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ABSTRACT 
How do you know if your data is lying to you? The answer lies in following ethically applied 
econometric rules and being aware of and avoiding pitfalls in regression practice. These 
essential skills are not typically taught in a single-semester econometric or regression course.  

This paper defines hasty regression and demonstrates why it represents a terrible testing 
strategy leading to unsubstantiated and false conclusions. In this paper, a baseline regression 
includes a dummy variable for a treatment. The hypothesis is that this policy variable 
represents a statistically significant change in the outcome measure of the dependent variable.  

A simple data set is used to illustrate that the initial insignificant result is dead wrong and in 
the end, has an outsized and positive effect that is superior to alternative specifications. None 
of this would be known if the analyst stopped after the false signal of that first hasty 
regression. 

PROC REG and its 'TEST' statement is used to perform nested Wald-type F-tests. Multiple 
specifications are shown to each be significant. SGPLOTS of results and residuals help 
understand the process.  The outcomes either follow a quadratic path with no role for the 
treatment variable, or there exists a clear structural break because of the treatment. To test 
one model against the other, non-nested hypothesis testing is used.  Ramsey RESET 
misspecification tests in PROC AUTOREG and regression selection processes within PROC REG 
are employed. 

 

REGRESSION ANALYSIS: ESSENTIAL PRACTICE BEYOND THE 
BASICS  

Regression analysis is like a puddle in which a novice can wade, and an expert drown.  

All of us learned regression in some course that we took or some training that we received. In 
that first course, we were introduced to the very basics of regression. Perhaps that training 
was less than an entire 15-week course and may have been only a few weeks. A course in one 
school may only spend two weeks on regression while others may spend a full semester on it. 
Still other students spend multiple courses and much practice on regression. This paper seeks 
to point out ethical and applied best practices in regression and econometric analysis and to 
offer guideposts so practitioners may constantly improve and meet the analytical challenges 
that await them.  

To make my point, I introduce a concept and practice that I call Hasty Regression, which is 
symptomatic of bad practice and not a definition of any particular technique. Hasty regression 
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covers many approaches outside of good practice.1 A temptation that befalls all of us is the 
“rush” we have to just run a regression, and we do so without proper thought in the model 
specification and identification or without regard to the articulation of the problem and the 
cleanliness of the data. This type of problem is pervasive throughout data analytics and data 
science and not just in regression applications. The focus on regression and the specific 
empirical problem is just one way to highlight this pervasive problem. 

In this paper's example, we wonder if a treatment had an effect, so we hastily run a regression 
throwing in a dummy variable. Just throwing in a dummy variable is the height of bad practice, 
but from time to time, we all do it.  

The pressure to publish and disseminate academic findings combined with the publication bias 
of not publishing insignificant results leads to researchers discarding potentially good research 
lines of inquiry because a hasty regression revealed an insignificant correlation when with 
more work, they would have discovered the significant results for which they were hoping. Of 
course, the opposite is also possible - an initial significant result that fades with more in-depth 
work.  In both cases, the initial result is frequently incorrect.  

Hasty regression is a useless approach regardless of whether the coefficients are seemingly 
statistically significant or not. Bottom line: one cannot decide if a project is worthwhile by just 
running some quick regressions. College professors with the responsibility of directing new 
students should push against this bad practice and should feel morally bound to guide the 
research careers of their students in a more scientific direction. Those same professors should 
also guide students to know the difference between association and causation. When the 
objective of the research is casual, regression techniques derived from the causal calculus 
must be used.2 When the question is causal, but the techniques are not strong enough to 
reveal causality, the requirement is to avoid causal language. 

OUTLINE OF THE REMAINDER OF THIS PAPER 
The progression of this paper will continue with calls for best practices in the ethics of applied 
data analytics and a checklist to help analysts avoid the pitfalls of regression practice. After 
this general introduction, a specific business problem with sample data is introduced. We begin 
the analysis with an obvious hasty regression and draw the conclusion that the policy 
presented does not change the target variable and suggest that the hasty researcher would 
likely stop their analysis with that conclusion. The paper concludes with processes that result 
from a well throughout strategy which leads to the inescapable conclusion that the so-called-
ineffective policy (from the hasty regression) is indeed strong and effective.  

