How to move your models from SAS 9.4 to SAS Viya

Melodie Rush

Customer Success Principal Data Scientist

Connect with me:

LinkedIn: https://www.linkedin.com/in/melodierush

Twitter: @Melodie_Rush

AGENDA

What is and Why

SAS 9.4 Enterprise Miner (EM) and SAS Viya Visual Data Mining and Machine Learning (VDMML)

Comparing

EM versus VDMML

Transitioning

How do they work together?

What is and Why?

SAS 9.4 Enterprise Miner and SAS Viya Visual Data Mining and Machine Learning

A Very, Very Brief History of SAS Data Mining/Machine Learning Products

SAS Institute began in 1976. It's been a leader in the analytics market ever since and its software is used to solve all kinds of analytical problems.

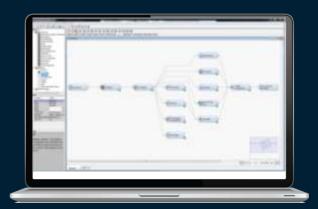
SAS 9 was the 9th major update of SAS and is a suite of software for a wide variety of tasks including data management, statistics, and operations research.

SAS Viya is the latest update of SAS software. It leverages the latest technologies to enable the powerful analytical techniques SAS is known for.

SAS 9.4

SAS Enterprise Miner

What is SAS[®] Enterprise Miner™?


- SAS Enterprise Miner is a graphical user interface, designed with the specific needs of data miners.
- SAS Enterprise Miner is a data miner's workbench that manages the process and provides a comprehensive set of tools to aid the data miner throughout the essential steps, known by the acronym, SEMMA: Sample, Explore, Modify, Model, Assess.
- SAS Enterprise Miner streamlines the data mining process to create highly accurate predictive and descriptive models based on analysis of vast amounts of data from across an enterprise.

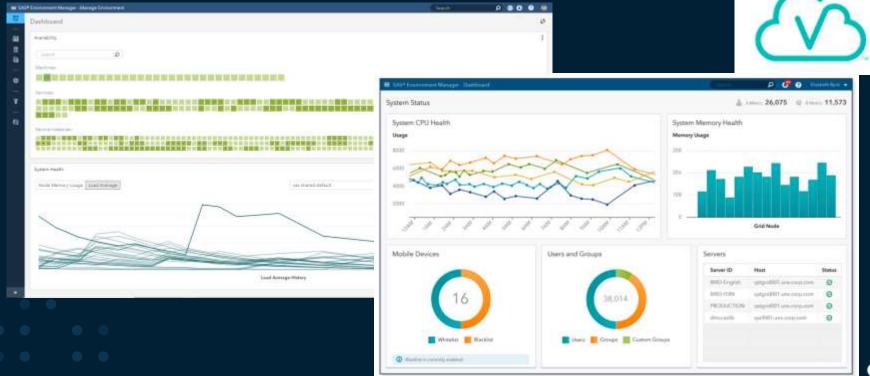
SAS Enterprise Miner

Moving from SAS 9 to SAS Viya

SAS Enterprise Miner on SAS 9

SAS VDMML 8.x on SAS Viya

SAS Visual Data Mining and Machine Learning (SAS VDMML) is the equivalent of SAS Enterprise Miner in SAS Viya. VDMML builds models in the same manner following the same pipeline format of SAS Enterprise Miner.

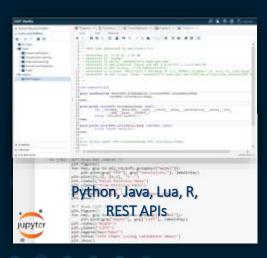

SAS Viya

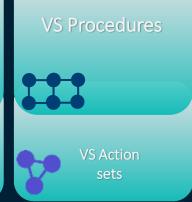
Visual Statistics and Visual Data Mining and Machine Learning

What is SAS Viya?

Viya is a cloud-enabled, in-memory analytics engine that provides quick, accurate and reliable analytical insights.

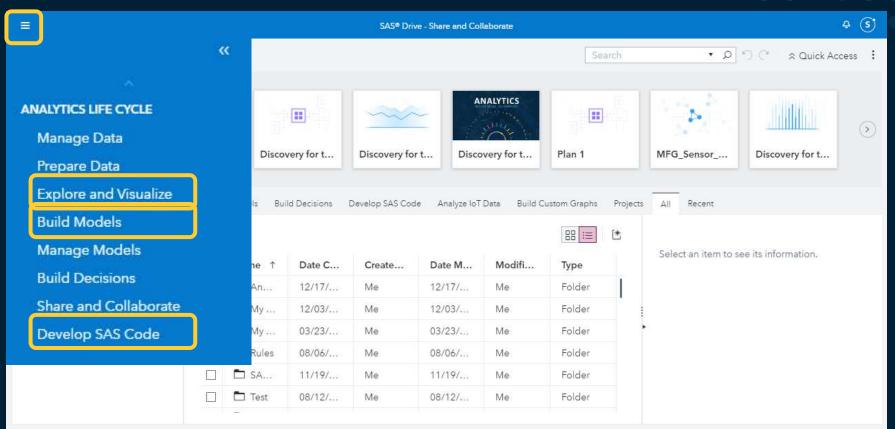
SAS Viya Analytics


What does it include?


Visual Analytics **Visual Statistics**

Requires Visual Statistics

Visual Data Mining and Machine Learning



SAS Viya Analytics

Build Models

SAS Model Studio allows you to build forecasting, text analytics, and machine learning (ML) model pipelines. You can do everything from data preprocessing to building multiple models to finding your best model all within one pipeline.

Main Features

Allows for building as many models as you want

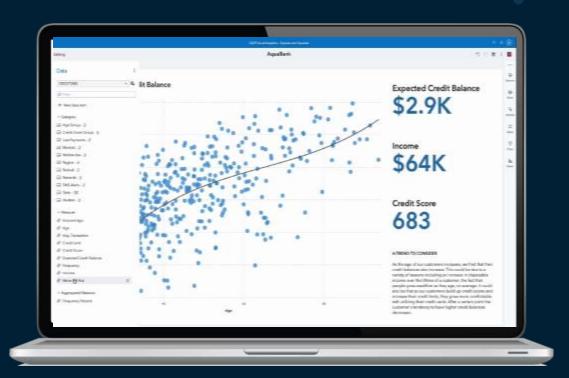
Embed open source code within an analysis and call open source as well

Collaborate with others by saving multiple templates and leveraging the same environment

Utilize autotuning and AutoML capabilities to make the ML model building process faster

Explore and Visualize Data

SAS Visual Analytics is the point-and-click visualization tool within SAS Viya and acts as the base visual layer of SAS Viya. Here, you can build interactive dashboards for reporting with added analytical elements.


Main Features

Perform ad-hoc exploration of data

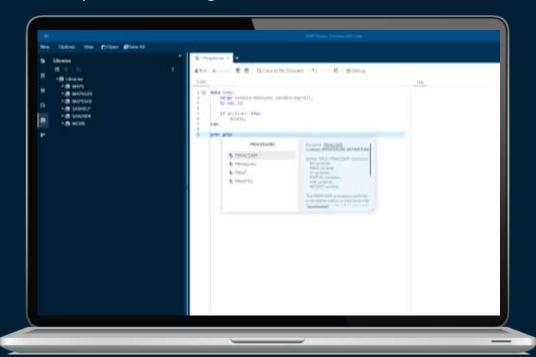
Discover relationships, trends and outliers

Leverage smart auto-charting and smart auto- analytics

Analyze a report and identify issues with performance and accessibility

Develop SAS Code

SAS Studio is the programming interface within SAS Viya. You can program in SAS or <u>CASL</u> (CASL is SAS Viya's programming language) to access capabilities including data quality, machine learning, optimization, text analytics, forecasting etc.


