
Accessing a Microsoft SQL Server Database from SAS on
Microsoft Windows

On Microsoft Windows, you have two options to access a Microsoft SQL Server database
from SAS. You can use either SAS/Access Interface to ODBC, or SAS/Access to
OLEDB.

Submitting the following code from within SAS displays all the licensed products for
your site in the SAS log window:

Proc setinit noalias;
Run;

If you have one or both of the Access products licensed for your site, the next step is to
determine if the products have been installed on your machine.

From Windows Explorer, you can browse to !SASROOT\Access\Sasexe and look for the
following files:

1) sasioodb.dll – the presence of this file means that SAS\Access Interface to ODBC
is installed on your machine.

2) sasioole.dll - the presence of this file means that SAS\Access Interface to OLEDB
is installed on your machine.

Depending on how SQL Server is set up, you can connect using either SQL Server
Authentication or NT Authentication. Using SAS/Access to ODBC or SAS/Access to
OLEDB with each authentication method will be discussed below.

SAS/Access to ODBC:

SQL Server Authentication:

To set up an ODBC Data Source, select the Start Menu, click on Settings Control
Panel and choose Administrative Tools. From there, choose Data Sources (ODBC). This
will open the Data Source Administrator.

Choose the User or System DSN tab and select ‘Add’ to add a new data source. Select the
SQL Server driver and click ‘Finish’.

The next window allows you to enter a name for the data source, an optional description,
and the server you want to connect to.

Choose SQL Server authentication as shown below and enter the SQL server login ID
and password. Click on ‘Next’.

The next 2 screens will allow for further server configurations, such as changing the
default database, creating temporary stored procedures, changing the language of SQL
server system messages, etc.

Once you click the ‘Finish’ button, you will see a summary window of the configurations
you chose, and you can try a test connection to see if the configurations are valid.

If everything is set up properly, the test connection will be successful. Click ‘OK’ to exit
out of the SQL Server setup and Administrator.

Once the driver has been configured and the test connection is successful, then you can
use a LIBNAME statement to create a library within SAS:

LIBNAME SQL ODBC DSN=’sql server’ user=sasjlb pw=pwd;

Where 'sql server' is the name of the Data Source configured in the ODBC Administrator.

Using NT Authentication:

To setup an ODBC data source, select the Start Menu, click on Settings Control Panel
and choose Administrative Tools. From there, choose Data Sources (ODBC). This will
open the Data Source Administrator.

Choose the User or System DSN tab and select ‘Add’ to add a new data source. Select the
SQL Server driver and click ‘Finish’.

The next window allows you to enter a name for the data source, an optional description,
and the server you want to connect to. Click on ‘Next’.

Choose NT authentication as shown below and click on ‘Next’.

The next 2 screens will allow for further server configurations, such as changing the
default database, creating temporary stored procedures, changing the language of SQL
server system messages, etc.

Once you click the ‘Finish’ button, you will see a summary window of the configurations
you chose, and you can try a test connection to see if the configurations are valid.

If everything is set up properly, the test connection will be successful. Click ‘OK’ to exit
out of the SQL Server setup and Administrator.

Once the driver has been configured and the test connection is successful, then you can
use a LIBNAME statement to create a library within SAS:

LIBNAME SQL ODBC DSN=’sqlsrv_nt’;

Where 'sqlsrv_nt' is the name of the Data Source configured in the ODBC Administrator.

Prompted connection:

If you aren't sure what values to add for the userid, password and data source, you can try
connecting with a prompted connection. A prompted connection just means you are
prompted to enter the above information instead of supplying it on the LIBNAME
statement. Submit the following 2 lines of code:

libname sql odbc prompt;
%put %superq(sysdbmsg); /* V9 syntax */
%put &sysdbmsg; /* V8 syntax */

The ‘Select Datasource’ window will open. If you created a user or system DSN, you will
need to select the Machine Data Source tab. Choose the appropriate DSN, and click on

‘Okay’. Enter your SQL Server login id and password. Once you have connected, several
parameters will be written to the log window. An example is below:

