
   

   1

%LET CPTCODE = 21081; 
 
DATA TEMP1; 
  SET SAS.DATASET; 
  WHERE CPT_CODE = "&CPTCODE"; 
RUN; 

%LET CPTCODE = 21081; 
 
DATA TEMP1; 
  SET SAS.DATASET; 
  WHERE CPT_CODE = '&CPTCODE'; 
RUN; 

Figure 4: Double Quotes Figure 3: Single Quotes 

Figure 1: Without Macro Variable Figure 2: With Macro Variable 

 
Paper 039-31 

 

SAS® Macro Dynamics -  
From Simple Basics to Powerful Invocations 

Rick Andrews, Centers for Medicare and Medicaid Services, Baltimore, MD 
 
 

ABSTRACT 
 
The SAS Macro Facility offers a mechanism for expanding and customizing the functionality of the SAS System.  It 
allows for the abbreviation of a large amount of program code conveniently and makes textual substitutions easy.  
The facility contains a programming language enables the execution of small sections of a program or entire steps 
conditionally.  This paper assumes a basic knowledge of the DATA step and the use of programming logic. It will 
provide simple to dynamics views of the powerful capabilities of SAS macros.  
 
INTRODUCTION 
 
SAS macros are evaluated before compile time. When a SAS program is 
submitted the system routes code to the macro processor and reviews the text to 
see if any SAS macros or macro variables have been included.  The processor 
cycles through the macro calls, replaces any macro references with actual 
values, and releases the updated program to the compiler for further processing. 
The resulting “effective code” will be revealed throughout the paper. 
 
In general, the SAS macro language is portable across all operating systems 
with few exceptions.  Typically, SAS statements that begin with a percent sign 
(%) are part of the macro language and macro variables can be identified by a 
proceeding ampersand (&). 
 
MACRO VARIABLES 
 
Probably the simplest use of the SAS Macro Facility is the creation of macro variables. Macro variables should be 
used if the same value needs to be changed in more than one location each time a program is submitted. Macro 
variable definitions should be located at the top of a program. There are several ways to create macro variables, the 
easiest of which is the use of %LET. 
 
%LET   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note the use of single (') quotes surrounding the value of the macro variable CPTCODE in the example above. When 
resolved, the value of '21081' will be passed to the compiler including the quotes. If the single quotes are omitted 
during the creation of the macro variable and instead are included within the WHERE clause, such as in the example 
Figure 3 below left, the SAS system will pass the literal value of '&CPTCODE' NOT '21081'.  To resolve the macro 
variable in this manor it should be surrounded with double (") quotes as shown in Figure 4 below right. 
   
 
 
  
  
  

CONTENTS 
 
• Macro Variables 

- %LET 
- PROC SQL
- CALL SYMPUT

 
• Simple Macros 

- %MACRO 
- %IF-%THEN-%ELSE 

 
• Dynamic Macros  

- %INCLUDE 
- CALL EXECUTE  
- %DO-%TO-%END

 
 
DATA TEMP1; 
  SET SAS.DATASET; 
  WHERE CPT_CODE = '21081'; 
RUN; 
 
DATA TEMP2; 
  SET MY.DATA; 
  WHERE CPT_CODE = '21081'; 
RUN; 

 

%LET CPTCODE = '21081'; 
 

DATA TEMP1; 
  SET SAS.DATASET; 
  WHERE CPT_CODE = &CPTCODE; 
RUN; 
 
DATA TEMP2; 
  SET SAS.DATASET; 
  WHERE CPT_CODE = &CPTCODE; 
RUN; 

 

Coders’ CornerSUGI 31

 



   

   2

MY.DATA
 

YEAR MEMBERS 
1999  11000 
2000  12000 
2001  13000 

PROC SQL NOPRINT; 
  SELECT MEMBERS 
  INTO : MACVAR1 
  FROM MY.DATA; 
QUIT; 
 
 
%PUT &MACVAR1;    
*Result = 11000; 

PROC SQL NOPRINT; 
  SELECT MEMBERS 
  INTO : MACVAR2 
  FROM MY.DATA 
  WHERE YEAR = 2000; 
QUIT; 
 
%PUT &MACVAR2;    
*Result = 12000; 