Main Features

Includes autocomplete, syntax help, keyword shortcuts and more for efficient programming

Quickly add prewritten, commonly used SAS code into your program

Create process flow diagrams

Access basic Git features like cloning repositories

SAS 9 and SAS Viya: Main Similarities and Differences

Though there are many similarities and differences between the two solutions, here are the main ones to consider:

What's the Same?

- The ability to write code or do work in a drag-and-drop interface
- The ability to leverage SAS' intellectual property (IP) to accelerate your analytical processes

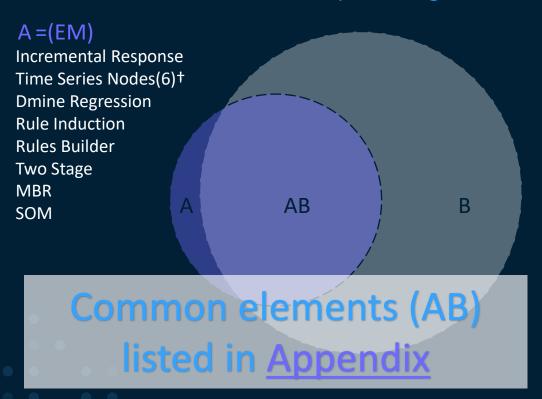
What's Different?

- The underlying architecture
- SAS Viya products are located centrally and accessed in one central URL whereas SAS 9 has multiple user interfaces to access different products
- ❖ Products in SAS Viya have substantial feature improvements. As well, SAS Viya has a modern UI for better end-user experience

Compare

SAS Enterprise Miner and SAS Visual Data Mining and Machine Learning

The difficulty in comparing


- 1. EM only has one interface, VDMML has three ways to interact.
- 2. Some functionality has moved to other packages.
- 3. VDMML is still growing.
- 4. Model Studio isn't a product.

Analytical Algorithm Differences

B = (VDMML)

Anomaly Detection

SVDD RPCA* **MWPCA**

Recommendation

FACTMAC* RECOMMEND

ICA Autoencoder

t-SNE **SVD**

Network Analysis Sentiment Analysis **Deep Learning**

DNN **RNN** CNN

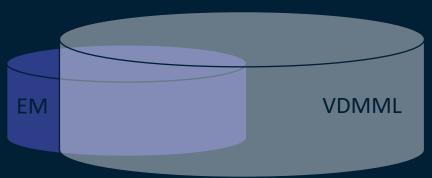
Modeling

SVM GLM

Dimension Reduction* Mixed Models Random Forest Gaussian Mixed Multi-task Learning

Quantile Regression

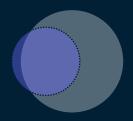
Model-based Clustering Semi-supervised Learning



Feature Differences

EM

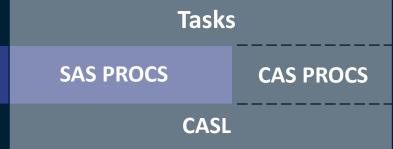
- Target profiler
- Decisions node
- Reporter node
- Control point node
- Group-by processing*
- Custom Extension Nodes
- Rapid Predictive Modeler



Common elements are listed in Appendix

VDMML

- REST API calls
- Auto-tuning
- The Exchange
- Pipeline templates
- Automatic pipeline generation
- Model interpretability
- Automatically generated natural language to explain results (NLG)
- Deep Learning (DLPy)



Execution Differences*

Enterprise Miner

Only 1 GUI (Java based)
Only 1 level of execution (PROC)
Supports multiple data sources
Runs SAS Macros

VDMML

3 GUIs (HTML5 based)

Visual ("VA")

Model Studio

SAS Studio

API Interfaces

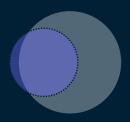
Python

R

Java

3 levels of execution

Task level


PROC level

Action level

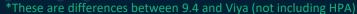
Supports only single data source

Most of these are differences between 9.4 and Viya not necessarily EM and VDMML.



Architectural Differences*

Enterprise Miner


- Mostly single-threaded
- Symmetric Multi-Processing (SMP)
- Supports MVA
- Desktop client option

VDMML

- Mostly multi-threaded
- · Massively Parallel Processing
- Distributed Computing
- Supports concurrency
- Supports multi-tenancy
- Easily deployed in the cloud
- LINUX only

EM VDMML

SAS® 9.4 and SAS® Viya®

Functional Comparison Technical Paper

	EM	VDMML
General Features		
Audio file analysis		v
Autotuning		~
Custom extension nodes	~	
EM batch code execution (migration)	n/a	~
Included text mining (lightweight)		~
Incremental response models	~	
Integrated coding (code node)	v	~
Interactive binning	~	Incl. w/ Risk
Interactive modeling	minimal	~
K Fold cross validation	~	~
Model lineage view		~
Multiple-pipeline comparison		~
Pipeline annotations		~
REST API Scoring		~
REST API Retraining		~
REST API Automated Modeling		~
Reusable model templates (central storage)		~
Segment profile		~
Som/Kohennen	~	
Start/End Groups (group processing)	~	
Survival data mining	~	
Time series data mining	~	
Two stage models	~	
Integrated data prep		~
Interactive model editing (VA models in Model Studio)		v
Multiple data sources (after data prep)	(9)	
Integrated reporting (interactive dashboards)		v
Model assessment NLG		v
Model insight reporting		

Machine Learning Methods	3,1	
Automated feature engineering package		Node
Automated interpretability action package		
Automated model composer (automated modeling)		Node
Bayesian networks	~	v
Boolean rules		·
Convolutional neural networks	2	~
Dirichlet Gaussian Mixture Models (GMM)		~
Ensemble		~
Factorization machines		~
Frequent item set mining	*	~
Gaussian regression		~
Gradient boosting		
Isolation forest		~
K nearest neighbor		~
Kernel PCA		~
Image (incl. biomedical) processing	2	-
Image Object Detection		
Image keypoints detection		~
Image segmentation		
Market basket analysis	9	~
Model interpretability (UME, PDP, ICE)		Kernel Shap
Maving windows PCA		~
Multi-task learning		~
Network analytics/community detection	-	~
Neural networks	*	~
Random forest		-
Recurrent neural network		-
Reinforcement Learning (Batch)		~
Robust PCA		~
Semi-Supervised learning		~
Sparse Data Machine Learning		~
Support vector data description		~
Support vector machines		~
Support vector regression		~
Text mining	~	~
T-SNE		~
Variable dustering	J.	

