
Paper 24-2022

Talking to Your Host
Kurt Bremser, formerly of Allianz Technology

ABSTRACT

SAS® provides multiple tools to interact with the underlying operating system. This paper will review
those tools, from the built-in functions to simple use of external commands to complex, flexible solutions
for problems that cannot be solved with built-in functions.

INTRODUCTION

While doing a stint as a “Code Doctor” at SASGF 2019, I quickly typed in one of my “standard” code
sequences to run an external command. Another presenter, who is quite an accomplished SAS coder
himself, was astonished that I could do this “from memory”. This reminded me that what may seem to be
a simple everyday action can be surprising new stuff for others. So I decided to do a paper to bring coding
techniques that are often used by the senior members of the SAS® Communities to the attention of a
wider audience.

These techniques can be helpful to the novice and even to the master who has not yet known them.

BUILT-INS

SAS has been active for many years to make interfacing with the base operating system easier by
providing functions, statements and other elements. These are designed to make it unnecessary for the
user to know details like what command to use or how to use it; they also make porting the code from one
system to another easier.

FUNCTIONS FOR FILES

FILENAME(fref,physname<,device><,host-options>)

Assigns a file reference for file physname to the logical name contained in fref; if fref is empty, a name is
created and assigned to the variable.
fref can be a character expression, a string or a variable name in a data step; in a macro (used with
%sysfunc) it must be a macro variable name without the ampersand. In a data step, define a variable with
a length of 8, as that is the maximum length allowed for file references.
Used without a second argument (or an empty second argument), it clears the file reference.
device and host-options are optional parameters, the same as used in a FILENAME statement. If you
need to use host-options for a simple file, you need to supply an empty string for device (the order of
parameters is important!)

FOPEN(fref)

Tries to open the file pointed to by the file reference in fref; if successful, it returns a non-negative integer
(the file identifier), otherwise it returns 0. It will fail if the file reference does not point to an ordinary file or
a pipe (e.g. if it points to a directory).

FOPTNUM(fid)

Returns the number of information items for the file associated with the identifier fid returned by the
FOPEN() function.
The value depends on the operating system and the type of the file.

FOPTNAME(fid,number)

Returns the name of a single information item for the file. Number must be between 1 and the value
returned by FOPTNUM().
The returned name is dependent on the operating system and the locale of the system!

1

FINFO(fid,inf_item)

Returns the value of a single information item for the file. inf_item has to be the name returned by the
FOPTNAME() function.

FCLOSE(fid)

Closes the file; this is necessary so that you don’t accumulate file handles, especially when using the
FOPEN() function in macros.

FCOPY(fref_1,fref_2)

Copies a file from the first reference to the second; how the file is copied (as text or binary) is determined
by the options used in the FILENAME() function calls or FILENAME statements which defined the file
references.

FDELETE(fref | directory)

Removes a file or directory associated with fref, or a directory named with its physical name; to remove a
directory, the directory must be empty.

RENAME(name_1,name_2,"FILE")

Renames an external file; with a different third parameter, RENAME can also be used for datasets, views
or catalogs.

There are a lot more functions for reading and writing file content, but for the purposes of this paper only
the ones dealing with file metadata are used and presented.

Examples

Retrieving the available information items:

data finfo;
rc = filename("fref","$HOME/test.txt");
fid = fopen("fref");
if fid then do;
 do i = 1 to foptnum(fid);
 optionname = foptname(fid,i);
 optionvalue = finfo(fid,optionname);
 output;
 end;
 rc = fclose(fid);
end;
rc = filename("fref");
keep optionname optionvalue;
run;

Copying a SAS dataset file:

data _null_;
length fref1 fref2 $8;
rc = filename(fref1,"~/mylib/class.sas7bdat","","recfm=n");
put rc=;
rc = filename(fref2,"~/mylib/class2.sas7bdat","","recfm=n");
rc = fcopy(fref1,fref2);
put rc=;
rc = filename(fref1);
rc = filename(fref2);
run;

2

RECFM=N causes a binary copy; the target file is a valid SAS dataset file and can be used like the
source.

FUNCTIONS FOR DIRECTORIES

As for files, you need to first define a file reference with the FILENAME() function (or the FILENAME
statement).

