
C H A P T E R 9

SASPy Module

In this chapter we discuss the open source saspy module contributed by SAS

Institute. SASPy exposes Python APIs to the SAS System. This module allows a

Python session to do the following:

• Start and connect to a local or remote SAS session

• Exchange data between pandas DataFrames and SAS dataset

• Integrate both SAS and Python program logic within a single execution

context

To get started, you install and configure the saspy module. On Windows, to install

saspy, issue the following command in a Windows terminal session:

python -m pip install saspy

The installation process downloads any SASPy dependent packages. Listing 9.1,

SASPy Install on Windows displays the output from a Windows terminal for installing

saspy.

Listing 9.1. SASPy Install on Windows

c:\>python -m pip install saspy

Collecting saspy

 Downloading

https://files.pythonhosted.org/packages/bb/07/3fd96b969959ef0e

701e5764f6a239e7bea543b37d2d7a81acb23ed6a0c5/saspy-

2.2.9.tar.gz (97kB)

 100% |████████████████████████████████| 102kB 769kB/s

Successfully built saspy

distributed 1.21.8 requires msgpack, which is not installed.

Installing collected packages: saspy

Successfully installed saspy-2.2.9

CHAPTER 9

2 Unpublished work © 2018 Randy Betancourt

You should see the statement:

Successfully installed saspy-2.2.9

After completing installation, the next step is to modify the saspy.sascfg file to

establish which access method Python uses to connect to a SAS session.

In this example we configure an IOM (integrated object model) connection method

such that the Python session running on Windows connects to a SAS session running

on the same Windows machine. If you have a different set-up, for example, running

Python on Windows and connecting to a SAS session on Linux, you use the STDIO

access method. The detailed instructions are at:

https://sassoftware.github.io/saspy/install.html#configuration

Listing 9.2, Locate SASPy.sascfg Configuration File illustrates the syntax needed to

locate the saspy configuration file.

Listing 9.2. Locate SASPy.SAScfg Configuration File

>>> import saspy

>>> saspy.SAScfg

<module 'saspy.sascfg' from

'C:\\Users\\randy\\Anaconda3\\lib\\site-

packages\\saspy\\sascfg.py'>

As a best practice you should copy the sascfg.py configuration file to

sascfg_personal.py. Doing so ensures that any configuration changes will not be

overwritten when a new version of saspy is installed. The sascfg_personal.py

can be stored anywhere on the filesystem. If it is stored outside the Python repo then

you must always include the fully-qualified path name to the SASSession argument

like:

sas =

SASSession(cfgfile=’C:\\qualified\\path\\sascfg_personal.py)

Alternatively, if the sascfg_personal.py configuration file is found in the search

path defined by the PYTHONPATH environment variable, then you can avoid having to

supply this argument when invoking SASPy. Use the Python sys.path statement to

return the search-path defined by the PYTHONPATH environment variable as shown

in Listing 9.3, Finding the PYTHONPATH Search Paths.

https://sassoftware.github.io/saspy/install.html#configuration

CHAPTER 9

Unpublished work © 2018 Randy Betancourt 3

Listing 9.3. Finding the PYTHONPATH Search Paths

>>> import sys

>>> sys.path

['', 'C:\\Users\\randy\\Anaconda3\\python36.zip',

'C:\\Users\\randy\\Anaconda3\\DLLs',

'C:\\Users\\randy\\Anaconda3\\lib',

'C:\\Users\\randy\\Anaconda3',

'C:\\Users\\randy\\Anaconda3\\lib\\site-packages',

'C:\\Users\\randy\\Anaconda3\\lib\\site-packages\\win32',

'C:\\Users\\randy\\Anaconda3\\lib\\site-packages\\win32\\lib',

'C:\\Users\\randy\\Anaconda3\\lib\\site-packages\\Pythonwin',

'C:\\Users\\randy\\Anaconda3\\lib\\site-

packages\\IPython\\extensions']

In our case, we elect to store the sascfg_personal.py configuration file in:

C:/Users/randy/Anaconda3/lib/site-packages/

directory. Copy:

C:/Users/randy/Anaconda3/lib/site-packages/saspy/sascfg.py

to

C:/Users/randy/Anaconda3/lib/site-packages/personal_sascfg.py

Depending on how you connect the Python environment to the SAS session

determines the changes needed in the sascfg_personal.py configuration file. In

our case we are running both a Python and a SAS session are on the same

Windows machine. Calling SASPy requires the IOM access method be

appropriately defined in the personal_saspy.cfg file.