MY.DATA
 

YEAR MEMBERS  
1999  11000 
2000  12000 
2001  13000 

DATA _NULL_; 
  SET MY.DATA; 
  CALL SYMPUT('MACVAR3', 
               MEMBERS); 
RUN; 
 
 
%PUT &MACVAR3;    
*Result = 13000; 

DATA _NULL_; 
  SET MY.DATA; 
  WHERE YEAR = 2000; 
  CALL SYMPUT('MACVAR4', 
               MEMBERS); 
RUN; 
 
%PUT &MACVAR4;    
*Result = 12000; 

MY.CPTDATA 
 

CPT_CODE 
21081 
21082 
21083 
21084 
21085 

PROC SQL NOPRINT;
  SELECT "'" || CPT_CODE || "'" 
  INTO : MYLIST 
  SEPARATED BY ',' 
  FROM MY.CPTDATA; 
QUIT; 
 
 
%PUT &MYLIST;  
*RESULT = '21081','21082','21083','21084','21085'; 

Figure 6: MACVAR2 

Figure 7: MACVAR3 Figure 8: MACVAR4 

Figure 5: MACVAR1 

Figure 8: MYLIST 

The %PUT will output 
the results to the LOG. 

DATA _NULL_ tells SAS 
not to create a data set. 

PROC SQL 
 
Another way to create a macro variable is to use the SQL procedure. This is a good way to use values from within a 
data set that are needed for another process. In the data set, MY.DATA, a given value for the MEMBERS variable can 
be placed into a macro variable depending on the requirements of a process. 

 
In this example, the PROC SQL will grab the 
FIRST record in the data set. The macro 
variable MACVAR1 will resolve to 11000. 

 
 

In this example, the PROC SQL will grab the 
record meeting the WHERE criteria. The 
variable MACVAR2 will resolve to 12000. 

 
 

 
 
CALL SYMPUT . 
 
The SYMPUT routine can be used to interact with the macro facility during the execution of a DATA step. The routine 
allows the creation of macro variables based on values within a SAS data set similar to the PROC SQL. A major 
difference is one process will resolve to the value of the LAST record in lieu of the FIRST! 

 
In this example, the CALL SYMPUT will grab 
the LAST record in the table. The macro 
variable MACVAR3 will resolve to 13000. 

 
 

In this example, the CALL SYMPUT will grab 
the record meeting the WHERE criteria. The 
variable MACVAR4 will resolve to 12000. 

 
 

 
 
 
DYNAMIC IN (LIST) 
 
PROC SQL can also be used to string values together. This is particularly useful when an IN list is needed for use 
within a WHERE clause. Consider the data set, MY.CPTDATA, where a list of CPT_CODEs has been stored. This list 
can be placed into a macro variable and used as such: WHERE CPT_CODE IN ( &MYLIST ). 

 
 
 
  
 
 
 
 
 
 
 

Coders’ CornerSUGI 31

 



   

   3

%MACRO EXAMPLE1; 
 
  DATA TEMP0; 
    SET SAS.DATASET; 
  RUN; 
 
%MEND EXAMPLE1; 
 
%EXAMPLE1; 

%MACRO EXAMPLE2(MACVAR,CPTCODE);
 
  DATA TEMP&MACVAR; 
    SET SAS.DATASET; 
    WHERE CPT_CODE = "&CPTCODE"; 
  RUN; 
 
%MEND EXAMPLE2; 
 
%EXAMPLE2 ( 1, 21081 ); 
%EXAMPLE2 ( 2, 21082 ); 

%MACRO EXAMPLE3; 
 
  DATA _NULL_; 
    CALL SYMPUT( 'EXISTS', OPEN('TEMP1','I') );       
  RUN;                                                  
       
  %IF NOT &EXISTS %THEN %DO;                          
      DATA TEMP1; 
        SET SAS.DATASET; 
      RUN; 
  %END;      
  %ELSE %DO; 
      %PUT ERROR WILL ROGERS!; 
  %END; 
 
%MEND EXAMPLE3; 
%EXAMPLE3; 

 
 DATA TEMP1; 
  SET SAS.DATASET; 
  WHERE CPT_CODE="21081"; 
 RUN; 

 
 DATA TEMP2; 
  SET SAS.DATASET; 
  WHERE CPT_CODE="21082"; 
 RUN; 

Figure 12: Program Code EXAMPLE3 

Figure 11: Effective Code EXAMPLE2 

Figure 10: Program Code EXAMPLE2 Figure 9: Program Code EXAMPLE1 

SIMPLE MACROS 
 
Placement of SAS code within macros has various advantages. 1) Program code reduction 2) Eliminate repetitive 
changes 3) Provide conditional execution 4) Reduce typing errors. Below are examples of simple macro executions. 
 