Transitioning

Moving from SAS 9 to Viya

Process Organization of the tools

Models

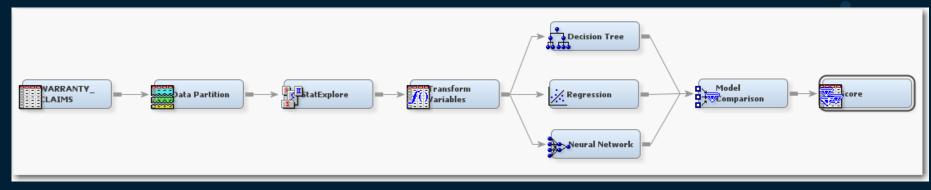
Including EM models in Pipelines

Including Viya Models in EM Flows

Scoring

Using EM score code in Viya

Using Viya score code in SAS 9.4


List of SAS Enterprise Miner Nodes

SAMPLE	Append	Data Partition	File Import	Filter	Merge	Sample	Input Data			
EXPLORE	Association Cluster	Graph Explore	Variable Clustering	DMDB MultiPlot	Market Basket StatExplore			Variable Selection	SOM/Kohoner	1
MODIFY	Drop	Impute	Interactive Binning		Principal mponents	Replacement	Rules Builde		Transform Variables	
	Decision	toNeural New gression Netw	ural Partial Lea work Squares			Rule Induction	Gradient Boosting	LARS MBR	Two Stage Model Impo	t
MODEL	Incremental Response	Survival Analysis Credi	t Scoring* TS Correla				TS comp. Si	TS milarity	TS Exponential Smoothing	
	HP Explore HP Bayesian Network	HP Regression	HP Transform HP Impute	HP Variable Selection		HP Decision Tree	HP Data Partition	HP GLM HP SVM		IP Principal omponents
ASSESS	Cutoff	Decisions	Model Comparison	Score	Segment Prof	ile				
UTILITY	Control Point	End Groups Start Groups	Open Source Integration	Reporte	Score Code Export	Metadata	SAS Code Ext Demo	Jave	Register Metadata	SAS Viya Code

SAS[®] Enterprise Miner™

SEMMA Process

SAMPLE

EXPLORE

MODIFY

MODEL

ASSESS

SAS® Visual Data Mining and Machine Learning

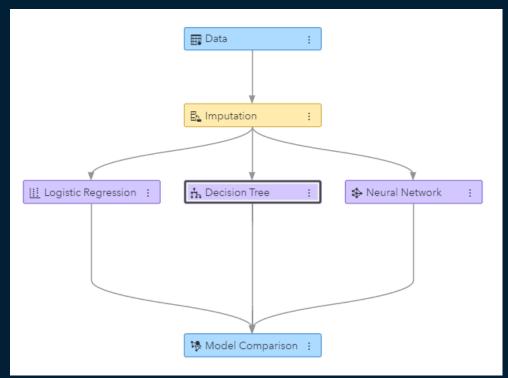
Pipelines

- Data Mining Preprocessing
 - Anomaly Detection
 - S. Clustering
 - **Feature Extraction**
 - Feature Machine
 - 7 Filtering
 - Imputation
 - ₩ Interactive Grouping

 - ₹ Reject Inference
 - 🖪 Replacement
 - T Text Mining
 - f. Transformations
 - * Variable Clustering
 - ∇ariable Selection

- ∨ Supervised Learning
 - Batch Code
 - X Bayesian Network
 - ♣ Decision Tree
 - Forest
 - 낸 GLM
 - 🖳 Gradient Boosting
 - Linear Regression
 - Logistic Regression
 - ∄* Model Composer
 - Neural Network
 - Quantile Regression
 - Score Code Import
 - SVM

- Postprocessing
 - ♣ Ensemble
- ∨ Miscellaneous
 - Data Exploration
 - F Open Source Code
 - SAS Code
 - Save Data
 - Score Data
 - 碼 Scorecard
 - 器 Segment Profile

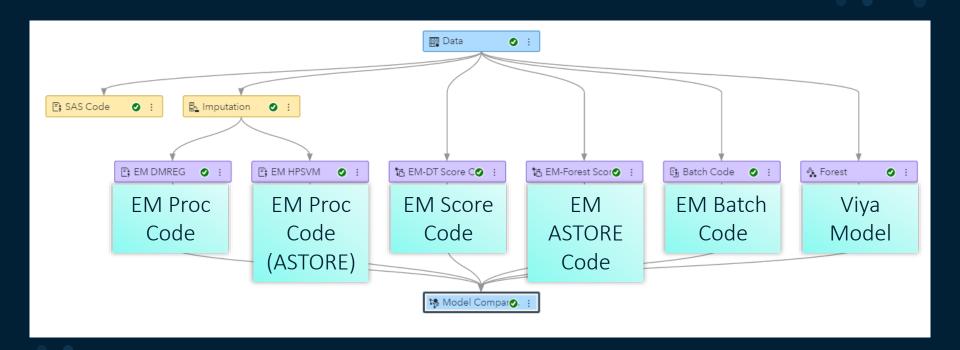

SAS® Visual Data Mining and Machine Learning Pipelines

Data

Preprocessing

Supervised Learning

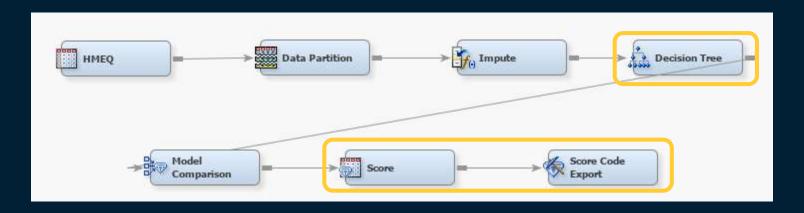
Model Comparison



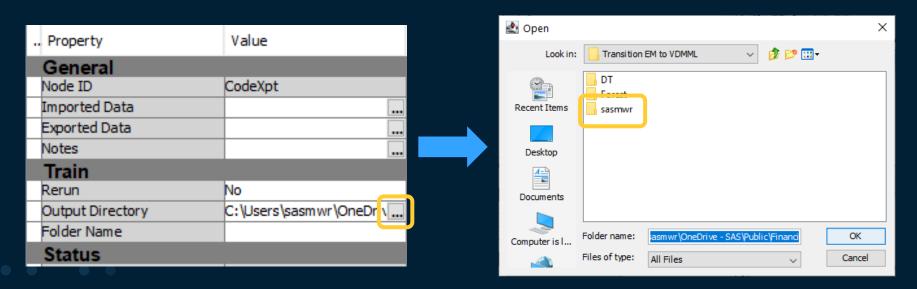
Models

Including EM Models into Pipelines

Including Existing EM models into Pipelines



SAS Code Score Code


- Create Enterprise Miner Diagram
- Include Score Node and Score Code Export Node

SAS Code Score Code

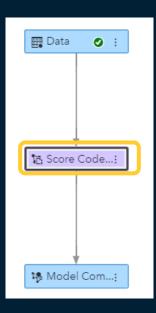
Select Output Directory for the Score Code Export

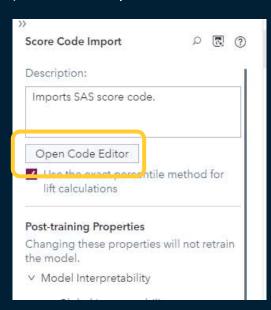
SAS Code Score Code

Select Output Directory for the Score Code Export

« Transition EM to sasmwr	∨ o Search s
Name	Status
score.sas	S
score.xml	g
score_62.xml	Ø
🚃 scoredata.sas7bdat	S
scoredata.xpt	8
🧱 traindata.sas7bdat	8
👺 traindata.xpt	S