In our case, both the Python and SAS execution environments are on the same

Windows 10 machine. Accordinly, we modify the following sections of the

sascfg_personal.py configuration file:

From the original sascfg.py configuration file:

SAS_config_names=['default']

is altered in the sascfg_personal.py configuration file to:

CHAPTER 9

4 Unpublished work © 2018 Randy Betancourt

SAS_config_names=['winlocal']

The following four Java jar files are defined in a classpath variable in the

sascfg_personal.py configuration file:

sas.svc.connection.jar

log4j.jar

sas.security.sspi.jar

sas.core.jar

These jar files are a part of the SAS Deployment Manager. Depending on where

SAS is installed on Windows, the path will be something like:

C:\Program

Files\SASHome\SASDeploymentManager\9.4\products\deploywiz__944

98__prt__xx__sp0__1\deploywiz\<required_jar_file_names.jar>

A fifth .jar file which is distributed with the saspy repo, saspyiom.jar needs to be

defined as part of the classpath variable in the sascfg_personal.py configuration

file. In our case this jar file is located at:

C:/Users/randy/Anaconda3/Lib/site-packages/saspy/java

The last change we need is an update to the dictionary values for the winlocal

object definition in the sascfg_personal.py configuration file as:

winlocal = {'java' : 'C:\\Program

Files\\SASHome\\SASPrivateJavaRuntimeEnvironment\\9.4\\jre\\bi

n\\java',

 'encoding' : 'windows-1252',

 'classpath' : cpW

 }

SASPy has a dependency on Java 7 which is met by relying on the SAS Private JRE

distributed and installed with Base SAS software. Also notice the path filename uses

a double back-slash to ‘escape’ the backslash needed by the Windows path names.

CHAPTER 9

Unpublished work © 2018 Randy Betancourt 5

SASPy Examples

With the configuration for saspy complete we can begin. The goal for these

examples is to illustrate the ease by which DataFrame and SAS datasets can be

interchanged along with calling Python or SAS methods to act on these data assets.

We start with Listing 9.4, Start SASPy Session to integrate a Python and SAS session

together.

Listing 9.4. Start SASPy Session

>>> import pandas as pd

>>> import saspy

>>> import numpy as np

>>> from IPython.display import HTML

>>>

>>> sas = saspy.SASsession(cfgname='winlocal', results='TEXT')

SAS Connection established. Subprocess id is 5288

In this example the Python sas object is created by calling the saspy.SASsession

object. The saspy.SASsession object is the main object for connecting a Python

session with a SAS sub-process. Most of the arguments to the SASsession object

are set in the sascfg_personal.py configuration file discussed at the beginning of

this chapter. In this example, we have two arguments, cfgname= and results=.

The cfgname= argument points to the winlocal configuration values in the

sascfg_personal.py configuration file indicating both the Python and the SAS

session run locally on Windows. The results= argument has three values to indicate

how tabular output returned from the SASsession object is rendered. They are:

• pandas, the default value

• TEXT, which is useful when running SASPy in batch mode

• HTML, which is useful when running SASPy interactively from a Jupyter

Notebook

Another useful SASsession argument is autoexec. In some cases, it is useful to

execute a series of SAS statements when the SASsession object is called. This

feature is illustrated in Listing 9.4, Start SASPy with Autoexec Processing.

CHAPTER 9

6 Unpublished work © 2018 Randy Betancourt

Listing 9.5. Start SASPy with Autoexec Processing

>>> auto_execsas='''libname sas_data "c:\data";'''

>>>

>>> sas = saspy.SASsession(cfgname='winlocal', results='TEXT',

autoexec=auto_execsas)

SAS Connection established. Subprocess id is 15020

In this example, we create the auto_execsas object by defining a Python DocString

containing the SAS statements used as the statements for the SAS autoexec process

to execute. Similar to the behavior for the traditional SAS autoexec processing, the

statements defined by the auto_execsas object are executed by SAS before

executing any subsequent SAS input statements.