%MACRO 
 
This simple example of a SAS macro actually does 
nothing more than execute the DATA step TEMP0. 

 
 

 
 
 

This example demonstrates how to pass values into 
the macro for use within the DATA step. 

 
 
 
 
 
 
 

 
In order to signify the beginning of a SAS macro the keyword %MACRO tells the processor the word that follows, such 
as EXAMPLE1 shown in Figure 9, will be the reference used to CALL the macro later in the program. The processor 
keeps reading the program until it reaches the keyword, 
%MEND, at which point it knows the macro creation has 
ended. The syntax at right demonstrates the “effective code” 
created after the program has passed through the macro 
processor. This is the code the SAS compiler will see. Note 
the difference between the data set names (i.e. TEMP1 and 
TEMP2) and the values passed into the WHERE clause.  
 
%IF - %THEN - %ELSE 
  
The macro in EXAMPLE1 may seem somewhat superfluous 
for there is no need for the macro given that no values are 
being passed and nothing has changed. One useful purpose 
for creating a macro with no parameters is to conditionally 
execute program code. The next example shows how to check whether a file already exists before trying to create it. 
Checking for the existence of a file can be done for SAS data sets, libraries, directories, and external files as shown.  
 
OPEN CODE 
 
A statement submitted using the 
macro language instructs the SAS 
macro processor to evaluate a 
given operation before compile 
time. Some statements are only 
allowed inside a macro definition 
(between the %MACRO and %MEND 
statements.) There are instances 
when parts of the macro language 
can be submitted in OPEN CODE, 
which essentially means outside 
of the macro definition. Examples 
of this functionality include %LET 
and %PUT. The %IF and %DO in 
the example shown here cannot 
be executed in OPEN CODE. 

OPEN - Opens SAS data set. 
 
See also: 
 
FOPEN  – Opens external file. 
DOPEN  – Opens a directory. 
FEXIST – Determine if external file  
                       exists.  

Coders’ CornerSUGI 31

 



   

   4

MY.CPTDATA 
 

CPT_CODE 
21081 
21082 
21083 
21084 
21085 

 
%EXAMPLE4 ( 1 , 21081 ); 
%EXAMPLE4 ( 2 , 21082 ); 
%EXAMPLE4 ( 3 , 21083 ); 
%EXAMPLE4 ( 4 , 21084 ); 
%EXAMPLE4 ( 5 , 21085 ); 

Figure 14: Macro Calls in Temporary File 

DATA TEMP1;  
SET...;  
WHERE..."21081"; 
RUN;           

DATA TEMP2;  
SET...;  
WHERE..."21082"; 
RUN;           

DATA TEMP4;  
SET...;  
WHERE..."21084"; 
RUN;           

DATA TEMP3;  
SET...;  
WHERE..."21083"; 
RUN;           

DATA TEMP5;  
SET...;  
WHERE..."21085"; 
RUN;           

Figure 15: Effective Code Example4 

*------------------------------------------*; 
* CREATE A MACRO TO PERFORM A GIVEN TASK   *; 
*------------------------------------------*; 
%MACRO EXAMPLE4 ( MACVAR , CPTCODE ); 
 
  DATA TEMP&MACVAR; 
    SET SAS.DATASET; 
    WHERE CPT_CODE = "&CPTCODE"; 
  RUN; 
 
%MEND EXAMPLE4; 
 
*------------------------------------------*; 
* CREATE OUTPUT FILE CONTAINING MACRO CALL *; 
*------------------------------------------*; 
FILENAME TMP_FIL TEMP; 
 
DATA _NULL_; 
  SET MY.DATA; 
  FILE TMP_FIL; 
  PUT '%EXAMPLE4(' _N_ ',' CPT_CODE ');' ; 
RUN; 
 
*------------------------------------------*; 
* INCLUDE FILE CONTAINING MACRO CALL       *; 
*------------------------------------------*; 
%INCLUDE TMP_FIL; 

