Paper 95-26

How Many Observations Are In My Data Set?
Jack Hamilton, First Health, West Sacramento, California

ABSTRACT

This paper presents a macro which returns the number of
observations in a SAS data set or view, with an optional WHERE
clause, and an additional macro which indicates only whether the
data set or view is empty.

INTRODUCTION

It sometimes happens that a SAS program needs to know how
many observations are in a SAS data set. The traditional, and
fastest, method is to use the NOBS= option on a SET statement,
but this method does not always return the correct number. This
paper describes some of the problems with the NOBS= solution,
and presents a macro as an alternative solution.

NOBS= WORKS WITH AN ORDINARY DATA SET

Suppose you have an ordinary data set, one that you've just
created:

data rowlcoll;
a = 12;
output;
run;

If you use the NOBS= option on a SET statement, you can find
the number of observations in the data set:

data null ;

put nobs=;

stop;

set rowlcoll nobs=nobs;
run;

prints

NOBS=1

THE PROBLEM

The problem is that the NOBS= option doesn’t produce correct
results for all types of data sets.

NOBS= DOESN’T WORK WITH AN EDITED DATA SET

A data set which has been edited in place may not return the
correct number:

data delobs;
a = 12;
output;

run;

data delobs;
modify delobs;
remove;

run;

data null_;
put nobs=;
stop;
set delobs nobs=nobs;

run;

will print NOBS=0 on OpenVMS (SAS 6.12), which is correct, but
NOBS=1 on Windows (SAS 6.12) and Unix (SAS 8.1), which is
incorrect.

NOBS= DOESN’T WORK WITH A DATA STEP VIEW
The NOBS= option also doesn’t work with a data step view:

data datavl / view=datavl;
set rowlcoll;
run;
data null ;
put nobs=;
stop;
set datavl nobs=nobs;
run;

prints

NOBS=2147483647

Plausible, if you happen to have a really large dataset, but
incorrect.

NOBS= DOESN’T WORK IN VARIOUS OTHER CASES
NOBS-= also doesn’t work with transport data sets, SQL views
(including database passthrough views), and in some other
cases.

SO WHAT?

Use of the NOBS= option is OK if you just created the data set
earlier in the same program, or if you have some other way of

knowing for certain how the data set was created and possibly
modified..

On the other hand, if you don’t know how the data set was
created or how it might have been manipulated, it's not safe to
use NOBS=. In particular, if you're writing a general purpose
program or macro that might be used by anyone on an arbitrary
data set, you should not use NOBS= to count observations.

This problem was not obvious in the past, when views and
transport data sets weren’t common. But these days, a data set
might come from anywhere — you might be dealing with a “real”
data set, or a view, or an external database, or a real data set on
a different platform.

A SOLUTION

One solution to this problem (the solution | present here) is to
create a general-purpose macro which returns the number of
observations in a data set, regardless of how it was created. The
macros uses the data set information functions, new in late
releases of SAS version 6, to provide the information needed.

The steps are:

1. Find out whether SAS knows how many observations there
are,

2. If it does know, there’s a function which returns the correct
count. Use it and you'’re done.

3. If SAS doesn’t know how many observations there are,
iterate through the data set and count.

An advantage of this approach is that it supports where clauses,
which NOBS= does not. Another advantage is that it is
implemented entirely in the macro language, and will not create a
step boundary in the calling program. The primary disadvantage
is that it can be slow for large datasets.

Highlights of the code are shown below, and the complete macro
is given at the end of the paper. A special case macro,
MTANYOBS, is also shown; it checks whether there are any
observations in the dataset, without counting them.

MAKE SURE THE DATA SET EXISTS
Use the OPEN function to make sure the data set exists; if it
doesn’t, or can’t be opened, return a missing value:

%$let DSID = %$sysfunc(open(&DATA., IS));
%$if &DSID = 0 %then

%$do;

$put %sysfunc (sysmsg());

%$let counted = .;

$goto mexit;

%$end;

The OPEN function returns an internal pointer to the data set if
the open succeeded, or 0 if the open failed.

In the case of failure, use the SYSMSG function to get
explanatory text, set the return value to missing, and go to the
exit.

If the open succeeded, the dataset pointer is stored in DSID.

DOES SAS KNOW THE ANSWER WITHOUT COUNTING?

If SAS knows how many observations are in the data set, and if
there’s no WHERE clause, you can get the answer directly:

%$let anobs = %sysfunc(attrn(&DSID, ANOBS)) ;
%$let whstmt = $sysfunc(attrn(&DSID, WHSTMT)) ;

%$if &anobs = 1 & &whstmt = 0 %then
%do;
%let counted =
$sysfunc (attrn (&DSID, NLOBS)) ;
%$end;

The ATTRN function returns the value of a numeric attribute of a
data set. The ANOBS attribute is 1 if SAS knows the number of
observations in the data set specified by DSID, and 0 if it
doesn’'t. The WHSTMT attribute is 0 if no where clauses are
active, and non-zero if there are active where clauses.

DOES SAS HAVE TO ITERATE?