To illustrate the integration between Python and SAS using saspy, we build the

loandf DataFrame which is sourced from the Lending Club loan statistics described

at:

https://www.lendingclub.com/info/download-data.action

The data consist of anonymized loan performance data from Lending Club which offers

personal loans to individuals. We begin by creating the loandf DataFrame illustrated

in Listing 9.6, Build loandf DataFrame.

Listing 9.6. Build loandf DataFrame

>>> url =

"https://raw.githubusercontent.com/RandyBetancourt/PythonForSA

SUsers/master/data/LC_Loan_Stats.csv"

>>>

... loandf = pd.read_csv(url,

... low_memory=False,

... usecols=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15,

16),

... names=('id',

... 'mem_id',

... 'ln_amt',

... 'term',

... 'rate',

... 'm_pay',

... 'grade',

https://www.lendingclub.com/info/download-data.action

CHAPTER 9

Unpublished work © 2018 Randy Betancourt 7

... 'sub_grd',

... 'emp_len',

... 'own_rnt',

... 'income',

... 'ln_stat',

... 'purpose',

... 'state',

... 'dti'),

... skiprows=1,

... nrows=39786,

... header=None)

>>> loandf.shape

(39786, 15)

The loandf DataFrame contains 39,786 rows and 15 columns.

Basic Data Wrangling

In order to effectively analyze the loandf DataFrame we must do a bit of data

wrangling. Listing 9.7, loandf Initial Attributes returns basic information about the

columns and values.

Listing 9.7. loandf Initial Attributes

loandf.info()

loandf.describe(include=['O'])

The df.describe() method accepts the include=['O'] argument in order to return

descriptive information for all columns whose datatype is object. Output from the

df.describe() method is shown in a Jupyter notebook in Figure 9.1, Attributes for

Character Value Columns.

The loandf.info() method shows the rate column has a datatype of object

indicating these are string values. Similarly, the term column has a datatype of

object.

The loandf.describe(include=['O']) method provides further detail revealing

the values for the rate column having a trailing percent sign (%) and the term column

values are followed by the string ‘ months’.

CHAPTER 9

8 Unpublished work © 2018 Randy Betancourt

Figure 9.1. Attributes for Character Value Columns

In order to effectively use the rate column in any mathematical expression, we need

to modify the values by:

1. Strip the percent sign

2. Map the datatype from character to numeric

3. Divide the values by 100 to convert from a percent value to a decimal value

In the case of the term column values we need to:

1. Strip the string ‘ months’

CHAPTER 9

Unpublished work © 2018 Randy Betancourt 9

2. Map the datatype from character to numeric

Both modifications are shown in Listing 9.10, Basic Data Wrangling.

Listing 9.10 Basic Data Wrangling

>>> loandf['rate'] =

loandf.rate.replace('%','',regex=True).astype('float')/100

>>> loandf['rate'].describe()

count 39786.000000

mean 0.120277

std 0.037278

min 0.054200

25% 0.092500

50% 0.118600

75% 0.145900

max 0.245900

Name: rate, dtype: float64

>>> loandf['term'] =

loandf['term'].str.strip('months').astype('float64')

>>> loandf['term'].describe()

count 39786.000000

mean 42.453325

std 10.641299

min 36.000000

25% 36.000000

50% 36.000000

75% 60.000000

max 60.000000

Name: term, dtype: float64

The syntax:

loandf.rate.replace('%','',regex=True).astype('float')/100

calls the pd.replace() method used to dynamically replace values. In this case,

the first argument is to_replace='%', the second argument is value='', (since there

are no spaces between the quote marks, this becomes a null value). The

regex='True' argument indicates the to_replace= argument is a string value.

The .astype() attribute maps the rate column’s datatype from object (strings) to a

float (decimal value). The value is then divided by 100.

CHAPTER 9

10 Unpublished work © 2018 Randy Betancourt

Chaining the .describe() method to the rate column returns basic statistics for

the values.

