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SUMMARY

The design of epidemiologic studies for the validation of diagnostic tests necessitates accurate sample
size calculations to allow for the estimation of diagnostic sensitivity and speci�city within a speci�ed
level of precision and with the desired level of con�dence. Con�dence intervals based on the normal
approximation to the binomial do not achieve the speci�ed coverage when the proportion is close to 1. A
sample size algorithm based on the exact mid-P method of con�dence interval estimation was developed
to address the limitations of normal approximation methods. This algorithm resulted in sample sizes
that achieved the appropriate con�dence interval width even in situations when normal approximation
methods performed poorly. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The calculation of the sample size is an important component of the epidemiologic study
design process in general [1] and speci�cally for the validation of diagnostic tests [2]. The
ability of the calculated sample size to yield statistically signi�cant results upon completion of
the study depends upon the choice of the assumptions and the statistical model used to make
the calculations. The statistical method employed should parallel the method of data analysis
to the extent possible. The use of overly conservative methods of sample size estimation would
not be considered incorrect because �ndings should be ‘statistically signi�cant,’ however, such
methods may not be e�cient due to the increased cost associated with the excessive number
of study subjects.
The e�cient use of resources is important in the �eld of diagnostic assay development

because recent technological advances in the �eld of molecular biology has led to the rapid
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development of new tests for the control of emerging, and re-emerging, infectious diseases
of veterinary and public health importance. Newly developed assays need to be validated
and subsequently compared to existing methods before they can be accepted for general use.
Diagnostic assay validation can be considered to be comprised of �ve stages [3] that can be
roughly grouped into two components: bench validation and �eld validation. Bench validation
can be considered a laboratory process and �eld validation an epidemiologic consideration.
Both aspects of the validation procedure should include sample size calculations to achieve
desired precision in the results.
Newly developed assays, including polymerase chain reaction (PCR) based diagnostics, are

often expected to be highly accurate as measured by diagnostic sensitivity (probability of
a positive test in a truly a�ected individual) and speci�city (probability of a negative test
in a truly non-a�ected individual). The speci�cities of such assays are often reported to be
greater than or equal to 0.98 [4–7]. Statistical procedures based on the uncorrected normal
approximation to the binomial perform poorly for proportions close to 0 and 1 [8, 9] and
therefore other methods would be recommended for the analysis of data in such instances.
Sample size calculations for the evaluation and comparison of diagnostic assays has been
the focus of previous reports [10–13], but the design of such studies based on sample sizes
calculated using normal approximation methods are not likely to yield results at the desired
level of precision. The design of evaluation studies for assays that are expected to be close
to perfect would bene�t from sample size estimates based on modi�ed exact binomial theory.
Exact binomial methods have been previously developed for the estimation of the sample

size necessary to compare an expected proportion to a �xed null value. These methods have
been included in commercially available software packages including StatXact version 5.0
(Cytel Software Corporation, Cambridge, MA, U.S.A.) and SAS version 9.1 (SAS Institute
Inc., Cary, NC, U.S.A.). However, the author is not aware of available statistical software
or peer-reviewed published routines that will calculate the sample size necessary to estimate
a proportion within speci�ed limits at a predetermined level of con�dence based on exact
binomial methods. The objective of the paper reported here was to compare the performance of
a modi�ed exact binomial sample size computer algorithm to the usual normal approximation
method based on inverting the Wald statistic.

2. EXACT BINOMIAL SAMPLE SIZE

The Clopper–Pearson method of exact con�dence interval estimation [14] has been considered
the ‘gold standard’ method of interval estimation because it guarantees that the coverage
probability will be at or above the nominal level [8, 9, 15, 16]. The basis of the interval is
the binomial probability function and the following equations can be used to �nd the typical
exact con�dence limits for a speci�ed level of alpha.
Lower limit

n∑
k=x

(n
k

)
�kL(1− �L)n−k = �=2

Upper limit
x∑
k=0

(n
k

)
�kU(1− �U)n−k = �=2
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The con�dence limits are the solutions to these equations by adjusting �U and �L for the
�xed (observed) values of x and n until the appropriate probability is obtained.
These same equations can be used to calculate the sample size necessary to achieve speci�ed

con�dence limits and alpha error rate. In the sample size situation, �U and �L are �xed by the
investigator as the desired limits of the con�dence interval around the hypothesized proportion
(p0). The equations are then solved for the value of n yielding the appropriate sample size.
The value of x is calculated as the integer that when divided by n yields the closest value to
the proportion hypothesized by the investigator (p0 ≈ x=n).
This method results in the calculation of separate sample sizes for the lower and upper limits

of the con�dence interval. The conservative approach would be to report the maximum of
these two sample sizes as the one necessary to obtain. The Clopper–Pearson interval estimate
is considered to be overly conservative in certain situations [8, 15–17] due to the discreteness
of the binomial distribution and the sample size calculated in this manner would therefore
tend to be larger than necessary to achieve nominal precision.