SAS Code Score Code


```
****
                                                                             DECISION TREE SCORING CODE
* EM SCORE CODE:
                                                                         LENGTHS OF NEW CHARACTER VARIABLES
* TOOL: Input Data Source;
                                                          LENGTH I BAD $ 12;
* TYPE: SAMPLE;
                                                          LENGTH WARN $ 4;
* NODE: Ids:
                                                                             LABELS FOR NEW VARIABLES
                                                          label NODE = 'Node';
* TOOL: Partition Class:
                                                          label LEAF = 'Leaf';
* TYPE: SAMPLE:
                                                          label P BAD1 = 'Predicted: BAD=1';
* NODE: Part:
                                                          label P BAD0 = 'Predicted: BAD=0';
                                                          label Q BAD1 = 'Unadjusted P: BAD=1';
                                                          label Q BAD0 = 'Unadjusted P: BAD=0';
* TOOL: Imputation;
                                                          label V BAD1 = 'Validated: BAD=1';
* TYPE: MODIFY:
                                                          label V BAD0 = 'Validated: BAD=0';
* NODE: Impt;
                                                          label I BAD = 'Into: BAD' ;
                                                          label U BAD = 'Unnormalized Into: BAD';
label IMP CLAGE = 'Imputed CLAGE';
                                                          label WARN = 'Warnings';
length IMP CLAGE 8;
IMP CLAGE = CLAGE;
if missing(CLAGE) then IMP CLAGE = 180.38465575;
label IMP CLNO = 'Imputed CLNO';
length IMP CLNO 8;
```


SAS Code Score Code

In Pipelines add a score code import node (under Supervised)

Learning)

Open Code Editor

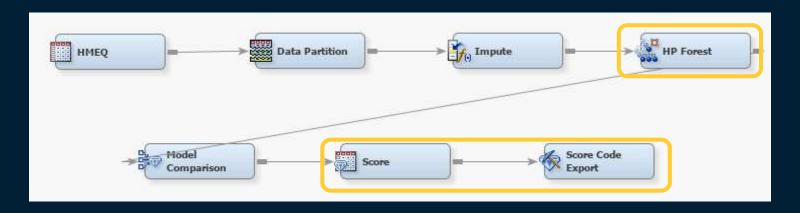
SAS Code Score Code

- Select DATA step code
- Browse and select local code

Import Score Code	
DATA step code O Analytic store code	
Score code file:	Browse
Analytic store table: Select analytic store table	Browse
	Import Cancel

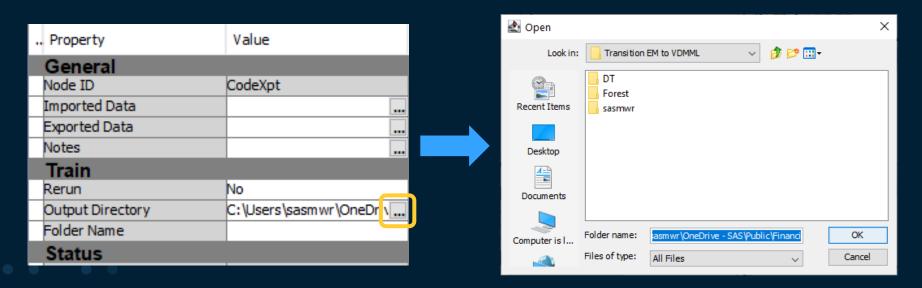
SAS Code Score Code

```
Ħ
                                      Model Studio - Build Models
Home Loan EM Demo → * Score Code Import
   2 6 7 C X 5 6 A 5
        *_____*.
    2
       * EM SCORE CODE;
       *-----*:
       *-----*:
    4
       * TOOL: Input Data Source;
    6
       * TYPE: SAMPLE;
    7
       * NODE: Ids;
       *-----*:
       * TOOL: Partition Class;
   10
   11
       * TYPE: SAMPLE;
   12
       *-----*:
   13
   14
   15
       * TOOL: Imputation;
   16
       * TYPE: MODIFY:
   17
       * NODE: Impt;
   18
       label IMP CLAGE = 'Imputed CLAGE';
   19
   20
       length IMP CLAGE 8;
       IMP CLAGE = CLAGE;
       if missing(CLAGE) then IMP CLAGE = 180.38465575;
```

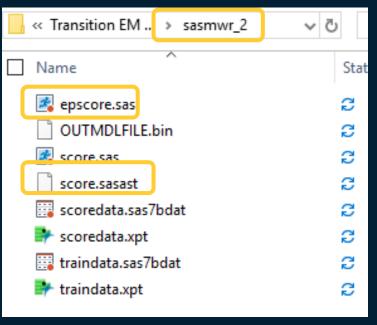


Analytic Store Code (ASTORE)

- What is an ASTORE file?
 - An Analytic Store, or ASTORE, is a system that allows the state of a trained predictive model to be saved in a transportable form.
 - This enables it to subsequently be used to score new data in a variety of environments.
 - A key feature of an ASTORE is that it can be easily transported from one platform to another.
- What models support ASTORE?
- Many SAS analytical procedures save the results from the training phase of model development as ASTORE models. Nodes in EM that create ASTORE files
 HP SVM and HP Forest.

Analytic Store Code (ASTORE)

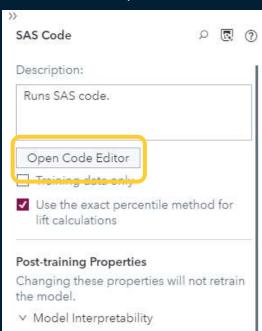

- Create Enterprise Miner Diagram
- Include Score Node and Score Code Export Node

Analytic Store Code (ASTORE)


Select Output Directory for the Score Code Export

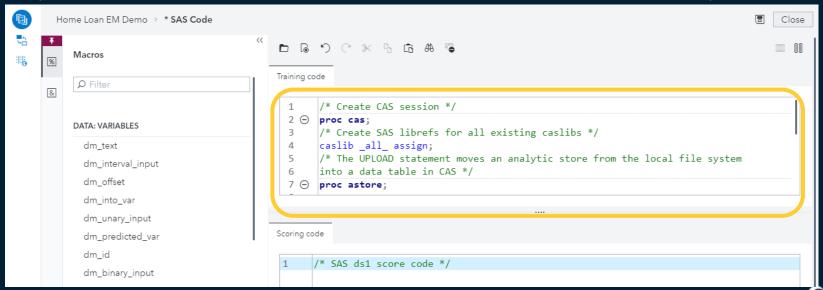
Analytic Store Code (ASTORE)

epscore.sas includes score code and link to ASTORE file


ep = entire pipeline or process

Analytic Store Code (ASTORE)

- In Pipelines add a SAS code node (under Miscellaneous)
- Open Code Editor



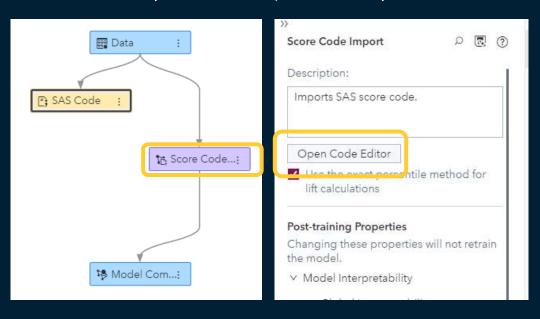
Analytic Store Code (ASTORE)

- In Pipelines add a SAS code node (under Miscellaneous)
- Open Code Editor add code to load ASTORE file into memory

Analytic Store Code (ASTORE)

```
Training code
       /* Create CAS session */
       proc cas;
       /* Create SAS librefs for all existing caslibs */
       caslib all assign;
       /* The UPLOAD statement moves an analytic store from the local file system
       into a data table in CAS */
  7 — proc astore;
        upload store="/home/sasdemo/MelsExamples/score.sasast"
        rstore=Models.EM hpforeststore ast;
 10
       run;
11
       /* Promote the Analytic Store to global scope so that it is available to
       all sessions */
 12
13 O
       proc casutil;
        promote casdata="EM_hpforeststore_ast"
14
        casout="EM hpforeststore"
15
        incaslib="Models"
        outcaslib="Public":
       quit;/* SAS code */
 18
```

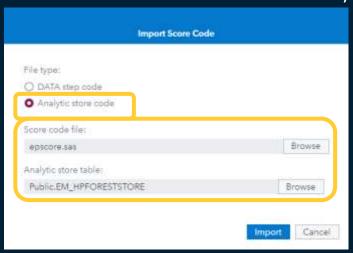
Note: that the analytic store does not reside on your client but must reside in a path available to the SAS client (the SAS Viya session).