Similarly, the syntax:

loandf['term'].str.strip('months').astype('float64')

performs a similar operation on the loandr['term'] column. The .strip() method

removes the string ‘months’ from the values. Chaining the .astype() method casts

this column from an object datatype to a float64 datatype.

Write DataFrame to SAS Dataset

With the loandf DataFrame shaped appropriately, we can write the DataFrame as a

SAS data set. SASPy provides the sas.df2sd() method to write a DataFrame to a

SAS dataset. The SAS dataset can either by a temporary dataset written to the current

WORK library or a permanent dataset on any location of the filesystem. This feature

is illustrated in Listing 9.11, Write a DataFrame as a SAS Dataset.

Listing 9.11, Write a DataFrame as a SAS Dataset

>>> sas.saslib('sas_data', 'BASE', 'C:\data')

26 libname sas_data BASE 'C:\data' ;

NOTE: Libref SAS_DATA was successfully assigned as follows:

 Engine: BASE

 Physical Name: C:\data

27

28

>>> loansas = sas.df2sd(loandf, table='loan_ds',

libref='sas_data')

>>> loansas.columnInfo()

 The CONTENTS Procedure

 Alphabetic List of Variables and Attributes

Variable Type Len

CHAPTER 9

Unpublished work © 2018 Randy Betancourt 11

15 dti Num 8

9 emp_len Char 9

7 grade Char 1

1 id Num 8

11 income Num 8

3 ln_amt Num 8

12 ln_stat Char 18

6 m_pay Num 8

2 mem_id Num 8

10 own_rnt Char 8

13 purpose Char 18

5 rate Char 6

14 state Char 2

8 sub_grd Char 2

4 term Char 10

>>> print(sas.saslog())

 The SAS System

 16:01 Monday, November 26, 2018

NOTE: Copyright (c) 2016 by SAS Institute Inc., Cary, NC, USA.

NOTE: SAS (r) Proprietary Software 9.4 (TS1M5)

NOTE: This session is executing on the X64_10PRO platform.

NOTE: Updated analytical products:

 SAS/STAT 14.3

NOTE: Additional host information:

 X64_10PRO WIN 10.0.17134 Workstation

NOTE: SAS Initialization used (Total process time):

 real time 0.01 seconds

 cpu time 0.00 seconds

1 ;*';*";*/;

2 options svgtitle='svgtitle'; options

validvarname=any pagesize=max nosyntaxcheck; ods graphics on;

CHAPTER 9

12 Unpublished work © 2018 Randy Betancourt

The syntax:

sas.saslib('sas_data', 'BASE', 'C:\data')

calls the sas.saslib() method from saspy to expose a SAS library to the current

Python session. This method accepts four arguments. They are:

1. Libref, in this case sas_data

2. engine, or access method, in this case the default BASE engine

3. path, the path to the BASE data library, in this case, C:\data

4. options which can be SAS engine or engine supervisor options. In this case,

we are not supplying options.

Following the call to the sas.saslib() method, the saspy module forms the SAS

LIBNAME statement:

libname sas_data BASE 'C:\data' ;

and sends this statement for processing to the attached SAS sub-process.

In order to write the loandf DataFrame as a SAS dataset, call the sas.df2sd()

method. In this example, the syntax:

loansas = sas.df2sd(loandf, table='loan_ds',

libref='sas_data')

creates the loansas SASdata object and calls the sas.df2sd() method to create

a new SAS dataset from the loandf DataFrame. The loansas object becomes a

Python reference to the newly created SAS dataset, in this example, the permanent

SAS dataset, sas_data.loan_ds.

In other words, the current Python execution context has the loandf DataFrame

defined. In addition, the loansas object is defined which is mapped to the permanent

SAS dataset sas_data.loan_ds created from the loandf DataFrame.

CHAPTER 9

Unpublished work © 2018 Randy Betancourt 13

The sas.df2sd() method reads a DataFrame and writes it as a SAS dataset. This

method has five arguments. They are:

1. The input DataFrame to be written as the output SAS dataset, in this case, the

loandf DataFrame.

2. table= argument which is the name for the output SAS dataset.

3. libref= argument which, in our case is 'sas_data' created earlier by calling

the sas.saslib method.

4. results= argument which in our case uses the default value PANDAS.