3. MODIFICATION OF EXACT METHOD

The mid-P method [18, 19] of adjusting the traditional exact binomial con�dence interval
is less conservative and still achieves good coverage [8, 9, 16, 17, 19, 20]. Calculation of the
sample size based on this modi�cation is summarized in the two formulae below.
Lower limit

1
2

(n
x

)
�xL(1− �L)n−x +

n∑
k=x+1

(n
k

)
�kL(1− �L)n−k = �=2

Upper limit

1
2

(n
x

)
�xU(1− �U)n−x +

x−1∑
k=0

(n
k

)
�kU(1− �U)n−k = �=2

Solving the above formulae still results in the calculation of two di�erent sample sizes, which
may continue to be overly conservative. This can be controlled by combining the two above
probabilities into the single formula below.

1
2

(n
x

)
�xL(1− �L)n−x + 12

(n
x

)
�xU(1− �U)n−x +

n∑
k=x+1

(n
k

)
�kL(1− �L)n−k

+
x−1∑
k=0

(n
k

)
�kU(1− �U)n−k = � (1)

Using the above formula for the sample size situation necessitates that �U and �L be �xed
by the investigator as the desired limits of the con�dence interval around the hypothesized
proportion (p0). The equation is then solved for the value of n yielding the appropriate sample
size. The value of x is calculated as the integer that when divided by n yields the closest
value to the proportion hypothesized by the investigator (p0 ≈ x=n). Solving the above formula
will result in a sample size that is less conservative than the previously mentioned procedures
by allowing for asymmetry in the tail probabilities.
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4. FORTRAN ALGORITHM

An iterative routine was written in FORTRAN [21] to solve the sample size equation discussed
in the previous section. The input for the algorithm is the hypothesized proportion (p0), the
desired error limit (forming the limits �L and �U), and the desired level of con�dence (1−�).
The binomial probability function is di�cult to use when the sample size is large due to the
factorial component of the formula. The functional limit would be a sample size of 170 as
the largest number to calculate the factorial component using double precision (8 bytes) real
numbers (170!=7:3× 10306). The following relationship was used to remove this limitation
to the sample size calculation and included in the FORTRAN algorithm.

0¡x¡n:
(n
x

)
=

n!
x!(n− x)! =

n∏
k=x+1

k
n− (k − 1)

x= n; 0:
(n
x

)
=1

The sample size algorithm starts the procedure at the minimum n necessary to observe the
entered proportion exactly. For example, a proportion of 0.5 would start at n=2 and for
a proportion of 0.99 the starting point would be 100. The value of x yielding the entered
proportion is always 1 at the �rst iteration of the sample size procedure because of this
starting point. The algorithm simply adds 1 to the sample size at each iteration and sums the
probabilities in each tail for these values of x and n (such that p0 ≈ x=n). The appropriate
sample size has been reached when the sum of the tail probabilities is less than the speci�ed
alpha level (1− con�dence). To calculate the tail probabilities equation (1) was modi�ed for
the computer algorithm to reduce the computational complexity and improve e�ciency. The
modi�ed equation transforms both summations to be over the same range and is included
below (2) for the interested reader.

1
2

(n
x

)
�xL(1− �L)n−x +

n∑
k=x+1

(n
k

)
�kL(1− �L)n−k +

[
1−

(
n∑

k=x+1

(n
k

)
�kU(1− �U)n−k

+
1
2

(n
x

)
�xU(1− �U)n−x

)]
= � (2)

The FORTRAN program was compiled as a DOS-based application and can be obtained by
contacting the author.