If SAS doesn't know the number of observations, or if you're
using a WHERE clause, you can obtain the answer by iterating
through the data set. This can be expensive, but it is your only
reliable choice.

The code is simple; just loop and increment a counter:

%$let counted = 0;

%$do $while (%sysfunc(fetch(&DSID)) = 0);
%let counted = %eval (&counted. + 1) ;
%$end;

The Fetch function obtains the next observation in the referenced
dataset.

EXAMPLES OF USAGE

The MTCNTOBS macro returns a number (as a string), and can
be used anywhere a number might occur.

USAGE WITHOUT A WHERE CLAUSE

put "There are $MTCNTOBS (data=testdata) rows
in your table.";

USAGE WITH A WHERE CLAUSE

data null ;
%$let obscount = $MTCNTOBS (data=skiing
(where=(xc='Y' and open ='Y'")));
select (&obscount) ;
when (0)
put 'No XC resorts are open.';
when (1)
put 'l XC resort is open.';
otherwise
put "&OBSCOUNT. XC resorts are open.";
end;
run;

PRINTING A "NO OBSERVATIONS" PAGE

It's often desired to print out a special page if there are no
observations in a data set (if there are no records, PROC PRINT
and other reporting procedures will print nothing). The
MTANYOBS macro can be used to do this:

title 'Listing of Errors';
proc print data=errors;
run;

data null_;
if $MTANYOBS (data=errors) = 0 then
do;
file print;
put "No errors were found.";
end;
stop;
run;

If there were errors, the PROC PRINT will execute but the PUT
statement in the data null will not. If there were no errors, the
PUT will execute but the PROC PRINT will not.

Two things to note here:
1. The same title statements will be used in either case.

2. This special case can be made simpler; you don't need to
iterate through observations 2 through 10,000,000 after
you've found the first observation. A revised macro,
MTANYOBS, is found at the end of this paper.

Q&A

WHY DOES ITERATION TAKE SO LONG?

It appears to be a problem with the macro language rather than
the FETCH function. The increment statement, which requires
converting a string to a number, adding, and converting back to a
string, is slow. Running the FETCH function plus a counter
against a million record dataset takes 671 seconds on a test
machine (Windows NT). A simple loop counting from 1 to
1,000,000 takes 452 seconds on the same machine. In other
words, two-thirds of the time is spent on simple integer arithmetic.

WHAT'S AN ALTERNATIVE?

One alternative is to do the counting in a data step. This is more
work to program, but is faster to execute. A data step which uses
the same counting technique as the MTCNTOBS macro takes 16
seconds, as opposed to 671 seconds in the macro. If you're
dealing with large datasets, it might be worth your time to avoid
using macros, even at the cost of creating additional step
boundaries.

Here's the code used in a data step:

16 data null_;

17 dsid = open('testdata
(where=(class=3))', 'is');

18 do while (fetch(dsid, 'noset') = 0);

19 i+ 1;

20 end;

21 put i=;

22 rc = close(dsid) ;

23 stop;

24 *hRxkkk, orun;

1=249974

NOTE: DATA statement used:
real time 15.93 seconds
It would not be difficult to "macrotize" this code so that it could be
easily included in the middle of a data step; the primary difficulty
would be ensuring that there is no variable name collision. It
would also be easy to write a macro which creates a stand-alone
data step which saves its results into a macro variable. These
macros are left as an exercise for the reader (there's not room for
them in this paper).

WHY NOT USE THE SET STATEMENT IN A DATA STEP?
Another iterative solution in the data step might be:

data null_;
do while (not nomore) ;
set testdata (where=(class=3))
end=nomore;
i+ 1;
end;
put i=;
stop;

* Kk k Kk Kk ; run;
Unfortunately, this prints
i=1000000

The END= option doesn't seem to take the WHERE clause into
account.

There are two other problems with the SET solution:

1. It causes data movement, so you might see a speed
decrease for a data set with many variables, or large
character variables.

2. It brings variables into the data step, and those variables
might interfere with something else you're doing.

COULD | USE sQL?

PROC SQL provides another alternative for counting
observations. In theory, it could be faster than other methods if
the WHERE clauses is on indexed variables.

Here's sample code:

proc sgl noprint;
select count (*)

into :OBSCOUNT

from testdata

where class = 3;
quit;

%put Count=&0BSCOUNT. ;

WHY NOT USE THE NLOBSF DATA SET ATTRIBUTE TO
OBTAIN THE COUNT?
The documentation for the NLOBSF option says that NLOBSF

specifies the number of logical observations (those not
marked for deletion) by forcing a read of each
observation and taking the FIRSTOBS and OBS system
options, and the WHERE clauses into account. Tip:
Passing NLOBSF to ATTRN requires the engine to read
every observation from the data set that matches the
WHERE clause. Based on the file type and size, this can
be a time-consuming process.

That sounds like what we want, without the overhead of counting
in a macro.

Unfortunately, this option is not suitable, for two reasons:
1. It's not available in SAS version 6, and
2. It doesn't return the correct answer.