Figure 13: Program Code EXAMPLE4 

*-----------------------------------------*;   
* SUBMIT EXAMPLE5 FOR EACH CPT CODE       *;   
*-----------------------------------------*;   
DATA _NULL_; 
  SET MY.DATA; 
  CALL EXECUTE 
   ( 
    '%EXAMPLE5(' || _N_ || ',' || CPT_CODE || ')' 
   ); 
RUN; 

Figure 16: Program Code CALL SYMPUT 

DYNAMIC MACROS 
 
Creating a dynamic macro call based on values within a data set is relatively straight forward. Figure 13 below 
demonstrates how to use a list of codes from a data set and create a macro that will cycle for each record. The macro 
EXAMPLE4 will accept two positional parameters, MACVAR and CPTCODE, same as in EXAMPLE2 on page 2.  
 
 
 
 
 
 

 
 
 
 
 
 
 

DATA _NULL_ 
 
The function of DATA _NULL_ in this 
step is to output a SAS macro call to a 
temporary program using the FILE 
statement. The _N_ is the temporary 
variable used to count the iterations of 
the DATA step. Here it can be used to 
count observations, though not its 
primary function. This automatic SAS 
variable and the CPT_CODE variable 
are used within the PUT statement to 
create the appropriate number of SAS 
macro calls based on the information 
within the data set, MY.DATA.  
 
%INCLUDE 
 
 

When the %INCLUDE statement is executed the syntax of the 
SAS program within the temporary file is read by the macro 
processor and the SAS macro calls are then evaluated. The 
subsequent “effective code” is passed to the compiler. At 
execution time, the system will process the 5 data steps 
shown below. If the number of observations within TABLE2 
changes, the macro will dynamically execute as many macro 
calls as becomes necessary. 
 

 

 

CALL EXECUTE 
 
The EXECUTE subroutine sends character 
arguments to the input stream, executes them 
immediately, and returns to the calling module, 
in this case, the DATA step.  This is truly a gem 
of a routine as it eliminates the need for the 
temporary file. Note the similarity to the PUT 
statement above, the major difference being the 
concatenation symbols (||) and parenthesis 
that surround the statement. 

1

1 

2

2 

3

3

Coders’ CornerSUGI 31

 



   

   5

MY.CPTDATA 
 

CPT_CODE 
21081 
21082 
21083 
21084 
21085 

*------------------------------------------*; 
* CREATE A MACRO TO PERFORM A GIVEN TASK   *; 
*------------------------------------------*; 
%MACRO EXAMPLE6; 
                      * NOTE THE DOUBLE AMPERSAND! *; 
  DATA TEMP&I; 
    SET SAS.DATASET; 
    WHERE CPT_CODE = "&&MACVAR&I";   
  RUN; 
 
%MEND EXAMPLE6; 
 
*------------------------------------------*; 
* DEFINE MACRO VARIABLES                   *; 
*------------------------------------------*; 
DATA _NULL_;                                             
  SET MY.DATA; 
  CALL SYMPUT( 'MACVAR' || LEFT(TRIM(_N_)) , CPT_CODE );
  CALL SYMPUT( 'TOTOBS' , _N_ );                       
RUN;            
                                                 
*-----------------------------------------*;             
* SUBMIT EXAMPLE5 FOR EACH CPT CODE       *;             
*-----------------------------------------*;             
%MACRO LOOP;                                            
  %DO I=1 %TO &TOTOBS;                                   
    %EXAMPLE6;                                           
  %END;                                                  
%MEND LOOP;                                             
%LOOP; 

 
%LET MACVAR1 = 21081; 
%LET MACVAR2 = 21082; 
%LET MACVAR3 = 21083; 
%LET MACVAR4 = 21084; 
%LET MACVAR5 = 21085; 
%LET TOTOBS  = 5;   

 

Figure 17: Program Code EXAMPLE6 

Figure 18: Effective Code EXAMPLE6  
%MACRO LOOP;               
  %DO I=1 %TO &TOTOBS;     
    %EXAMPLE6;             
  %END;                    
%MEND LOOP;                
%LOOP; 

Figure 19: Macro LOOP 
 

%MACRO EXAMPLE6; 
 
  DATA TEMP&I; 
    GEE  = "&&MACVAR&I"; 
    WHIZ = &I; 
  RUN; 
 
%MEND EXAMPLE6; 

Figure 20: Macro EXAMPLE6

%DO-%TO-%END 
 
The program that follows will produce the same “effective code” as the previous two examples. The result being five 
DATA steps passed to the SAS compiler for processing. Here the process will dynamically LOOP through the data 
using an array of macro variables.  
 