5. SAMPLE SIZE EVALUATION

The modi�ed exact algorithm was used to calculate the sample size necessary to estimate
a range of proportions (0.5–0.99), error limits (0.01, 0.05, and 0.1), and con�dence levels
(0.90, 0.95, and 0.99). Statistical software [22] was used to perform the corresponding sample
size calculations using the large sample normal approximation methods based on Wald con�-
dence limits (�̂± z(1−�=2)

√
�̂(1− �̂)=n) [15]. The sample size formula for this method is n= �̂

(1 − �̂)(z1−�=2)2=e2 [23], where e is the desired error to form the limits of the con�dence
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interval. For each calculated sample size, the value of x (number of binomial successes) was
determined as the integer that yielded a proportion closest to the hypothesized proportion.
Mid-P adjusted exact con�dence intervals were calculated for these proportions (x=n) using
standard statistical software [22]. The width of the resulting con�dence interval was determined
and compared to the nominal (desired) width. A percent deviation from the nominal width
was calculated as

per cent width deviation= [(observed width − expected width)=expected width] ∗ 100

6. RESULTS

The sample sizes estimated using the modi�ed exact algorithm were very similar to the usual
normal approximation methods for evaluated proportions between 0.5 and 0.8 (Table I). The
width of the mid-P con�dence interval formed using the calculated sample sizes from both
methods were less than or equal to the nominal width for evaluated proportions between 0.5
and 0.85 (Figure 1). The sample sizes calculated for proportions greater than 0.8 were larger
using the modi�ed exact method and resulted in con�dence interval widths being noticeably
di�erent for the two methods (Figure 2). The sample sizes based on the normal approximation
resulted in con�dence intervals that were often too wide (larger than nominal width). The
corresponding intervals for the exact method tended to be narrower than the speci�ed length.
Figure 2 also suggests a cyclical pattern to the con�dence interval width. These �uctuations
are most likely the result of the data being discrete and the point estimate (x=n) not being
exactly the same for the di�erent sample sizes. The di�erence in con�dence interval width
between the modi�ed exact and normal approximation methods becomes more dramatic as
the proportion approaches 1 (Figure 3).

Table I. Comparison of sample sizes for the estimation of binomial proportions at two speci�ed levels
of precision and three levels of con�dence.

90 per cent con�dence level 95 per cent con�dence level 99 per cent con�dence level
± 0:10 ± 0:05 ± 0:10 ± 0:05 ± 0:10 ± 0:05

Proportion Exact Approx Exact Approx Exact Approx Exact Approx Exact Approx Exact Approx

0.50 68 68 270 271 96 97 384 385 164 166 662 664
0.55 68 67 268 268 95 96 380 381 162 165 655 657
0.60 65 65 260 260 92 93 369 369 160 160 635 637
0.65 62 62 248 247 88 88 351 350 151 151 605 604
0.70 59 57 229 228 80 81 323 323 140 140 560 558
0.75 52 51 204 203 72 73 288 289 128 125 500 498
0.80 45 44 175 174 64 62 249 246 115 107 430 425
0.85 39 35 140 138 53 49 200 196 99 85 353 339
0.90 29 25 100 98 47 35 148 139 80 60 260 239

Exact = sample size calculated using the modi�ed exact computer algorithm.
Approx = sample size calculated using the usual large sample normal approximation method.
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Figure 1. Comparison of sample size estimates for modi�ed exact and normal approximation methods
and their ability to achieve nominal width of mid-P con�dence intervals. Sample sizes estimated for
speci�ed proportion with 0.05 precision and 95 per cent con�dence level. Lines (dashed and solid) are

only included to help visualize trends among data points.
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Figure 2. Comparison of sample size estimates for modi�ed exact and normal approximation methods
and their ability to achieve nominal width of mid-P con�dence intervals. Sample sizes estimated for
speci�ed proportion with 0.05 precision and 95 per cent con�dence level. Lines (dashed and solid) are

only included to help visualize trends among data points.

7. DIAGNOSTIC TEST APPLICATIONS

The development of PCR-based diagnostics has resulted in assays with high degrees
of accuracy, especially diagnostic speci�city. It is important to choose the appropriate
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Figure 3. Comparison of sample size estimates for modi�ed exact and normal approximation methods
and their ability to achieve nominal width of mid-P con�dence intervals. Sample sizes estimated for
speci�ed proportion with 0.01 precision and 95 per cent con�dence level. Lines (dashed and solid) are

only included to help visualize trends among data points.

