTIONARY tables work when you know the names of columns.
What happens if you do not know your data, and you want SAS to retrieve all same-named columns in a
library.

Are you ready for secret #1? Use the following code to eliminate any manual work.

Code to find common column names dynamically
title 'Common columns in SASHELP';
proc sql;
select name, type, length, memname
 from dictionary.columns
 where libname='SASHELP’
 group by name
 having count(name) > 1;

USING DICTIONARY TABLES FROM THE SASHELP LIBRARY

SAS provides views based on the DICTIONARY tables in the SASHELP library. Most of the SASHELP
library DICTIONARY view names are similar to DICTIONARY table names, but they are shortened to
eight characters or less. They begin with the letter v and do not end in s.

For example:
dictionary.tables = sashelp.vtable

Code to query dictionary tables in the SASHELP library

title 'Tables in the SASHELP Library';
proc print data=sashelp.vtable NOOBS ;
 var memname nobs nvar;
 where libname='SASHELP';
run;

AN EFFICIENCY QUESTION: PROC SQL OR PRINT?
Code to compare PROC SQL with PROC PRINT
options fullstimer;
proc sql;
 select libname, memname, name, type, length
 from dictionary.columns
 where upcase(name) contains 'ID'
 and libname='SASHELP' and type='num';
quit;

5

NOTE: PROCEDURE SQL used (Total process time):

 real time 0.73 seconds

 user cpu time 0.42 seconds

 system cpu time 0.29 seconds

 memory 5584.18k

 OS Memory 24672.00k

 Timestamp 05/22/2018 01:52:52 PM

 Step Count 4 Switch Count 36

WHY IS PROC SQL MORE EFFICIENT?

While querying a DICTIONARY table, SAS launches a discovery process. Depending on the
DICTIONARY table being queried, this discovery process can search libraries, open tables, and execute
views.

The PROC SQL step runs much faster than other SAS procedures and the DATA step. This is because
PROC SQL can optimize the query before the discovery process is launched. It has to do with the
processing order. The PROC SQL step runs much faster because the WHERE clause is processed
before the tables referenced by the SASHELP.VCOLUMN view are opened. Therefore, it is more efficient
to use PROC SQL instead of the DATA step or SAS procedures to query DICTIONARY tables.

2 CREATE INLINE VIEWS FOR JOINS

Joins are easily one of the most complex actions that SQL performs. I’m all about keeping life simple, and
to reduce the complexity of a join, I give you an inline view.

An inline view? Is that a view? No, it’s a separate entity. It’s a chunk of code that replaces a table on the
FROM clause. An in-line view is a query expression(SELECT statement) that sits in a FROM clause. It
acts as a virtual table, used in place of a physical table in a query.

Let me show you the business scenario/code and then we will discuss the and benefits of an Inline view.

Business has asked us to find out who makes less than the average for their job titles. We translate that
to a coding statement. We want to list all active Sales department employees who have annual salaries
less than 95% of the average for everyone with the same job title.

Step 1 Code to calculate job averages

title 'Sales Department Average Salary';
title2 'By Job Title';
proc sql;
 select Job_Title, avg(Salary) as Job_Avg
 from orion.employee_payroll as p,
 orion.employee_organization as o
 where p.Employee_ID=o.Employee_ID
 and Employee_Term_Date is missing
 and Department="Sales"
 group by Job_Title;
quit;

Figure 3: PROC SQL Output

6

Code to compare employee’ salary to the group’s average
proc sql;
 select Employee_Name, emp.Job_Title, Salary
format=comma7., Job_Avg format=comma7.
 from(select Job_Title, avg(Salary)as Job_Avg
format=comma7.
 from orion.employee_payroll as p,
 orion.employee_organization as o
 where p.Employee_ID=o.Employee_ID
 and Employee_Term_Date is missing
 and Department="Sales"
 group by Job_Title) as job, orion.salesstaff as emp
 where emp.Job_Title=job.Job_Title
 and Salary<Job_Avg*.95 and Emp_Term_Date is missing
 order by Job_Title, Employee_Name;
quit;

Figure 4: PROC SQL Output

There you have it. We were able to combine average values with the detailed rows of data, without
having to build a separate table for the average.

Do you see the efficiency of an inline view, saving valuable I/O as we skipped building a table and one
step in this process?

3 PIVOT LIKE A DANCER WITH THE BOOLEAN

Hands-down, summarizing data using the Boolean gate in PROC SQL has to be my all-time favorite
technique. When I fell in love with its elegance, I captioned my blog captioned “No 1 Best programming
technique for 2012”. It was easily my #1 best technique for life, but I thought I would keep myself open to
new learning! Read on to learn more about this magic.

SUMMARIZING DATA

The Boolean is simply the digital computing world’s way of converting everything to 0s and 1s. A yes, is a
one and a no, a zero.

GROUPING DATA

Let’s begin with a simple business scenario to understand grouping first. We have been asked to produce
a report that determines the average salary by gender.