 
 
 

 
 
 
 
 
 
 
 

DATA _NULL_ 
 

The _N_ variable is used during the 
creation of the MACVAR variables 
and to create the TOTOBS macro 
variable. It should be noted that _N_ 
should be used with caution when 
counting observations.  If the DATA 
step contains a DO loop, _N_ may 
get incremented for each iteration of 
the loop.  It can only be used as a 
count of records in selective cases. 
 
During the first iteration of the DATA 
step, the CALL SYMPUT creates a 
macro variable called MACVAR1 that 
contains the value of the CPT code 
for the FIRST record in the data set. 
Each subsequent iteration creates 
an additional macro variable corr-
esponding to the record currently in 
memory. The “effective code” of this 
step is shown in Figure 18. 
 

MACRO LOOP 
 
The SAS macro called LOOP has no 
positional parameters. Nothing is being passed into it. The %DO-%TO-%END 
is SAS macro code and is only executed from within a SAS macro. In other 
words, they cannot be executed in OPEN CODE. Here the process will 
execute the %EXAMPLE6 macro for the total number of observations within 
the TOTOBS macro variable, 5 in this case as shown in the “effective code”. 
 

DOUBLE AMPERSAND “&&” 
 
The final step of the program in Figure 17 evaluates the double ampersand 
“&&”. During the execution of the %DO LOOP, a new macro variable “I” was 
created. This macro variable contains the current iteration of the LOOP. The 
first time through, it evaluates to 1, then 2, and so on until it reaches 5. The 
evaluation of the “&&MACVAR&I” variable is more complicated. The result 
created by the double ampersand during the first iteration will be, 
“&MACVAR1”, which then resolves to “21081”. Each subsequent iteration of the 
%DO LOOP yields an increasing number, “&MACVAR2”, “&MACVAR3”, based on 
the value of “&I”.  

1

1 

2

2

3

3

Coders’ CornerSUGI 31

 



   

   6

CONCLUSION 
 
The SAS Macro Facility is a very powerful scripting language and can be employed to create very dynamic processes 
with ever increasing functionality. It would behoove every SAS programmer, statistician, and analyst to learn more 
about this robust facility. The applications shown here range from the most basic to the somewhat intricate, though 
only begin to scratch the surface of the capabilities. 
 
REFERENCES 
 
Carpenter, A. (2005), “Storing and Using a List of Values in a Macro Variable”,  
Proceedings of the Thirtieth Annual SAS Users Group International Conference, 30, 028-30. 
 
Varney, B. (1999), “Creating Data Driven Programs with the Macro Language” 
Proceedings of the Twenty-fourth Annual SAS Users Group International Conference, 24, 254-24. 
 
Denis M. (2005), “CALL EXECUTE: A Powerful Data Management Tool”, 
Proceedings of the Thirtieth Annual SAS Users Group International Conference, 30, 027-30. 
 
SAS Institute Inc. (1990), SAS® Guide to Macro Processing, Version 6, Second Edition.  
Cary, NC: SAS Institute Inc. 
 
SAS Institute Inc. 1999, SAS® OnlineDoc® Version Eight. “SAS Macro Language Reference.” 
http://v8doc.sas.com/sashtml/. 
 
ACKNOWLEDGMENTS  
 
The author wishes to thank the CMS SAS User Group for their support. 
 
CONTACT INFORMATION 
Your comments and questions are valued and encouraged. 
 
Rick Andrews 
Centers for Medicare and Medicaid Services 
Office of Research, Development, and Information 
7500 Security Boulevard 
Baltimore, MD 21244 
Phone: (410) 786-4088 
E-mail: Richard.Andrews@cms.hhs.gov 
 
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS 
Institute Inc. in the USA and other countries. ® indicates USA registration.   

Coders’ CornerSUGI 31

 


	SUGI 31 Proceedings Table of Contents