DOPEN(fref)

Tries to open the directory pointed to by the file reference in fref; if successful, it returns a non-negative
integer. It will fail for anything that is not a directory.

DOPTNUM(did), DOPTNAME(did,number), DINFO(did,inf_item), DCLOSE(did)

These work similar to the respective functions for files.

DNUM(did)

Returns the number of member entries in the directory.

DREAD(did,n)

Retrieves the name of the nth member in the directory.

Examples

Reading a directory into a SAS dataset:

data members;
length dref $8 name $200;
rc = filename(dref,'$HOME');
did = dopen(dref);
if did then do;
 do i = 1 to dnum(did);
 name = dread(did,i);
 output;
 end;
 rc = dclose(did);
end;
rc = filename(dref);
keep name;
run;

And a more complicated example showing how to retrieve the names of all files in a directory tree:

%macro find(directory);
%local did i name subdir fref fref2;
%let did=%sysfunc(filename(fref,&directory));
%let did=%sysfunc(dopen(&fref));
%if &did ne 0
%then %do;
 %do i = 1 %to %sysfunc(dnum(&did));
 %let name=&directory/%sysfunc(dread(&did,&i));
 %let subdir=%sysfunc(filename(fref2,&name));
 %let subdir=%sysfunc(dopen(&fref2));
 %if &subdir ne 0
 %then %do;
 %let subdir=%sysfunc(dclose(&subdir));

3

 %find(&name)
 %end;
 %else %put &name;
 %let subdir=%sysfunc(filename(fref2));
 %end;
 %let did=%sysfunc(dclose(&did));
%end;
%let did=%sysfunc(filename(fref));
%mend;
%find($HOME)

A macro is used because the macro language allows recursion; doing recursion in a data step with
custom functions is quite non-trivial, but one of my fellow super users on the SAS Communities has
developed a clever way to do pseudo-recursion via a modified dataset:

data filelist;
 length dname filename $256 dir level 8 lastmod size 8;
 format lastmod datetime20.;
 input dname;
 retain filename ' ' level 0 dir 1;
cards4;
$HOME
;;;;

data filelist;
 modify filelist;
 rc1=filename('tmp',catx('/',dname,filename));
 rc2=dopen('tmp');
 dir = not not rc2;
 if not dir then do;
 fid=fopen('tmp','i',0,'b');
 lastmod=input(finfo(fid,foptname(fid,5)),NLDATM100.);
 size=input(finfo(fid,foptname(fid,6)),32.);
 fid=fclose(fid);
 end;
 else do;
 dname=catx('/',dname,filename);
 filename=' ';
 lastmod=input(dinfo(rc2,doptname(rc2,5)),NLDATM100.);
 end;
 replace;
 if dir;
 level=level+1;
 do i=1 to dnum(rc2);
 filename=dread(rc2,i);
 output;
 end;
 rc3=dclose(rc2);
run;

FUNCTIONS TO WORK WITH ENVIRONMENT VARIABLES

SYSEXIST(name)

Checks if an environment variable exists.

4

SYSGET(Name), %SYSGET(Name)

Retrieves the value of an environment variable.

Automatic Libraries and File References

If an environment variable was present at SAS start that meets the requirements (valid SAS name of a
maximum length of 8) and contains either a path to a directory or a filename, then this will automatically
be usable as a library or file reference in SAS. It will not be visible in the Explorer before you actually use
it (SAS does a behind-the scenes LIBNAME or FILENAME).

MACRO VARIABLES

SAS provides several automatic macro variables that let you retrieve information about your process and
the system (excerpt):

SYSSCP, SYSSCPL

Contain the name of the operating system; useful to select operating-system specific syntax elements
(e.g. forward slash vs. backslash in path names) or command names/syntax when using external
commands.

SYSUSERID

Contains the name of the user running the SAS executable.

SYSJOBID

Contains the process number of the current process (UNIX); is also coded (in hex notation) into the name
of the WORK directory.

LIMITS OF THE BUILT-IN TOOLS

While all these statements and functions make it quite easy to write code that can be ported across
platforms, as no system-specific code is necessary, they do have their limitations.

The names of information items for files and directories are specific to operating system and locale (a
major shortcoming in the author's opinion), and lots of interesting data cannot be retrieved (like the
timestamp of the last read access to a file or directory).