Code to calculate average salary
proc sql number;
 select Employee_Gender, avg(Salary) as Average
 from SGF2020.employee_information
 where Employee_Term_Date is missing;
quit;
Figure 5: Code for average salary by gender

The inline view is
nothing other
than step 1 sitting
on the FROM
clause

7

The result is not quite as expected. Instead of receiving 2 rows of data, the output contains 308 rows.
This is the number of rows in the SGF2020.employee_information table. Also, the Average is not an
average for each gender, rather the average for the entire table.

Figure 6: Unexpected Output for average salary by gender

THE GROUP BY CLAUSE
You can use the GROUP BY clause to do the following:

 classify the data into groups based on the values of one or more columns
 calculate statistics for each unique value of the grouping columns

Code to calculate average salary by gender
Title "Average Salary by Gender";
proc sql;
 select Employee_Gender as Gender, avg(Salary) as Average
 from SGF2020.employee_information
 where Employee_Term_Date is missing
 group by Employee_Gender;
quit;

The results are more satisfactory this time, with 2 rows of data.

Figure 7: Correct Output for average salary by gender

Copy ri g ht © S AS Inst it ut e Inc . Al l r ig h ts r eserved .

6

Viewing the Output
PROC SQL Output

Average Salary by Gender

Employee
Gender Average
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
F 37002.88
M 43334.26

8

Let’s move on to the next level of complexity. We have been tasked to produce a report showing the
count of employees in departments that have at least 25 people. Display the results in descending order
by count.

A first step would be to count the number of employees for each department.

Title 'Employee count by department';
proc sql;
 select Department, count(*) as Count
 from SGF2020.employee_information
 group by Department;
quit;

Figure 8: Employee Counts by Department

In the next step, we will control the result to include only the departments that have at least 25 people,
with the departments in decreasing order. To do this, we will utilize the Having Clause. The HAVING
clause subsets groups based on the expression value.

Title 'Employee counts by department in departments with at least 25
employees';
proc sql;
 select Department, count(*) as Count
 from SGF2020.employee_information
 group by Department
 having Count ge 25
 order by Count desc;
quit;

Figure 9: Employee Counts by Department with at least 25 Employees

9

Have you ever been challenged with a business scenario where you had to subset data to return both the
haves and the have nots?

Figure 10: Business Scenario for total number of managers and employees

How will you go about extracting both the managers and the employees and stick them all on the same
line? Never fear, this is what my last confession is all about.

First, we will use the FIND function to find all managers.

Here is the classic Boolean put to good use to determine whether an employee is a manager. If job_title
contains Manager, the value is 1 and if it doesn’t contain Manager, the value is 0.

Code to write the FIND Function
title 'Manager or not';
proc sql;
 select Department, Job_Title,
 (find(Job_Title,"manager","i")>0) "Manager"
 from SGF2020.employee_information;
quit;

Code to write a Boolean expression
Now simply calculate the statistics by wrapping the Boolean expressions with the Sum function.

title "Manager-to-Employee Ratios";
proc sql;
 select Department,
 sum((find(Job_Title,"manager","i")>0))as Managers,
 sum((find(Job_Title,"manager","i")=0))as Employees,
 calculated Managers/calculated Employees
 "M/E Ratio" format=percent8.1
 from SGF2020.employee_information
 group by Department;
quit;

10

Figure 12: Output using Boolean Operations

This was just one way to use the Boolean. The expressions can be as complex as necessary.

4 RECOGNIZE PATTERNS IN YOUR DATA

Pattern Recognition is a frequent ask of SAS programmers. My secret is one that doesn’t involve any
statistical functions. Rather a free, easy to use function available in your SAS software.

USING PERL TO MATCH A PATTERN

Perl was designed specifically for text processing. Perl is a very high-level language. That means that the
code is quite dense. A Perl program might be around 30% to 70% as long as the corresponding program
in C.

PERL IN SAS

Perl regular expressions were added to SAS in Version 9. SAS regular expressions (similar to Perl
regular expressions but using a different syntax to indicate text patterns) have been around since version
6.12, but many SAS users are unfamiliar with either SAS or Perl regular expressions.

Because SAS already has such a powerful set of string functions, you might wonder why you need
regular expressions. Many of the string processing tasks can be performed either with the traditional
character functions or regular expressions. However, regular expressions can sometimes provide a much
more compact solution to a complicated string manipulation task.

MATCHING A PATTERN

Since the backslash, forward slash, parentheses and several other characters have special meaning in a
regular expression, you may wonder, how do you search a string for a \ character or a left or right
parenthesis? You do this by preceding any of these special characters with a backslash character (in Perl
jargon called an escape character). So, to match a \ in a string, you code two backslashes like this: \\. To
match an open parenthesis, you use \(.

/ delimiters
\(matches an open paranthesis
\D matches a non-digit
\d matches a digit
\s matches a space
{n,m} Matches the previous subexpression n or more times, but no more than m
\) matches a closed paranthesis

Cop yri gh t © SA S Insti tute Inc . Al l ri g hts reserv ed .