Here's an example:

97 $macro check;

98

99 %$let dsid =
$sysfunc (open (sasuser.iris, IS));

100 %$if &DSID = 0 %then

101 $put %sysfunc (sysmsg());

102

103 %$let nlobs = %$sysfunc(attrn(&dsid,
NLOBS)) ;

104 $put nlobs=&nlobs.;

105 %$let nlobsf = %$sysfunc(attrn(&dsid,
NLOBSF)) ;

106 %$put nlobsf=&nlobsf.;

107

108 %$let rc = %$sysfunc(close(&dsid));
109

110 %$mend;

111

112 %check;

nlobs=150

nlobsf=-1

OBTAINING A COPY OF THE MACROS

The complete text of the macros is shown at the end of this
paper. | recommend that you type it in yourself as an aid to
understanding, but it may also be downloaded from one of these
sources:

<www.libname.com>
<www.sconsig.com>
<www.excursive.com/sas/sas.html>

An updated version of this paper may be available after SUGI.

CONTACT INFORMATION

Jack Hamilton

First Health

West Sacramento, California 95605 USA
(916) 374-3833
jackhamilton@firsthealth.com

TEXT OF THE MTCNTOBS MACRO
%$macro MTCNTOBS (data=_last) ;

%$* This macro returns the number of observations in a data set,
or . if the data set does not exist or cannot be opened.

- It first opens the data set. An error message is returned
and processing stops if the dataset cannot be opened.

- It next checks the values of the data set attributes
ANOBS (does SAS know how many observations there are?) and
WHSTMT (is a where statement in effect?).

- If SAS knows the number of observations and there is no
where clause, the value of the data set attribute NLOBS
(number of logical observations) is returned.

- If SAS does not know the number of observations (perhaps
this is a view or transport data set) or if a where clause
is in effect, the macro iterates through the data set
in order to count the number of observations.

The value returned is a whole number if the data set exists,
or a period (the default missing value) if the data set
cannot be opened.

This macro requires the data set information functions,
which are available in SAS version 6.09 and greater. ;

o
*

By Jack Hamilton, First Health, January 2001. ;

%local dsid anobs whstmt counted rc;
%$let DSID = %sysfunc (open (&DATA., IS));
%$if &DSID = 0 %then
%$do;
$put %sysfunc(sysmsg());
%let counted = .;
%$goto mexit;
%$end;
%else
%do;
%$let anobs = %$sysfunc(attrn(&DSID, ANOBS)) ;
%$let whstmt = %sysfunc(attrn(&DSID, WHSTMT)) ;
%$end;

%$if &anobs = 1 & &whstmt = 0 %then
%$let counted = %sysfunc(attrn(&DSID, NLOBS)) ;

%else
%do;
%$if %sysfunc(getoption(msglevel)) = I %then

$put INFO: Observations in "&DATA." must be counted by iteration.;
%$let counted = 0;

%$do $while (%sysfunc(fetch(&DSID)) = 0);
%let counted = %eval (&counted. + 1) ;
%$end;
%$end;
%$let rc = %$sysfunc(close (&DSID)) ;
$MEXIT:
&COUNTED.

$mend MTCNTOBS;

TEXT OF THE MTANYOBS MACRO

%$macro mtanyobs (data=_last) ;

o°
*

This macro returns 1 if there are any observations in a data set,

0 if the data set is empty, or . if the data set does not exist or

cannot be opened.

- The macro first opens the data set. An error message is displayed

and processing stops if the dataset cannot be opened.

- It next checks the values of the data set attributes
ANOBS (does SAS know how many observations there are?) and
WHSTMT (is a where statement in effect?).

- If SAS knows the number of observations and there is no

where clause, the data set attribute ANY is used to determine

whether there are any observations.

- If SAS does not know the number of observations (a view or transport
data set) or if a where clause is in effect, the macro tries to read
the first observation. If a record is found, the macro returns 1,

otherwise it returns 0.

This macro requires the data set information functions,
which are available in SAS version 6.09 and greater. ;

o°
*

By Jack Hamilton, First Health, January 2001. ;

%local dsid anobs whstmt hasobs rc;
%$let DSID = %$sysfunc(open(&DATA., IS));
%$if &DSID = 0 %then
%$do;
$put %$sysfunc (sysmsg()) ;
%let hasobs = .;
$goto mexit;
%$end;
$else
%$do;
%$let anobs = %sysfunc(attrn(&DSID, ANOBS)) ;
%$let whstmt = $sysfunc(attrn(&DSID, WHSTMT)) ;
%$end;

%$if &anobs = 1 & &whstmt = 0 %then
%$do;
%$let hasobs = %sysfunc(attrn(&DSID, ANY));
%$if &hasobs = -1 %then
%let hasobs = 0;
%$end;
$else
%$do;
%$1if %$sysfunc(getoption(msglevel)) = I %then
%$put INFO: First observation in "&DATA." must be fetched.;

%let hasobs = 0;
%$if %$sysfunc(fetch(&DSID)) = 0 %then
%let hasobs = 1;
%$end;
%$let rc = %$sysfunc(close (&DSID)) ;
$MEXIT:
&HASOBS.

%$mend mtanyobs;

	SUGI 26 Title Page