Whenever the built-in tools run out of options, it is good when the coder can make use of tools external to
SAS.

RUNNING EXTERNAL COMMANDS

Use of the following statements, functions and methods requires that the system option XCMD is set; out
of the box, SAS BI Server installations have this disabled for workspace servers, but it only requires a
quick setting in Management Console to enable it.

It is the express opinion of the author that (in most cases) security cannot be an issue here; in a properly
administrated environment, no end user can harm anything that does not explicitly belong to him/her, and
even in the case of a catastrophic mistake by the user, nothing more than a day's work can be lost (as
everything else of importance is retrievable from the backup that ran incrementally during the night).
Security and privacy can be an issue in installations that work for multiple organizations, where (e.g.)
information about other users would easily be accessible through the OS commands, while it can be
hidden from other user groups in SAS metadata.

X AND %SYSEXEC STATEMENTS

X 'command';
%sysexec command;

5

These statements execute the command and set the automatic macro variable SYSRC to the return code
of the external command; does not provide any information in the log about results other than SYSRC. X
is a global statement, immediately executed when encountered in the code, and can therefore not be
executed conditionally. But it can be "part" of a data step in terms of time consumed, see this log:

27 %put %sysfunc(time(),time8.);
15:37:49
28 data _null_;
29 y = time();
30 put y time8.;
31 do x = 1 to 10;
32 x 'sleep 5'
32 ! ;
33 end;
34 y = time();
35 put y time8.;
36 run;

15:37:54
15:37:54
NOTE: DATA statement used (Total process time):
 real time 5.02 seconds
 cpu time 0.01 seconds

The X statement causes the DATA step to "wait" for 5 seconds, but only once, because it is executed
while the step is compiled, not while it runs.

Output from the external command is routed back to the process that started SAS; this can be the
scheduler in case of batch jobs, but with today's interactive clients this means that the output usually goes
nowhere.

SYSTEM() FUNCTION AND CALL SYSTEM() ROUTINE

rc = system('command');
call system('command');

In contrast to the X statement, these are part of DATA step code and can be executed repeatedly and
conditionally. Both work very similar, the function returns the exit code from the system. Both set the
macro variable SYSRC, just like the X or %SYSEXEC statement, but only the result of the last call in a
DATA step will be recorded. Output from the external commands does not go back to SAS in any way.

THE FILENAME PIPE METHOD

With the PIPE file reference, SAS provides a way to either feed data to an external process or read data
from it.

So we can retrieve a directory listing with this:

filename dirlist pipe "ls –l";

data dirlist;
infile dirlist truncover;
input perms :$10. links owner :$8. group :$8. size mth :$3. day _time :$5.
name :$100.;
format mod_time e8601dt19.;
if perms ne "total";
if length(_time) = 5
then do;
 mod_time = dhms(
 input(put(day,z2.)!!mth!!put(year(today()),z4.),date9.),

6

 0,
 0,
 input(_time,time5.)
);
 if mod_time > datetime() then mod_time = intnx('dtyear',mod_time,-1,'s');
end;
else mod_time = dhms(input(put(day,z2.)!!mth!!strip(_time),date9.),0,0,0);
drop day mth _time;
run;

But that is not all. It's not intuitive at first, but we can use the same method with an external command that
does not produce output. Normally would not provide output:

filename copylist pipe "cp filea fileb 2>&1";

data _null_;
infile copylist;
input;
put _infile_;
run;

Normally, cp would not create any output, but if it fails, it will put a message to the stderr output stream; in
the above example, the 2>&1 construct reroutes this to stdout, and now SAS can read it. If the command
fails for any reason, we can see the error message in the SAS log. So now our previous "black box" turns
into a very talkative entity if it has something to complain about.

There is one disadvantage to the FILENAME PIPE method: it does not set the automatic macro variable
SYSRC like the X or %SYSEXEC statements do, nor does it return the exit code of the external command
like the SYSTEM() function does. To retrieve the exit code, the external command must be expanded:

filename copycmd pipe "cp filea fileb 2>&1;echo $?";

data _null_;
infile copycmd end=done;
input;
put _infile_;
if done
then do;
 rc = input(_infile_,best.);
 put rc=;
end;
run;

The command line now has two separate parts, where the second captures the return code of the first
and sends it to stdout, where we read it as the last row of the infile.