con�dence interval estimation method when reporting the diagnostic accuracy of tests that
have near perfect sensitivity or speci�city. To evaluate the e�ect of near perfect diagnostic
parameters (sensitivity and speci�city), coverage probabilities were determined for several sit-
uations in which the observed proportion was greater than or equal to 0.9. Three common
methods of con�dence interval formation—Wilson’s score method [24] with continuity correc-
tion [25], mid-P exact, and Wald were determined using a binomial distribution with n=200
and success probabilities ranging from 0.90 to 0.99 by 0.01. The score method incorporating
continuity correction is referred to as the Fleiss quadratic method by the employed software
[22] and is derived from the standardization of a proportion using the following formula [25]:

z=
|p− �0| − 1=(2n)√
�0(1− �0)=n

where �0 is the null value for the proportion and 1=(2n) is the continuity correction factor.
Con�dence limits are then determined by solving this equation for p (upper and lower) using
the appropriate Z1−�=2 value for the desired level of con�dence.
A sample size of 200 was chosen as one that would be considered adequate for most

diagnostic test evaluations, numerators would yield the desired proportion exactly, and n�¿5
and n(1 − �)¿5 would be satis�ed for most evaluated proportions (0.90–0.97). The n�¿5
and n(1−�)¿5 rule is often cited in introductory statistics books as situations when the usual
Wald intervals are expected to perform adequately [26]. Con�dence intervals for the number
of binomial successes were performed using available software [22] and coverage probabilities
were determined using the following formula [15]:

Cn(�)=
n∑
k=0
I(k; �)

(n
k

)
�k(1− �)n−k
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Figure 4. Comparison of coverage probability for three methods of 95 per cent interval estimation
at multiple proportions relatively close to 1 and a sample size of 200. Lines (dashed and solid) are

only included to help visualize trends among data points.

where I(k; �) is equal to 1 if the interval contains � for the particular value of k and 0
otherwise.
The continuity-correct score method consistently resulted in con�dence intervals with greater

than nominal coverage for the evaluated proportions (Figure 4). Coverage probability for the
Wald method was below nominal level for many of the evaluated proportions and was worse
for values closest to 1. The mid-P adjusted exact method seemed to perform the best of the
three methods and yielded coverage probabilities closest to the nominal level.
Con�dence intervals based on inverting the Wald test tend to have erratic coverage proba-

bilities that do not seem to be resolved simply by increasing the sample size [8, 15, 20]. The
mid-P adjusted exact method, however, appears to give more consistent results over ranges of
sample sizes and point estimates [9, 19]. These observations were supported by the results re-
ported here and the coverage probability of the Wald intervals appear to worsen as the propor-
tion approaches 1, which exacerbates the problem for the evaluation of some diagnostic tests.

8. DISCUSSION

The method of sample size estimation is important for the proper design and planning of an
epidemiologic study concerning the validation of a diagnostic test, or the estimation of another
population proportion. The author is not aware of another software routine that will calculate
the sample size necessary to estimate a proportion within speci�ed limits at a predetermined
level of con�dence that is not based on usual large sample normal approximation methods.
The noted de�ciencies in intervals estimated using such methods should caution investigators
not to rely on similar formulae when determining the necessary size of a study. The sample
size method presented here results in intervals that achieve nominal width (or narrower) even
in situations when the hypothesized proportion is relatively close to 1.
The developed computer algorithm is based on the mid-P adjusted exact method and can

therefore be computationally intense for certain combinations of proportion, interval width, and
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con�dence level. The algorithm was designed to be most e�cient for proportions greater than
0.5 due to the employed probability formula (2). The program converts proportions ¡0:5
to values ¿0:5 (1 − entered proportion) before starting the algorithm. Results concerning
proportions greater than or equal to 0.5 were only presented for this reason.
The computational intensity of the binomial probability function prevents the sample size

algorithm from being able to solve all possible combinations of proportion, interval width,
and con�dence level. The program will fail to �nd the correct sample size when individual
binomial probabilities approach 1× 10−310. When individual probabilities become functionally
zero the overall sum of probabilities will start to decrease and the algorithm will continue
to cycle without ever �nding a suitable sample size. The program was therefore designed
to end and print an error message upon reaching an individual probability of zero. This
limitation could be improved by incorporation of variables with higher precision (e.g. 16 byte
variables), but these were not available in the computing environment used by the author.
This limitation is most severe for proportions close to 0.5 and is not much of an issue as the
hypothesized proportion approaches 1. Therefore, the algorithm still appears to function well
for most situations in which the normal approximation sample size methods perform poorly
(�¿0:85).
Finally, the design of diagnostic test evaluation studies where the sensitivity or speci�city

is expected to be close to perfect would bene�t from a new sample size method that is not
based on the usual normal approximation methods. The modi�ed exact method for sample
size estimation is an improvement that would facilitate the evaluation of diagnostic tests. The
development of other new sample size routines should be encouraged that would also aid in
the design of future studies. It is important to provide these newly developed tools to the
practicing epidemiologist to allow for their mainstream use.
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