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INTRODUCTION

Parkinson's disease (PD) is a long-term degenerative disorder of the central nervous system. 

Approximately 60,000 Americans are diagnosed with PD each year. The Parkinson’s 

Foundation Prevalence Project estimated that 930,000 people in the United States were living 

with PD by the year 2020. This number is predicted to rise to 1.2 million by 2030. Patients 
with PD may experience movement or motor related difficulties such as tremor, slowness of 

movement (bradykinesia), rigidity, and postural instability. Our goal is to investigate the most 

influential features, including demographics and motor related biomedical signals, for PD 

prediction. PD gold standard for diagnosis is based on subjective clinical evaluation. An 

objective and quantitative gait analysis system could potentially improve the current practice 
in diagnosis, symptom monitoring, therapy management, rehabilitation and fall risk 

assessment and prevention in PD patients [Biase et al., 2020].

There are two types of technologies that can be used for quantitative gait analysis, which are 

wearables and non-wearables. Force sensors are the wearable sensors that were used to 

generate the database investigated in this paper. Force sensors measure the ground reaction 

force (GRF) under the foot and return a current or voltage proportional to the pressure 

measured [Parkinson’s Foundation, 2021]. The advantage of using force sensors is it is easily 

integrated into instrumented shoes. For non-wearables, floor sensors, and image processing-

based methods are commonly used [Colyer et al., 2018; Derawi et al., 2011].

Nicolas Khoury et al. [2019] found that supervised classification methods are effective to 

detect PD patients, including K-nearest neighbor (K-NN), decision tree (DT), random forest 

(RF), Naïve Bayes (NB), support vector machine (SVM) and unsupervised classification 

methods such as K-means and the Gaussian mixture model (GMM). Perumal et al. [2016] 

used Linear Discriminant analysis (LDA) algorithms to distinguish between PD subjects and 

healthy subjects and found that stance, swing phase and step distance are the variables that 

are efficient for classification. In the paper, we applied logistic regression that is a more 

simple and interpretable approach to predict the status of PD and achieved satisfactory results 

with appropriated feature engineering from the time series data.

DATA COLLECTION

With well-developed sensor, physiological signals such as gait and force of PD patients can be 

recorded digitally. In order to stimulate the research and investigation in the study of complex 

biomedical signals such as physiological signals for PD patients, under the auspices of National 

Center for Research Resources of the National Institutes of Health, Research Resource for 

Complex Physiologic Signals was created. It has three components PhysioBank, PhysioToolkit 

and PhysioNet. The data we used is from the database in PhysioNet [Goldberger et al., 2000]. 

This database contains measures of gait from 92 patients with idiopathic PD and 73 healthy 

controls. Vertical ground reaction force (VGRF) was recorded by the 8 sensors attached under 
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each foot when subjects walked at their usual, self-selected pace for 2 minutes on level 

ground. For each of these 16 sensors, 100 signals were digitized and recorded at per second. 

For each foot, there was also a signal to reflect the sum of the 8 sensor outputs (Ultraflex 

Computer Dyno Graphy, Infotronic Inc.). Hence, for each subject there were 18 time series

measurements in total. Database also includes demographic information, measures of disease 

severity and other related measures.

Figure 1. Data collection steps and pipeline of analysis.

METHODS

The data collection and analysis steps are summarized in Figure 1. After collecting time series 

data from each subject, we extracted relevant digital biomarkers from these raw sensor data

for further downstream analysis. The procedure requires a combination of signal processing, 

data science and biological expertise in addition to extensive validation data [Goldsack, 

Chasse, Wood, 2019]. Softwares to preprocess and extract features from such data are 

becoming increasingly numerous and varied [Psaltos et al., 2019]. But without an established 

set of preprocessing techniques and features for capturing disease signal, it becomes 

necessary to make use of a broad spectrum of methods and tools when exploring potential 

biomarkers. Fortunately, With the help of proc univariate and proc autoreg in SAS, we 

were able to generate a variety of features easily. The following features were calculated for 

each of the 18 time series variables [Snyder et al., 2020]:

1) Location measures: mean value, mode, median, first/third quartile, 95th quantile;

2) Dispersion measures: standard deviation, interquartile range, coefficient of variation;

3) Shape measures: skewness, kurtosis;

4) Autocorrelation with lags 10, 30, 60, 100, 120. 

After constructing the processing pipelines of raw data sourced from sensor measurements 

recorded, a feature set was obtained for each subject. Some subjects had more than one 

records, we utilized proc means to aggregate the features. Then the feature set could be 

merged with the demographic data and then used as the primary predictor set for analysis. 

Since not all features are related to the status of disease, we used proc glmselect to perform 

effect selection in the framework of general linear models. Good predictors for a logistic model 

could be identified and selected by proc glmselect when fitting a binary target [Robert 

Cohen, 2009]. The procedure selects a subset of features with a regression model using AIC 

as the criterion while forcing demographic variables (age, gender, study) to be included in 

the model as potential confounders.
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Finally, we validated our selected model by calculating the AUC of the testing data. Specifically, 

we randomly separated our dataset into training data (70%) and testing data (30%) by proc 

surveyselect. Then A logistic model based on selected features was fitted on the training 

set using proc logistic, and AUC was obtained on the testing set. We repeated the same 

procedure for 100 times and got the out of sample AUCs.