Let us apply the method to the problem covered in the first section, and use the operating system utility
find to get our list of files:

filename filelist pipe "find $HOME/dollar/sas/ -type f 2>&1";

data filenames;
length fname $200;
infile filelist;
input fname;
run;

You can see how much simpler this code looks than the original macro, as it harnesses the power of a
tool that was specifically designed to tackle a certain kind of task in an easy, quick way.

7

But what if we have a list of things to do, stored in a dataset (we always store our lists in datasets, don't
we?), and want to run that in one quick step, getting all the information, and have everything coming from
it once again in a dataset?

Then we need the

DYNAMIC PIPE

Suppose we want to apply the above find command to a series of locations; we have the locations in a
dataset, and want to run the command for each location.

We will make use of several features of the INFILE statement that allows us to create a dynamic call of
the external command, and let the DATA step do all the looping for us.

First, create a dataset of locations:

data locations;
input location $80.;
datalines;
/location1
/location2
/location3
;

Then, use a DATA step to create the system calls, catch the output, and allow us to check if something
unusual happened:

data
 filenames (keep=location fname)
 results (keep=location rc)
;
length cmd fname $200;
set locations;
cmd = catx(' ',"find",location,'-type f','2>&1',';echo $?');
infile filelist pipe filevar=cmd end=end_of_pipe eof=done truncover;
start:
 input fname $200.;
 if not end_of_pipe
 then output filenames;
 else do;
 rc = input(fname,best.);
 output results;
 end;
 go to start;
done:
run;

The DATA step reads the table of locations, builds the command, and uses the FILEVAR= option to hand
it to the INFILE PIPE. The EOF= option is used with a GO TO statement to create a loop for reading the
output of the external command; this is necessary because, without the EOF= option, an input that
reaches the end of the current pipe would automatically terminate the DATA step even if there were still
observations in the input dataset. Once again, there is a second external command that displays the
return code; when the end of the pipe is reached (we use the variable of the END= option to determine
this), we record this return code in a secondary table (RESULTS).

We can now use any non-zero return code in the secondary table to extract the error message(s) from the
table FILENAMES with a simple join.

A REAL-WORLD EXAMPLE

8

A poster on the SAS Communities needed to check for the existence of files on remote servers. This is
the method I suggested, and it was accepted as the solution:

data datasets;
input servername :$100 dsname :$200;
datalines;
server_a /path/test1.sas7bdat
server_b /path/test1.sas7bdat
;

data results;
set datasets;
length command $200;
command = "ssh " !! strip(servername !! " test -f '" !! strip(dsname) !!
"'; echo $?";
infile dummy pipe filevar=command truncover eof=done end=last;
start:
 input line $100.;
 if last then result = input(line,best.);
 output;
 go to start;
done:
run;

CONCLUSION

Although SAS provides multiple ways of interacting with the underlying operating system without having
to resort to external commands, there will be cases where the tools provide by SAS are not sufficient, or
where using dedicated system commands will lead to a more efficient solution. The INFILE with the PIPE
engine provides an interface to make the most of the responses of external commands.

The author therefore recommends to have XCMD enabled; security or privacy concerns should not play a
role on properly set up and administrated servers, except in special cases

One thing that would be nice to have: if SAS set the automatic macro variable &SYSRC after using a
PIPE.

REFERENCES

SAS Communities. “Set &SYSRC from FILENAME PIPE.” Accessed February 27, 2020.
https://communities.sas.com/t5/SAS-Programming/Unix-Files-capture-through-SAS-dataset/m-p/624081/.

SAS Communities. “Unix Files capture through SAS dataset.” Accessed February 27, 2020.
https://communities.sas.com/t5/SASware-Ballot-Ideas/Set-amp-SYSRC-from-FILENAME-PIPE/idi-
p/579324.

ACKNOWLEDGMENTS

Most of the coding techniques presented here were brought to the author’s attention by other members of
the SAS Communities. A big Thank You goes to all of them.