LIBNAME SQL ODBC prompt;
NOTE: Libref SQL was successfully assigned as follows:
 Engine: ODBC
 Physical Name: sqlsrv
7 %put %superq(sysdbmsg);
ODBC: DSN=sqlsrv;UID=jebjur;PWD=jebjur1;WSID=d17117

You can cut and paste everything after 'ODBC:' and place it on the LIBNAME statement
with a NOPROMPT= option as such:

/* SQL Server Authentication */

LIBNAME SQL ODBC noprompt= "dsn=sqlsrv; uid=sasjlb; pwd=pwd; wsid=d17117";

/* NT Authentication */

LIBNAME SQL ODBC noprompt=”dsn=sqlsrv_nt;wsid=d17117;
Trusted_Connection=Yes ";

Schemas:

SQL Server database tables are organized in schemas, which are equivalent to database
users or owners. In order to see particular tables in a defined library, you may need to add
the SCHEMA= option to the LIBNAME statement. If no schema is specified, SAS will
look in the current userid’s schema by default.

For example:

LIBNAME SQL ODBC DSN=sqlsrv user=sasjlb pw=pwd schema=dbo;

If you aren’t sure what schema your tables are contained in, you can use one of the
following methods to find it:

1) Use SAS Query Window: from the Tools -> Query menu.

when the Query Window has loaded, go to Tools – Switch Access Mode - ODBC. Then
select your datasource and respond to any prompts that pop up. When you are connected,
you will see a list of available tables from your odbc datasource. The tables are two-level
names such as dbo.table1. The first level (dbo) is the schema.

2) Use PROC SQL passthrough method:

This method will create a temporary data set with the list of available tables in the
database. The TABLE_SCHEM variable will contain the schema.

/* SQL Server Authentication */

proc sql;
connect to odbc (dsn=sqlsrv user=user pwd=xxxxx);
create table test as select * from connection to odbc(ODBC::SQLTables);
quit ;

/* NT Authentication */

proc sql;
connect to odbc (dsn=’sqlsrv_nt’);
create table test as select * from connection to odbc(ODBC::SQLTables);
quit ;

Importing Data:

Once the LIBNAME statement has been successfully assigned, you can use either DATA
step or PROC SQL logic to import the data in a SQL Server table, just as you would with
a permanent SAS data set.

For ex:

LIBNAME SQL ODBC DSN=’sql server’ user=sasjlb pw=pwd;

DATA NEW;
SET SQL.TABLE1;
RUN;

PROC SQL;
CREATE TABLE NEW AS SELECT * FROM SQL.TABLE1;
QUIT;

You can also use PROC SQL passthrough with SAS/Access to ODBC. The query would
look similar to:

/* SQL Server Authentication */

proc sql;
connect to odbc (dsn=sqlsrv user=user pwd=xxxxx);
create table test as select * from connection to odbc(select * from table2);
quit ;

/* NT Authentication */

 proc sql;
 connect to odbc(dsn=’sqlsrv_nt’);
 create table new as select * from connection to odbc(select * from table2);
 quit;

SAS/Access to OLEDB:

SQL Server Authentication:

With SAS/Access to OLEDB, you do not have to configure the data provider. The
LIBNAME statement would look similar to:

LIBNAME sqlsrv oledb init_string="Provider=SQLOLEDB.1;Password=pwd;
Persist Security Info=True;User ID=user;Data Source=sqlserv";

Using NT Authentication:

With NT authentication, The LIBNAME statement would look similar to:

LIBNAME sqlsrv oledb init_string="Provider=SQLOLEDB.1;
Integrated Security=SSPI;Persist Security Info=True;
Initial Catalog=northwind;Data Source=steak";

Prompted Connection:

If you aren't sure what values to add for the userid, password and data source
(=server name), then you can try connecting with a prompted connection. A
prompted connection just means you are prompted to enter the above information
instead of supplying it on the LIBNAME statement. Submit the following 2 lines
of code:

libname sqlsrv oledb;
%put %superq(sysdbmsg); /* V9 syntax */
%put &sysdbmsg; /* V8 syntax */

* in the pop up window, select "Microsoft OLE DB Provider for SQL
Server,"
* select "Next:
* enter the Data Source name (server)
* select the "Use a specific user name and password" radio button, and
 enter the appropriate username and password.
* Enter the name of a database on the server you wish to connect to (optional).
* select "Test Connection" and made sure it established a connection
* select "OK" to exit the pop up. If a connection was established, you

should see a note in the SAS log that says the LIBNAME statement was
successfully assigned.