Analytic Store Code (ASTORE)

In Pipelines add a score code import node (under Supervised)

Learning)

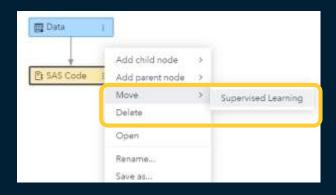

Open Code Editor

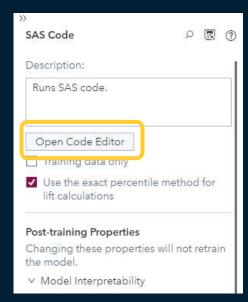
Analytic Store Code (ASTORE)

- Select Analytic store code
- Browse and select local code (epscore.sas)
- Browse and select ASTORE table loaded in Memory

Analytic Store Code (ASTORE)

```
Ħ
                                                             Model Studio - Build Models
Home Loan EM Demo → * EM-Forest Score Code Import
             5 C X h th A 5
            data SASEP.OUT;
            dcl package score sc();
            dcl double "IMP CLAGE" having label n'Imputed CLAGE';
            dcl double "IMP CLNO" having label n'Imputed CLNO';
            dcl double "IMP DEBTINC" having label n'Imputed DEBTINC';
            dcl double "IMP DELINQ" having label n'Imputed DELINQ';
            dcl double "IMP DEROG" having label n'Imputed DEROG';
            dcl double "IMP MORTDUE" having label n'Imputed MORTDUE';
            dcl double "IMP NINQ" having label n'Imputed NINQ';
            dcl double "IMP VALUE" having label n'Imputed VALUE';
      10
            dcl double "IMP YOJ" having label n'Imputed YOJ':
      11
      12
            dcl double "LOAN":
            dcl nchar(7) "IMP JOB" having label n'Imputed JOB';
      13
      14
            dcl nchar(7) "IMP REASON" having label n'Imputed REASON';
            dcl double "P BAD1" having label n'Predicted: BAD=1':
      15
            dcl double "P BADO" having label n'Predicted: BAD=0';
            dcl nchar(32) "I BAD" having label n'Into: BAD';
      17
            dcl nchar(4) " WARN " having label n'Warnings';
      18
            dcl double U BAD;
      19
      20
            dcl double EM EVENTPROBABILITY;
            dcl double EM PROBABILITY:
             del nehan(32) FM CLASSIETCATION.
```


Proc DMREG

- In Pipelines add a SAS code node (under Miscellaneous)
- Right mouse click and move to Supervised Learning
- Open Code Editor

Proc DMREG code – part 1

EM procedures require data to be split into training and validation data sets

```
/* Create the training and validation data sets */
data work.train;
set &dm_data;
where &dm_partitionTrainWhereClauseNlit;
run;
data work.validate;
set &dm_data;
where &dm_partitionValidWhereClauseNlit;
run;
```


Proc DMREG code – part 2

EM procedures require Data Mining Database (dmdb)

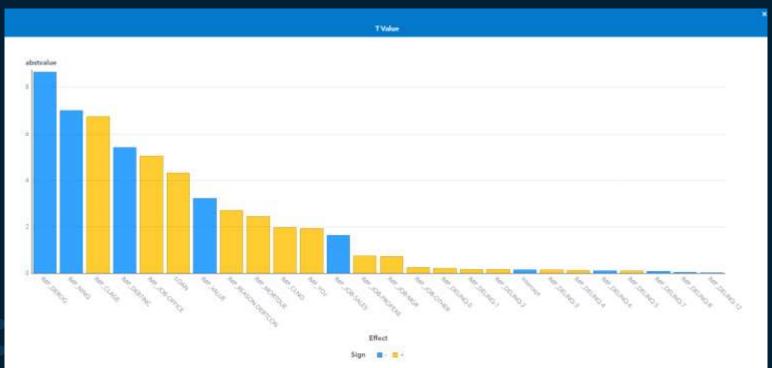
```
/* create Data Mining Database(dmdb) required by EM procs */
proc dmdb batch data=work.train dmdbcat=work.dmdbcat maxlevel = 513;
class %dm_dec_target %dm_class_input;
var %dm_interval_input;
target %dm_dec_target;
run;
```


Proc DMREG code – part 3

Proc DMREG code

```
/* run EM Logistic procedure DMREG */
proc dmreg data=work.train dmdbcat=work.dmdbcat
  validata = work.validate
  outterms = &dm_lib..outterms
  namelen=200;
  class %dm_dec_target %dm_class_input;
  model %dm_dec_target = %dm_interval_input %dm_class_input
  / error=binomial link=LOGIT coding=DEVIATION nodesignprint;
  code file="&dm_file_scorecode" group=_&dm_labelid;
run;
```

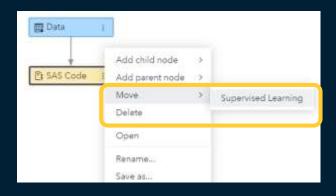

Proc DMREG code – part 4

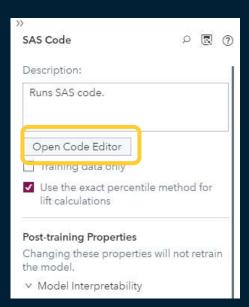

Display plot of parameter estimates

```
/* display plot of parameter estimates */
data &dm lib..outterms;
 length sign $1 effect $65;
 set &dm lib..outterms;
 if coefficient<0 then sign='-';
 else sign='+';
if Variable ne 'Intercept' and classLevel ne '' then
 effect=ktrim(variable)!!'-'!!ktrim(classLevel);
 else
 effect = ktrim(variable);
 abstvalue = abs(tvalue);
run;
%dmcas_report(dataset=outterms, reportType=BarChart, category=Effect,
Response=abstvalue, sortDirection=descending,
sortBy=abstvalue, group=sign,
description=%nrbquote(T Value));
```