RECOMMENDED READING

 The SAS® Communities (communities.sas.com)

 The SAS® Documentation (documentation.sas.com)

9

https://communities.sas.com/t5/SAS-Programming/Unix-Files-capture-through-SAS-dataset/m-p/624081/
https://communities.sas.com/t5/SASware-Ballot-Ideas/Set-amp-SYSRC-from-FILENAME-PIPE/idi-p/579324
https://communities.sas.com/t5/SASware-Ballot-Ideas/Set-amp-SYSRC-from-FILENAME-PIPE/idi-p/579324

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Kurt Bremser
kurt57b@gmail.com
https://communities.sas.com/t5/user/viewprofilepage/user-id/11562

10

https://communities.sas.com/t5/user/viewprofilepage/user-id/11562

BASIC INSTRUCTIONS

WRITING GUIDELINES

Trademarks and product names
To find correct ASA rroduct nmee i㋔nclud㋔n u e of t rmdeemrk yeool , ㋔f you mre m ASA eerloyee ee t he Mm t er Nmee L㋔ t .
Ot herw㋔ e ee ASA Trmdeemrk .

 U e urer cr㋔rt ed t rmdeemrk yeool ㋔n t he fir t u e ㋔n t ㋔t le fir t u e ㋔n mo t rmct mnd ㋔n rmrh㋔c chmrt fi ure mnd
 l㋔de .

 Do not moorev㋔mt e rroduct nmee . For exmerle you cmnnot u e “EM” for ASA® Ent errr㋔ e M㋔ner™. Sft er hmv㋔n
㋔nt roduced m ASA rroduct nmee you cmn occm ㋔onmlly oe㋔t “ASA” for cert m㋔n rroduct rrov㋔ded t hmt your ed㋔t or m ree .
For exmerle mft er you hmve ㋔nt roduced ASA® A㋔eulmt ㋔on At ud㋔o you cmn occm ㋔onmlly u e “A㋔eulmt ㋔on At ud㋔o.”

Writing style
 U e mct ㋔ve vo㋔ce. iU e rm ㋔ve vo㋔ce only ㋔f t he rec㋔r㋔ent of t he mct ㋔on need t o oe eerhm ㋔zed., For exmerle:

The rroduct cremt e rerort . imct ㋔ve,
Rerort mre cremt ed oy t he rroduct . irm ㋔ve,

 U e econd rer on mnd rre ent t en e m euch m ro ㋔ole. For exmerle:

You et mccurmt e re ult froe t h㋔ rroduct . i econd rer on rre ent t en e,
The u er w㋔ll et mccurmt e re ult froe t h㋔ rroduct . ifut ure t en e,

 Run rellcheck mnd fix error ㋔n rmeemr mnd runct umt ㋔on.

Citing references
Sll ruol㋔ hed work t hmt ㋔ c㋔t ed ㋔n your rmrer eu t oe l㋔ t ed ㋔n t he REFERENCEA ect ㋔on.

If you ㋔nclude t ext or v㋔ uml t hmt were wr㋔t t en or develored oy oeeone ot her t hmn your elf you eu t u e t he follow㋔n u㋔del㋔ne
t o c㋔t e t he ource :

 If you u e emt er㋔ml t hmt ㋔ coryr㋔ ht ed you eu t eent ㋔on t hmt you hmve rere㋔ ㋔on froe t he coryr㋔ ht holder or t he
ruol㋔ her who e㋔ ht ml o requ㋔re you t o ㋔nclude m coryr㋔ ht not ㋔ce. For exmerle: “Rerr㋔nt ed w㋔t h rere㋔ ㋔on of ASA
In t ㋔t ut e Inc. froe SAS® Risk Dimensions®: Examples and Exercises. Coryr㋔ ht 2004. ASA In t ㋔t ut e Inc.”

 If you u e ㋔nforemt ㋔on froe m rrev㋔ou ly rr㋔nt ed ource froe wh㋔ch you hmven’t reque t ed coryr㋔ ht rere㋔ ㋔on you
eu t c㋔t e t he ource ㋔n rmrent he e mft er t he rmrmrhrm ed t ext . For exmerle: “The e㋔n㋔eue vmr㋔mnce define t he d㋔ t mnce
oet ween clu t er iWmrd 1984 r. 23,

TIPS FOR USING WORD
The e ㋔n t ruct ㋔on mre wr㋔t t en for MA Word 2007 mnd MA Word 2010. The t er mre ㋔e㋔lmr for MA Word 2003.