RESULTS

FEATURE ENGINEERING

For each of the 18 time series variables, we considered 16 features, including location

measures, dispersion measures, shape measures and autocorrelation, resulting in 288

features in total. By using a regression-based method with AIC as the model selection criteria, 

with age, gender and study group indicator being fixed in the model, 7 among 288 features 

were selected, including standard deviation of L1 sensor, skewness of L6 sensor, range of R1 

sensor, median of R4 sensor, autocorrelation (ACF) with 30 lags of R4 sensor, range of R6 

sensor, and coefficient of variation of R7 sensor. The ACF was rescaled by multiplying 100 

due to its relatively small scale.

Table 1 showed the odds ratio estimates and 95% confidence intervals obtained from the 

logistic regression model which was performed on the entire dataset with 165 subjects. After 

adjusting for other covariates, age was not significantly associated with Parkinson disease 

status, but gender had a significant effect. The probability of developing Parkinson disease

for a male is 5.793 times than that for a female, with 95% CI (1.704, 19.700). After adjusting 

for covariates, except the range of R1 sensor, other selected features were all significantly 

associated with Parkinson disease status. Standard deviation of L1 sensor was the most 

significant feature. Adjusting for other covariates, if a patient’s standard deviation of L1 sensor

was getting one unit larger, the probability that he/she develops Parkinson disease would be 

0.963 times as before, with 95% CI (0.943, 0.984).

Table 1. Odds ratio estimates and 95% confidence intervals obtained from logistic 

regression model.

Effect Odds ratio Lower 95% CI Upper 95% CI Pr > ChiSq

Study group 1 vs 3 1.107 0.301 4.068 0.410

Study group 2 vs 3 3.105 0.626 15.406 0.122

Age 1.032 0.965 1.103 0.359

Gender male vs female 5.793 1.704 19.700 0.005

L1 std deviation 0.963 0.943 0.984 0.001

L6 skewness 0.145 0.021 0.997 0.050

R1 range 0.994 0.987 1.001 0.083

R4 median 1.054 1.016 1.093 0.005

100x (R4 ACF 30) 1.086 1.019 1.158 0.011

R6 range 0.991 0.982 0.999 0.037

R7 CV 0.949 0.905 0.995 0.050
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PREDICTION OF PARKINSON DISEASE

To evaluate the prediction performance of the 7 selected features, we compared the final

model with a baseline model. Figure 2 (A) showed the ROC curve of the final model including 

the 7 selected features as well as age, gender and group indicator. Figure 2 (B) showed the 

ROC curve of the baseline model which only included age, gender and group indicator. Both 

models were performed on the entire dataset. Evidently, our final model (AUC=0.9329) was 

considerably better than the baseline model (AUC=0.6134).

Figure 2. (A, left) ROC curve and AUC of final model with 7 selected features as 

well as age, gender and group indicator, on the entire dataset. (B, right) ROC 

curve and AUC of the baseline model with age, gender and group indicator, on the 

entire dataset.

We also compared the two models on the test sets using a resampling method that randomly

split the dataset 100 times. Table 2 showed the averaged AUCs and the standard deviations

of the two models on test sets. The averaged AUC of our final model was 0.9039, while the 

averaged AUC of the baseline model was only 0.5303, which demonstrated that the selected 

features were highly important in terms of Parkinson disease prediction. It was also suggested 

that age, gender and group indicator only had limited predictability.

Table 2. Averaged AUCs and 95% confidence intervals of the final model and the

baseline model on test sets, with 100 times repeated cross validation.

Model Mean of AUCs Standard deviations of AUCs

Final model 0.9039 0.0370

Baseline model 0.5303 0.0623

To further explore the selected features, we performed Principal component analysis (PCA)

on all selected features, and visualized the data by using the first two principal components

in Figure 3. It was clear that patients with Parkinson disease and healthy controls could be 
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separated by the first two principal components, which further demonstrated the importance 

of our selected features.

Figure 3. Visualization on the data by using the first two principal components

obtained from the selected features.

CONCLUSION

Vertical ground reaction force (VGRF) records in this study reflect the jitter and strength of 

patients’ legs. The jitter frequency is associated with the status of PD. The result follows the 

common sense of PD in most cases. First, the less a patient’s jitter dispersion and dispersion 

frequency are, the higher probability this patient may have PD. This is because PD patients

invest much less force in striding than healthy controls, so that patients with high jitter 

frequency are not inclined to be PD. In addition, VGRF of PD patients is more likely to have a

narrower range and be symmetric distributed due to the smaller skewness, when compared

to healthy controls. The median of VGRF in PD patients tends to be higher than that in healthy 

controls. The autocorrelation across the time is higher in PD patients than that in the control

group. This may because PD patients have a reduced stride length and a short average swing 

time, resulting in that the walking force of PD patients is relatively stable and predictable from

the past records [Frenkel-Toledo et al., 2005].

Our study demonstrates a simple way to predict PD status from the walking condition of 

patients, which is usually obtained by accessible devices with force sensors. Specifically, we 

found that logistic regression, a conventional approach shows satisfactory results with a high

predicting accuracy with AUC 0.9039 when 10 features are used. With the increasing trend of 

portable devices and digital health, we believe that our method with simple features can be 

widely used to predict clinical outcomes such as Parkinson disease that is potentially related 

to time series predictors.
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