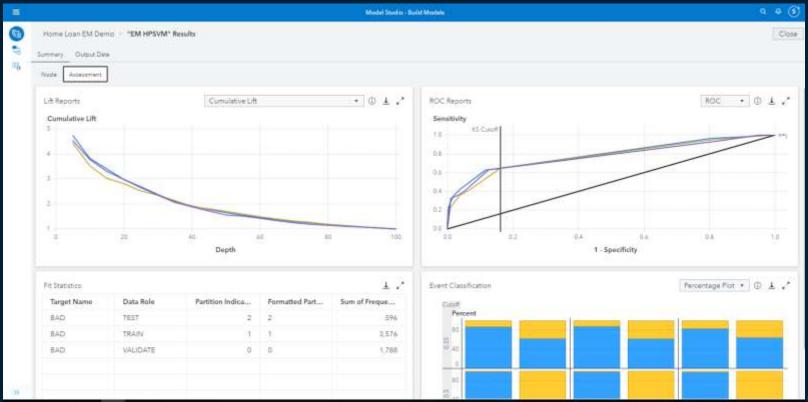

Proc DMREG code – Results

Display plot of parameter estimates




Proc HPSVM (create ASTORE file)

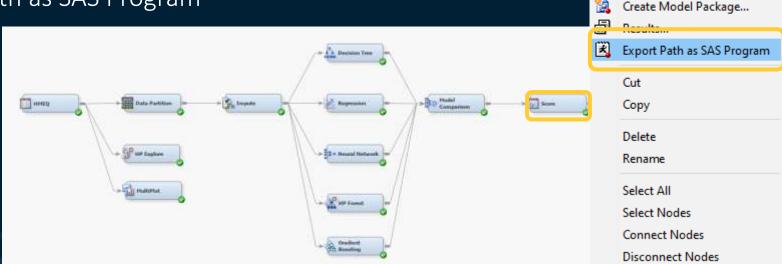
- In Pipelines add a SAS code node (under Miscellaneous)
- Right mouse click and move to Supervised Learning
- Open Code Editor


Proc HPSVM

Data already split into Training and Validation data sets and DMDB created in the DMREG code in previous example

```
proc hpsvm data=&dm data maxiter=25 method=ACTIVESET
 tolerance=0.000001 c=1;
 input %dm_interval_input / level = interval;
 input %dm_nominal_input %dm_binary_input / level = nominal;
 target %dm_dec_target / level = &dm dec_level;
 kernel polynom / deg = 2;
 &dm partition statement;
 PERFORMANCE DETAILS;
 savestate file = "&dm file astore";
run:
proc astore:
 upload store="&dm file astore" rstore=&dm data rstore;
run:
```

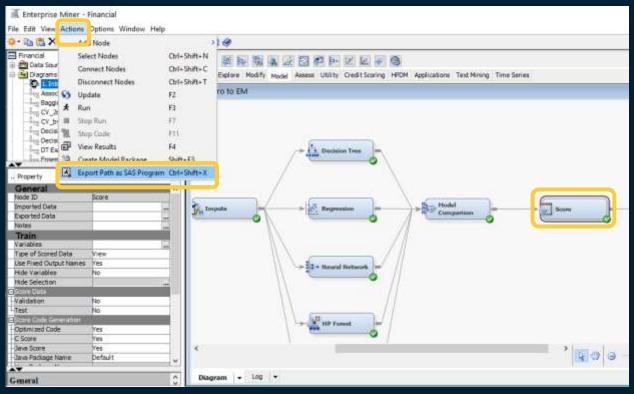

Proc HPSVM code – Results



Process Flow Code

Batch Code Node

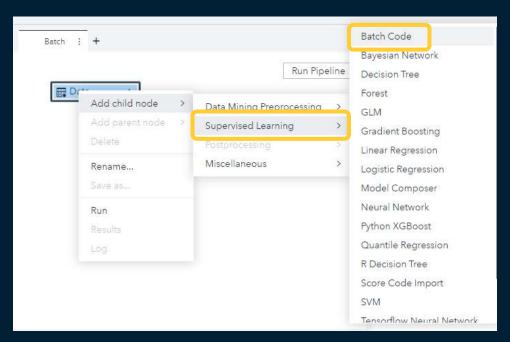
- Create Batch Code from Enterprise Miner Diagram
- Right Mouse Click on the Score Node & Select Export
 Path as SAS Program


Tip: Save the code where it can be uploaded via your browser to SAS Viya.

Edit Variables...

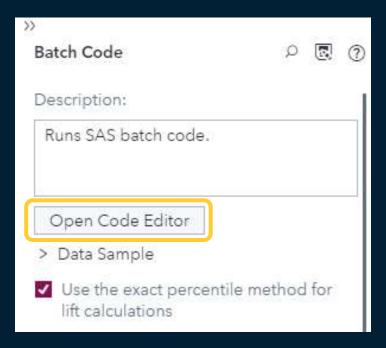
Update

Batch Code Node



Tip: Save the code where it can be uploaded via your browser to SAS Viya.

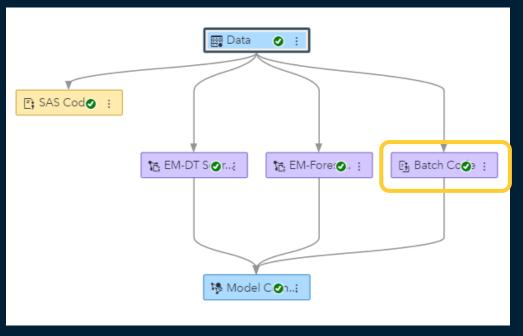
Batch Code Node


In Pipelines add a Batch Code Node (under Supervised Learning)

Batch Code Node

Open Code Editor

Batch Code Node


Select the batch file saved from Enterprise Miner

```
Model Studio - Build Models
Home Loan EM Demo . * Batch Code
                                                                                                                              E Close
      EM Version: 15.1:
      " SAS Release: 9.04.01M6P111518;
      " Host: 110h641;
      * Project Path: C:\Users\sasmwr\OneDrive - SAS\EMProjects:
        replace same: trussers;
       * Diagram Id: EMW532;
        Diagram Name: 1. Intro to EM;
        Generated by: sasmwr:
10
11
12
13
      " Macro Variables:
14
      %let EM PROJECT =;
15
      %let EM PROJECTNAME =:
      %let EM WSNAME =;
      %let EM_WSDESCRIPTION =1. Intro to EM;
      %let EM_SUMMARY =WDRK.SUMMARY;
      *let EM NUMTASKS =SINGLE:
```


Batch Code Node

Now the Enterprise Miner Diagram winner is part of your pipeline

Simplified SAS Viya Architecture

SAS Viya Products

Visual Analytics

Visual Statistics

Visual Data Mining and Machine Learning

Visual Text Analytics Visual Forecasting

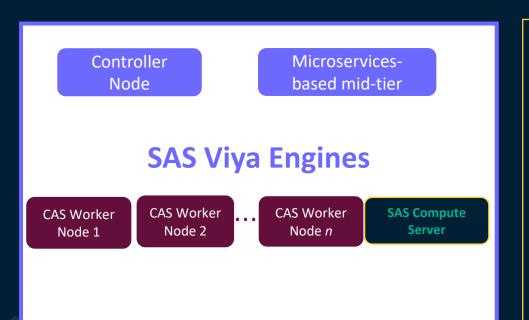
Controller Node

Microservices-based mid-tier

SAS Viya Engines

CAS Worker Node 1 CAS Worker Node 2

• • •


CAS Worker Node *n* Server (minimal functionality, for Viya-only deployments)

SAS Compute

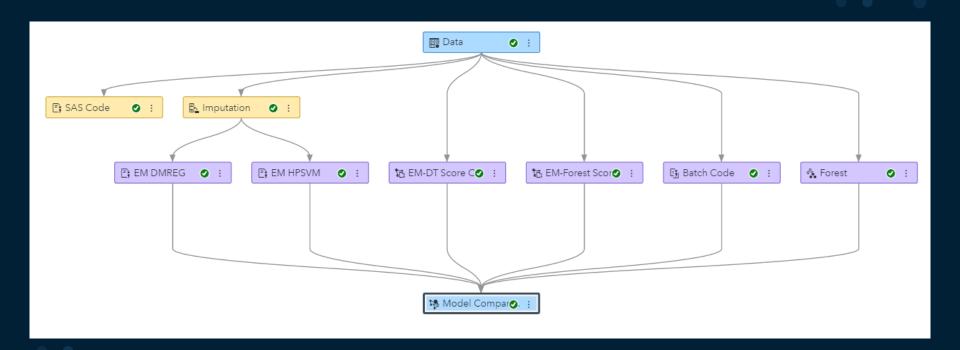
Simplified SAS Viya Architecture

Using Enterprise Miner Batch Code: Considerations

The Enterprise Miner batch code does not execute in CAS.