If you then want to do an unprompted connection, then do the following:

* The connection parameters were then written to the log due to the following
line:
%put %superq(SYSDBMSG);

* which wrote the following to the Log:

OLEDB: Provider=SQLOLEDB.1;Password=pwd;Persist Security Info=True;
User ID=user;Data Source=sqlserv

In order to create a LIBNAME statement such as the one above, you can cut and paste the
connection parameters that were written to the log (everything after the OLEDB: string)
and add them to the LIBNAME statement with an INIT_STRING= option. The final
LIBNAME statement looks like:

/* SQL Server Authentication */

LIBNAME sqlsrv oledb init_string="Provider=SQLOLEDB.1;Password=pwd;
Persist Security Info=True;User ID=user;Data Source=sqlserv";

/* NT Authentication */

LIBNAME sqlsrv oledb init_string="Provider=SQLOLEDB.1;Integrated Security=SSPI;
Persist Security Info=True;Initial Catalog=northwind;Data Source=steak”;

If the connection is successful, you can go to the SAS Explorer window, click
on the library and see the tables on the server.

Schemas:

If the LIBNAME statement connected successfully but there are no tables in the library, a
schema may be needed on the LIBNAME statement as well. If you need to find a schema
for a table with SAS/Access to OLEDB, you can use the PROC SQL passthrough code
below. This method will create a temporary data set with the list of available tables in the
database. The TABLE_SCHEMA variable will contain the schema.

proc sql;
connect to oledb;
create table tabs as select * from connection to oledb(OLEDB::Tables);
quit;

Once you find the appropriate schema value, you would add it to the the LIBNAME
statement with the SCHEMA= option. The LIBNAME statement would look similar to
the following:

/* SQL Server Authentication */

LIBNAME sqlsrv oledb init_string="Provider=SQLOLEDB.1;Password=pwd;
Persist Security Info=True;User ID=user;Data Source=sqlserv" schema=dbo;

/* NT Authentication */

LIBNAME sqlsrv oledb init_string="Provider=SQLOLEDB.1;Integrated Security=SSPI;
Persist Security Info=True;Initial Catalog=northwind;Data Source=steak” schema=dbo;

Importing Data:

 Once the LIBNAME statement has been successfully assigned, you can use either
DATA step or PROC SQL logic to import the data in a SQL Server table, just as you
would with a permanent SAS data set.

For ex:

LIBNAME sqlsrv oledb init_string="Provider=SQLOLEDB.1;Password=pwd;
Persist Security Info=True;User ID=user;Data Source=sqlserv"

DATA NEW;
SET SQLSRV.TABLE1;
RUN;

PROC SQL;
CREATE TABLE NEW AS SELECT * FROM SQLSRV.TABLE1;
QUIT;

You can also use PROC SQL passthrough with SAS/Access to OLEDB. The query
would look similar to:

/* SQL Server Authentication */

proc sql;
connect to oledb (init_string=" Provider=SQLOLEDB.1;Password=pwd;
Persist Security Info=True;User ID=user;Data Source=sqlserv" schema=dbo);
select * from connection to oledb (select * from class);
quit;

/* NT Authentication */

proc sql;
connect to oledb (init_string="Provider=SQLOLEDB.1;Integrated Security=SSPI;
Persist Security Info=True;Initial Catalog=northwind;Data Source=steak” schema=dbo);
select * from connection to oledb (select * from class);
quit;

Resources:

SAS/Access 9.1 Interface to Relational Databases: Reference can be found at the
following URL:

http://support.sas.com/onlinedoc/913/docMainpage.jsp

http://support.sas.com/onlinedoc/913/docMainpage.jsp