21

Viewing the Output
PROC SQL Output

Manager-to-Employee Ratios

M/E
Department Managers Employees Ratio
ƒƒ
Accounts 3 14 21.4%
Accounts Management 1 8 12.5%
Administration 5 29 17.2%
Concession Management 1 10 10.0%
Engineering 1 8 12.5%
Executives 0 4 0.0%
Group Financials 0 3 0.0%
Group HR Management 3 15 20.0%
IS 2 23 8.7%
Logistics Management 6 8 75.0%
Marketing 6 14 42.9%
Purchasing 3 15 20.0%
Sales 0 201 0.0%
Sales Management 5 6 83.3%
Secretary of the Board 0 2 0.0%
Stock & Shipping 5 21 23.8%
Strategy 0 2 0.0%

11

Here’s the Business Problem

Find data that matches a pattern. HS10_ column has a series of any 10 or 6 digit numbers. An additional
challenge- this series never appears in the same position”.

Sample of the data

Code to find a pattern using PERL

proc sql;
 select * from pattern
 where prxmatch(("/\d{4}\./"),HS10_TSCHED_EDESC)> 0;
quit;

Figure 13: Output using PERL Regular Expression

5 CREATE RUNNING TOTALS

There comes a time in life when you simply must create a running total, and you don’t want to leave the
comfort of your PROC SQL environment. You know the heavy duty data step can do this simply, but you
just want to do it in PROC SQL.

My next secret may just satisfy that yearning.

Here’s the business scenario:

Calculate running totals for shoe sales

Figure 14: Expected Output

Sticks or profile shapes of subheading 3916.10
Reproduction proofs for the production of printing plates, rolls, of tariff
item No. 8442.50.20
Microcopies of tariff item No. 4903.00.10, 4905.91.00, 4911.10.10 or 4911.10.20

12

Code to create running total First attempt

data shoes;
 set sashelp.shoes;
 /* Give an index for each row in the shoes dataset*/
 uniq=_n_;
run;
proc sql;
 select region, product, sales,
 (select sum(a.sales) from shoes as a
 where a.uniq <= b.uniq) as Running_total
 from shoes as b;
quit;

Here we first passed through the data step to create a unique row number. Remember SQL works at the
table level and doesn’t really have an intelligent way to capture row number. There is of course the
undocumented monotonic function, but we would rather stick with the known and hence the data step
first.

Then in Proc sql, calculate the running total using a subquery on the Select.

If, however a unique column already exists in your dataset, then you can do it all in one step as below.

Code to create running total Second attempt

proc sql;
 select a.order_date, a.quantity,
 (select SUM(b.quantity) from running.order_fact as b
 where b.order_date <= a.order_date) as running_total
 from running.order_fact as a
 order by a.order_date;
quit;

CONCLUSION

This paper attempted to showcase the best strengths of PROC SQL and lay out these strengths secret-
by-secret. The author has used her teaching and consulting experiences to highlight those tips that are
very unique to PROC SQL.

ACKNOWLEDGEMENTS

The author is grateful to the many SAS users that have entered her life. Charu is grateful to the Western
Users of SAS Software Committee for the opportunity to present this paper. She would also like to
express her gratitude to her manager, Stephen Keelan without whose support and permission, this paper
would not be possible.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:
Charu Shankar
SAS Institute Canada, Inc.
Charu.shankar@sas.com
https://blogs.sas.com/content/author/charushankar/

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

13

REFERENCES

SAS 9.4 Proc sql user’s guide
https://go.documentation.sas.com/?docsetId=sqlproc&docsetTarget=titlepage.htm&docsetV
ersion=9.4&locale=en

Logical Query Processing Order
A Database Professional’s Best Friend, Shankar, Charu
https://blogs.sas.com/content/sastraining/2013/02/04/a-database-professionals-best-
friend-2/

Proc sql syntax order
Go home on time with these 5 PROC SQL tips. Shankar, Charu
https://blogs.sas.com/content/sastraining/2012/04/24/go-home-on-time-with-these-5-
proc-sql-tips/

PROC SQL Dictionary Tables
“Know thy data: Techniques for Data Exploration”, Shankar, Charu
https://www.pharmasug.org/proceedings/2018/BB/PharmaSUG-2018-BB11.pdf

 “Working with Subquery in the SQL procedure” Zhang, Lei. Yi, Danbo
https://www.lexjansen.com/nesug/nesug98/dbas/p005.pdf

Boolean in SQL.
#”1 best programming tip for 2012”. Shankar, Charu
https://blogs.sas.com/content/sastraining/2012/05/10/1-sas-programming-tip-for-2012/

The Power of SAS SQLYouTube Video
SAS Instructor Demos From SAS Global Forum 2021
https://youtu.be/BOrk-qY4xjk

SAS Tutorial | Step-by-Step PROC SQL
SAS Users Youtube Channel
https://youtu.be/1xyHE8qI9Hk