To select a paragraph style
1. Cl㋔ck t he HOME t mo. The eo t coeeon t yle ㋔n your docueent mre d㋔ rlmyed ㋔n t he t or r㋔ ht mrem of t he M㋔cro oft

r㋔ooon. If you don’t ee m t yle t hmt you wmnt cl㋔ck t he lmnt ed down mrrow mt t he oot t oe r㋔ ht corner of t he At yle mrem
mnd croll t hrou h t he l㋔ t . The em㋔n t yle for t h㋔ t eerlmt e mre hemd㋔n 1 t hrou h 4 PmrerBody mnd Cmrt ㋔on. Svo㋔d
u ㋔n ot her t yle .

2. To chmn e m rmrm rmrh t yle cl㋔ck t he rmrm rmrh t o wh㋔ch you wmnt t o mrrly m t yle mnd t hen cl㋔ck t he t yle t hmt you
wmnt ㋔n t he r㋔ooon.

3. PmrerBody iu ed for eo t t ext , ㋔ mut oemt ㋔cmlly mrrl㋔ed when you rre Ent er mt t he end of mny hemd㋔n t yle or t he
Cmrt ㋔on t yle.

To insert a caption
1. Cl㋔ck REFERENCES on t he em㋔n Word eenu.

2. Cl㋔ck Insert Caption.

3. Aelect t he Label t yre t hmt you wmnt .

4. Cl㋔ck OK.

11

http://www.sas.com/en_us/legal/trademarks.html
http://sww.sas.com/sasnaming/

To insert a cross-reference
1. Cl㋔ck REFERENCES on t he em㋔n Word eenu.

2. Cl㋔ck Cross-reference.

3. In t he Reference type l㋔ t oox elect Hemd㋔n F㋔ ure Tmole D㋔ rlmy or Out rut .

4. For m hemd㋔n :

m. In t he For which heading l㋔ t elect t he hemd㋔n t hmt you wmnt .

o. Froe t he Insert reference to l㋔ t elect Heading text.

5. For m fi ure t mole d㋔ rlmy or out rut :

m. In t he For which caption l㋔ t elect t he cmrt ㋔on t hmt you wmnt .

o. Froe t he Insert reference to l㋔ t elect Only label and number.

To insert a graphic from a file
1. Cl㋔ck INSERT on t he em㋔n Word eenu.

2. Cl㋔ck Picture.

3. In t he In ert P㋔ct ure d㋔mlo oox nmv㋔ mt e t o t he file t hmt you wmnt t o ㋔n ert .

4. When t he nmee of t he file t hmt you wmnt t o ㋔n ert ㋔ d㋔ rlmyed ㋔n t he File name oox cl㋔ck Insert.

12

	FUNCTIONS FOR FILES
	FILENAME(fref,physname<,device><,host-options>)
	FOPEN(fref)
	FOPTNUM(fid)
	FOPTNAME(fid,number)
	FINFO(fid,inf_item)
	FCLOSE(fid)
	FCOPY(fref_1,fref_2)
	FDELETE(fref | directory)
	RENAME(name_1,name_2,"FILE")
	Examples

	Functions for Directories
	DOPEN(fref)
	DOPTNUM(did), DOPTNAME(did,number), DINFO(did,inf_item), DCLOSE(did)
	DNUM(did)
	DREAD(did,n)
	Examples

	Functions to Work with Environment Variables
	SYSEXIST(name)
	SYSGET(Name), %SYSGET(Name)
	Automatic Libraries and File References

	MACRO VARIABLES
	SYSSCP, SYSSCPL
	SYSUSERID
	SYSJOBID

	Limits of the Built-in Tools
	X and %SYSEXEC Statements
	SYSTEM() Function and CALL SYSTEM() Routine
	The FILENAME PIPE Method
	Dynamic Pipe
	A Real-World Example
	Writing Guidelines
	Trademarks and product names
	Writing style
	Citing references

	Tips for using Word
	To select a paragraph style
	To insert a caption
	To insert a cross-reference
	To insert a graphic from a file