It executes on the SAS Compute Server.

SAS® Visual Data Mining and Machine Learning


Using Enterprise Miner Batch Code: Considerations

- When invoked from a Model Studio pipeline in Viya, the batch code from SAS® Enterprise Miner® does not execute in CAS, rather in the SAS Viya Workspace Server.
 - A <u>sample</u> of the input table loaded into CAS is transferred to the SAS Viya Workspace Server.
 - After the batch code runs, Model Studio retrieves either the model score code or the analytic store and EPCODE.
 - The retrieved code is used to score the original input data in Model Studio. This scored data is used to produce the assessment results.
- Typically, the server with the SAS Viya Workspace Server is within the Viya cluster, so the transfer of the data is limited only by the connection between the nodes.

Model Comparison

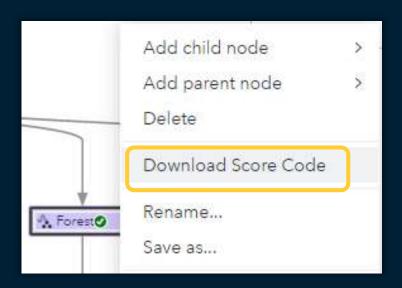
Model Comparison

Home Loan EM Demo → "Model Comparison" Results Close Assessment Node Model Comparison Misclassification Rate (Event) Misclassification Rate Champion Name **Algorithm Name** * 0.1023 0.1023 Forest Forest Batch Code Batch Code 0.1091 0.1091 EM Forest ASTORE Score Score Code Import 0.1107 0.1107 Import Node EM-DT Score Code Import Score Code Import 0.1174 0.1174 **EM HPSVM** SAS Code 0.1426 0.1426 EM DMREG SAS Code 0.1527 0.1527

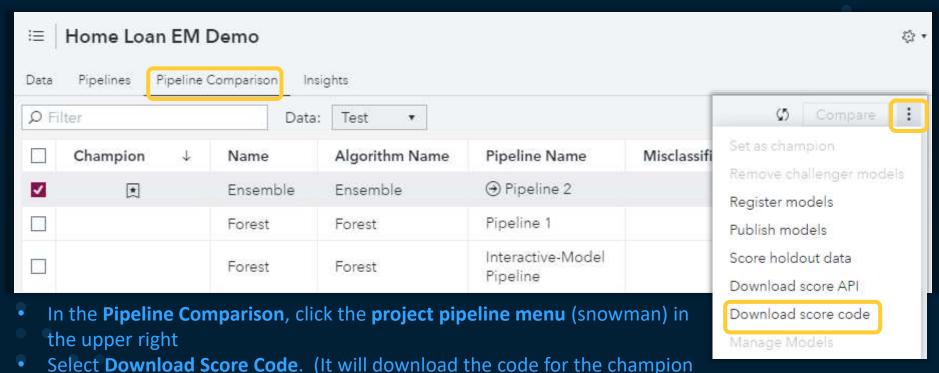
Scoring


In Viya

- Score Code Import Node in Pipeline (Supervised Learning)
- Score Data Node in Pipelines (Miscellaneous)
- Create Score Code or ASTORE file from
 - modeling nodes
 - champion models
- SAS Studio Scoring Task (SAS Viya Evaluate and Implement Models)



Score Data Node in Pipelines


Download Score Code: Any Modeling Node

- To save the score code of <u>a modeling</u> node, right-click the node and select Download Score Code.
- A Zip file will be saved in your browser's Downloads folder.
- Within the Zip file will be a SAS program called dmcas_epscorecode.sas that contains the EP score code.

Download Score Code: Champion Model

Ssas

model, which in this example, is the **Ensemble**.)

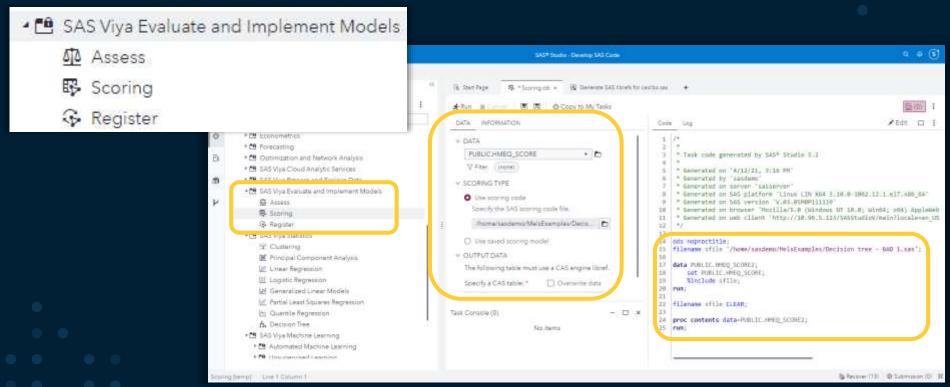
Score Code in SAS Viya

- Some model types generate score code as an ASTORE. An additional file will also need to be downloaded.
- A comment in the top of the downloaded score code will indicate which ASTORE(s) are referenced and in which CASLIB on the SAS® Viva server they are stored.
- The default location is a CASLIB called Models that by default is located here: /opt/sas/viya/config/data/cas/default/models/

```
/*
  * This score code file references one or more analytic stores that are located in the caslib "Models".
  * This score code file references the following analytic-store tables:
  * _ANCSDMXFGI6XXOS0P2DPTEOWA_ast
  */
```


Score Code Types

Node Name	Type of Score Code
Anomaly Detection	Analytic store
Bayesian Network	Analytic store
Clustering	DATA step
Decision Tree	DATA step
Ensemble	DATA step (if all models produce DATA step), otherwise one or more analytic stores and the EP score code to combine the models' score code
Feature Extraction	DATA step
Filtering	DATA step
Forest	Analytic store
GLM	DATA step
Gradient Boosting	Analytic store
Imputation	DATA step
Linear Regression	DATA step
Logistic Regression	DATA step
Neural Network	DATA step for networks less than 6 layers, analytic store for networks with 6 or more layers
Replacement	DATA step
SVM	Analytic store
Text Mining	Analytic store
Transformations	DATA step
	Convright © SAS Institute Inc. All rights reserved


This table demonstrates which Model Studio nodes produce score code, as well as the types of code they produce.