5. keep_outer_quotes= argument which in our case uses the default value

False, to strip any quotes from delimited data. If you want to keep quotes as

part of the delimited data values, set this argument to True.

The syntax:

loansas.columnInfo()

returns the column metadata by calling PROC CONTENTS on your behalf like the

loansdf.describe() method used to return a DataFrame’s column attributes.

Recall the loansas object is mapped to the permanent SAS dataset

sas_data.loan_ds.

The syntax:

print(sas.saslog())

returns the Log for the entire SAS sub-process which is truncated here.

The loansas SAS Data Object has several available methods. Some of these

methods are displayed in Figure 9.2, SAS Data Object methods.

CHAPTER 9

14 Unpublished work © 2018 Randy Betancourt

Figure 9.2. SAS Data Object methods

The methods for the SAS Data Object are displayed by entering the syntax:

loansas.

into the cell of a Jupyter notebook and pressing the <tab> key.

Figure 9.3, Heatmap for ln_stat Column illustrates calling the .bar() method to

render a histogram for the loan status variable (ln_stat). For this example to work,

you need to execute the code in Listing 9.12, Loan Status Histogram in a Jupyter
notebook. On Windows, from a terminal session, enter the command:

python -m notebook

to launch a Jupyter notebook. Copy the program from Listing 9.12 into a cell and press
the >|Run button.

Listing 9.12 Loan Status Histogram

import pandas as pd

import saspy

url = url =

"https://raw.githubusercontent.com/RandyBetancourt/PythonForSA

SUsers/master/data/LC_Loan_Stats.csv"

CHAPTER 9

Unpublished work © 2018 Randy Betancourt 15

loandf = pd.read_csv(url,

 low_memory=False,

 usecols=(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15,

16),

 names=('id',

 'mem_id',

 'ln_amt',

 'term',

 'rate',

 'm_pay',

 'grade',

 'sub_grd',

 'emp_len',

 'own_rnt',

 'income',

 'ln_stat',

 'purpose',

 'state',

 'dti'),

 skiprows=1,

 nrows=39786,

 header=None)

sas = saspy.SASsession(cfgname='winlocal', results='HTML')

sas.saslib('sas_data', 'BASE', 'C:\data')

loansas = sas.df2sd(loandf, table='loan_ds',

libref='sas_data')

loansas.bar('ln_stat')

CHAPTER 9

16 Unpublished work © 2018 Randy Betancourt

 Figure 9.3. Histogram for ln_stat Column

We can see from the histogram that approximately 5,000 loans are charged off,

meaning the customer defaulted. Since there are 39,786 rows in the dataset, this

represents a charge-off rate of 12.6%.

The saspy.SASsession object has the .teach_me_SAS() attribute when set to

True, returns the generated SAS code from any method that is called. Listing 9.13,

Teach Me SAS, illustrates this capability.

Listing 9.13. Teach Me SAS

sas.teach_me_SAS(True)

loansas.bar('ln_stat')

sas.teach_me_SAS(False)

CHAPTER 9

Unpublished work © 2018 Randy Betancourt 17

Figure 9.4, Teach_me_SAS Attribute displays the output executed in a Jupyter

notebook.

Figure 9.4. Teach_me_SAS Attribute

Execute SAS Code

By far, the most powerful features of the saspy.SASsession object is the

.submit() attribute. This feature enables you to submit any arbitrary block of SAS

code and assign the results to a Python object. Consider Listing 9.14, SAS submit()

Method.

Listing 9.14. SAS submit() Method

sas_code='''options nodate nonumber;

proc print data=sas_data.loan_ds (obs=5);

var id;

run;'''

results = sas.submit(sas_code, results='TEXT')

print(results['LST'])

CHAPTER 9

18 Unpublished work © 2018 Randy Betancourt

The sas_code object is defined as a Python DocString using three quotes (‘) to mark

the begin and end for the DocString. In our case, the DocString holds the text for a

valid block of SAS code. The syntax:

results = sas.submit(sas_code, results='TEXT')

calls the sas.submit() method by passing the sas_code object containing the SAS

statements to be executed by the SAS sub-process. The results object receives

the output, either in text or html form created by the SAS process.