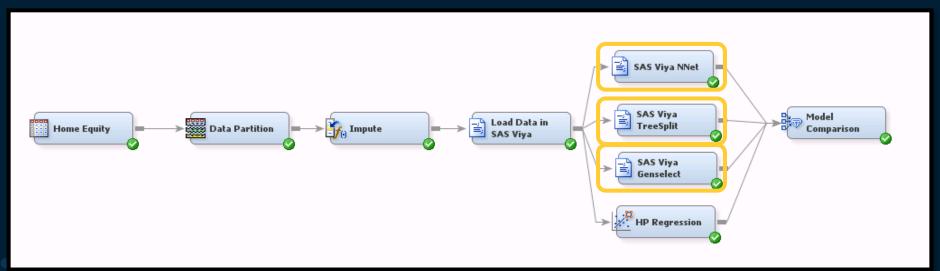
Documentation link

Scoring Task in SAS Studio

Models

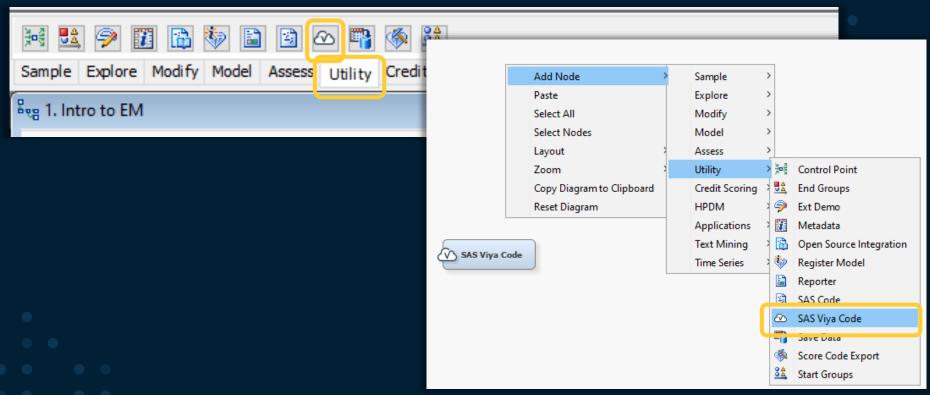
Including VDMML models in EM diagrams

Including SAS Viya Nodes into EM Diagrams


- Viya Code Node
- Scoring Viya Models in SAS 9.4

Adding SAS Viya Nodes to SAS Enterprise Miner

VDMML Models or Viya Procedures


 Allows you to run VDMML Models in CAS within EM diagrams in order to compare models

Adding SAS Viya Nodes to SAS Enterprise Miner

Viya Code Node Under the Utility Tab

SAS[®] Enterprise Miner™

Viya Code Node

- Just like in the other code nodes (SAS Code, Open Source Integration), several macros and macro variables have already been defined for you and some code has already been included to streamline the process for you. In invokes macros to:
- Streamline the pre-modeling process:
 - Signing into the Viya server
 - Loading your data into CAS
 - Setting up macros and macro variables for your data (target, inputs, rejected, etc.)
- Streamline the post-modeling process:
 - Model assessment
 - Model selection
 - Report generation
 - Viya session termination

SAS[®] Enterprise Miner™

Considerations

- In order to run Viya algorithms from Enterprise Miner, the input data to the Viya node needs to be transferred to the Viya environment.
- Typically, this isn't a problem when the environments are co-located in the same data center, or data centers with secure, fast connections between them.
- However, when the data is large or the environments are not colocated, the movement of data may not be practical, feasible or allowed (by your corporate network/security policies) depending on your overall architecture.

Scoring

Viya Models In SAS 9.4

Scoring SAS Viya Models in SAS 9.4

- Data Step code can be run directly in SAS 9.4 without any changes (except to add the data step datasets). <u>Using SAS Viya Data Step Code</u> in SAS 9.4
- Analytic store (ASTORE) will need to have the ASTORE files downloaded to your SAS 9.4 environment and use the EP (entire pipeline) score code file. <u>Using SAS Viya ASTORE Score CODE in SAS 9.4</u>

Scoring SAS Viya Models in SAS 9

Data step score code example

Need to insert a
Data Step to identify
incoming and
outgoing data.

```
SAS Code Generated by Cloud Analytic Services for Decision Tree
                       : 12Apr2021:19:05:18 UTC
  Date
 Number of Nodes
 Number of Tree Depth : 6
 Number of Bins
 Number of Obs
length strfmt $7; drop strfmt;
strfmt = ' ':
array _tlevname_49_{2} $32 _temporary_ ( '
                                                                      0.
                              1');
array dt fi 49 {2} temporary;
node id = 0;
new id = -1;
nextnode 49:
if node id eq 0 then do;
      numval = DEBTINC;
     if missing ( numval ) then do;
        node id = 1;
        goto nextnode 49;
     if (numval ge 44.5181701141609 and numval lt 144.189001287599) then do;
        new id = 1;
     end;
     else if ( numval ge 0.7202950067447 and numval lt 44.5181701141609) then do;
```

Scoring SAS Viya Models in SAS 9

ASTORE and EP Score code example

```
This score code file references one or more analytic stores that are located in the caslib "Models'
   This score code file references the following analytic store tables:
      ANCSOMXPGI6XXCSOP2DPTECWA ast
data sasep.out;
   dcl package score ANCSDMXFGI6XXOSOP2DFTEOWA();
   dcl double "P BAD1" having label n'Fredicted: BAD=1';
   dcl double "P BADO" having label n'Predicted: BAD=0';
   dcl nchar(32) "I BAD" having label n'Into: BAD';
   dol nchar(4) " WARN " having label n'Warnings';
   dcl double EM EVENTPROBABILITY;
   dcl nchar (8) EM CLASSIFICATION;
   dol double EM PROBABILITY;
   varlist allvars [ all ];
   method init();
       ANCSDMXFGI6XXOSOP2DFTEOMA.setvars(allvars);
       ANCSDMXFGI6XXOSOP2DFTEOWA.setkey(n'ASCE2CCODO9E4B29F75D2EDC86361507DAED4205');
   and:
   method post ANCSDMXFGI6XXOSOP2DPTEOWA();
      dcl double P ;
      if "P BADO" = . then "P BADO" = 0.8005033557;
      if "P BAD1" = . then "P BAD1" = 0.1994966443;
      if MISSING("I BAD") then do ;
      if "P BAD1" > P then do ;
```

EP Score code file name is dmcas_epscorecode.sas

Resources

Where to learn more

Resources

Where to learn more

- SAS® Enterprise Miner™ and SAS® Visual Data Mining and Machine Learning Handshake
- Make SAS® Enterprise Miner™ Play Nicely with SAS® Viya®
- SAS9.4 and SAS Viya Functional Comparison Technical Paper
- SAS Viya Overview
- SAS Enterprise Miner Support Page
- SAS Visual Data Mining and Machine Support Page
- Create an ASTORE Using SAS Enterprise Miner

SAS[®] Enterprise Miner™

Resources for Viya Code Node

- Make SAS® Enterprise Miner™ Play Nicely with SAS® Viya™
 https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2204-2018.pdf
- Github examples https://github.com/sassoftware/em-bridge2viya
- YouTube Video <u>Use SAS® Enterprise Miner™ to Run Machine Learning</u> <u>Algorithms in SAS® Viya®</u>

Communities

Questions? Thank you for your time and attention!

Connect with me:

LinkedIn: https://www.linkedin.com/in/melodierush

Twitter: @Melodie_Rush

sas.com