In our case, we assign the output from PROC PRINT to the results object and call

the print() method as:

print(results['LST'])

The other value for results object can be ‘LOG’ which returns the section of the log

output (rather than the entire log output) associated with the block of code submitted

to SAS. These examples are displayed in Figure 9.5, SAS.submit() Method Output

from a Jupyter notebook.

Figure 9.5, SAS.submit() Method Output

CHAPTER 9

Unpublished work © 2018 Randy Betancourt 19

You can render SAS output (the listing file) with HTML as well. This capability is

illustrated in Listing 9.15, SAS Submit() Method Using HTML.

Listing 9.15, SAS Submit() Method Using HTML

from IPython.display import HTML

results = sas.submit(sas_code, results='HTML')

HTML(results['LST'])

In this example, the same sas_code object created in Listing 9. 14, SAS submit()

Method, is passed to the sas.submit() method using the argument

results='HTML'.

The HTML results from a Jupyter notebook is rendered in Figure 9.6, SAS.submit()

Method with HTML Output.

Figure 9.6. SAS.submit() Method with HTML Output

CHAPTER 9

20 Unpublished work © 2018 Randy Betancourt

Write SAS Dataset to DataFrame

SASPy provides the sas.sd2df() method to write a SAS Dataset to a

Dataframe. The pandas IO Tools library does not provide a method to write SAS

dataset to DataFrames. As of this writing, the saspy module is the only Python library

to provide this capability.

The goal for this example is to illustrate the use of SAS to perform an aggregation,

using the sas.submit() method followed by a call to the pd.plot.bar()method

creating a histogram from the resulting DataFrame. One can easily imagine a Python-

driven pipeline incorporating Python and SAS program logic together to achieve the

desired outcome.

The ability to create a SAS dataset from an existing dataframe is illustrated in Listing

9.16, SAS Dataset to DataFrame.

Listing 9.16 SAS Dataset to DataFrame

>>> import pandas as pd

>>> import saspy

>>> sas = saspy.SASsession(cfgname='winlocal', results='Text')

SAS Connection established. Subprocess id is 13540

>>> sascode='''libname in "c:\data";

... proc sql;

... create table grade_sum as

... select grade

... , count(*) as grade_ct

... from in.loan_ds

... group by grade;

... quit;'''

>>>

>>> run_sas = sas.submit(sascode, results='TEXT')

>>> df = sas.sd2df('grade_sum')

>>> df.head(10)

 grade grade_ct

0 A 10086

1 B 12029

2 C 8114

3 D 5328

4 E 2857

CHAPTER 9

Unpublished work © 2018 Randy Betancourt 21

5 F 1054

6 G 318

In this example, the sas_code object is a DocString containing the PROC SQL

statements:

proc sql;

 create table grade_sum as

 select grade

 , count(*) as grade_ct

 from in.loan_ds

 group by grade;

used to perform a group by on the grade column and output the results set to the

SAS dataset WORK.grade_sum.

The syntax:

df = sas.sd2df('grade_sum')

creates the df DataFrame by calling the sas.sd2df() method. The parameter to

the call is name of the SAS dataset opened on input, in this example, it is

WORK.grade_sum.

This open ups a large number of possibilities here since a SAS dataset is a logical

reference which can map to any number of physical data sources across the

organization. Depending on which products you license from SAS, a SAS data set

can refer to SAS datasets on a local filesystem, on a remote filesystem, or SAS/Access

Views attached to RDBMS tables, views, files, etc.

With the WORK.grade_sum dataset written as the df DataFrame, we can utilize any

of the Python or panda method for further processing. For example, consider Listing

9.17, Histogram of Credit Risk Grades.

Listing 9.17. Histogram of Credit Risk Grades

df.plot.bar(x='grade', y='grade_ct', rot=0,

 title='Histogram of Credit Grades')

The df DataFrame created from the SAS dataset WORK.grade_sum in the previous

step calls the plot.bar() method to produce a simple histogram. The results are

displayed in Figure 9.7, Credit Risk Grades. This example was created in a Jupyter

Notebook.

CHAPTER 9

22 Unpublished work © 2018 Randy Betancourt