ETHICS RULES IN APPLIED ECONOMETRICS AND DATA SCIENCE  
The tenets of good applied practice beyond the basics are rarely taught in courses for a variety 
of reasons. First, it takes time to build the mathematical and statistical foundations of standard 
inference, and not all courses require a mathematical statistics prerequisite making it 
imperative to cover some of this in the time allotted for the course. Second, it takes time to 
learn the assumptions of the classical linear model and how to approach all of the problem 
                                                            
1 Not every deviation from good practice is considered hasty regression, e.g., p-hacking would have to be 
included in such a list. Imagine the young economists or analysts who rush to run a regression using 
whatever data they can get their hands on and drop the project the moment the results turn out to be 
insignificant because of publication bias against insignificant results.  
2 Techniques like difference-in-difference and propensity score matching come to mind. 
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solutions to autocorrelation, heteroscedasticity, multicollinearity, nonlinearities in variables and 
parameters, quantitative versus qualitative variables, and right-hand side endogeneity. Again 
much class, practice, and testing time must focus on technique. Third, classroom testing of the 
items in the first and second point are easy to derive and grade. Assessment of student's 
conquering of good principles of model specification is difficult because there is no clear 
roadmap as there is in calculating the power of a given test statistic.3  

What is not easy is to teach and judge includes how one (1) articulates the problem, including 
how to set up an inferential strategy, (2) cleans the data, and (3) specifies the model. These 
three points are made by Kennedy (2008) in his chapter on Applied Econometrics. Kennedy 
lists good practices for applied research in his ten commandments of applied econometrics. In 
the last half of my 41-year career, I tried to teach and emphasize those rules constantly and 
consistently. I also was invited to express those same rules in an essay for a book on data 
ethics, Myers (2020). Those rules are listed in Table 1 without explanations. Interested readers 
are directed to Myers (2020). 

 

Table 1: Ethics Rules in Applied Econometrics and Data Science 

Rule 1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Use common sense and economic (or theoretical) reasoning 

Avoid Type III errors 

Know the context 

Inspect the data 

Keep it sensibly simple 

Use the intraocular trauma test 

Understand the costs and benefits of data mining. 

Be prepared to compromise 

Do not confuse statistical significance with meaningful magnitude 

Report a sensitive analysis 

 

Many professors may shy away from the teaching of these rules because of the reasons listed 
above, but also because it is hard to teach them. Kennedy (2002) addresses this by saying, "… 
my opinion is that regardless of teachability, we have a moral obligation to inform students of 
these rules, and, through suitable assignments, socialize them to incorporate them into the 
standard operating procedures they follow when doing empirical work.… (I) believe that these 
rules are far more important than instructors believe and that students at all levels do not 
accord them the respect they deserve. " (Kennedy, 2002, 2008). 

Jennifer Priestley has said "To be an effective and ethical data scientist, you must understand 
mathematics and statistics. Many data scientists make bad decisions – with ethical implications 

                                                            
3 Some argue, without foundation that all such problems go away with “big” data, but that is simply not 
true. Bias that exists in small samples will remain in the larger samples.  
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– not because they are intentionally trying to do harm, but because they do not have an 
understanding of how the algorithms they are taking responsibility for actually work."4  

An unethical approach to data analysis is not indicative that the individual is unethical in their 
person or intention, but rather, through neglect or ignorance, they miss a step that has dire 
consequences for their conclusions. It is my hope that between following the ethical rules of 
this section and avoiding the pitfalls in the next section, analytical tragedies may be avoided. 

AVOIDING THE PITFALLS OF REGRESSION PRACTICE 
Regression can go wrong in many ways, yet give "results" and "test statistics" that lead to 
erroneous conclusions. Table 2 shows a check list of 10 items for regression users to think 
about before starting an analysis, to reference as you work your way through analysis, and 
certainly before believing the results. As the first sentence of the abstract challenges:  

How do you know when your data is lying to you? 

Much as a pilot goes through a preflight checklist, analysts and analytical data scientists should 
consider the need to preflight their regressions before taking off and only later discovering 
there is no fuel or an essential part has failed. One phrase that has been used by the data 
science community is to be data-driven. Taking "data-driven" to mean that you let the data 
reveal its secrets, one can quickly be drawn to Hasty Regression or hasty machine learning, or 
hasty AI. Knowing that data will lie to you is more than understanding your algorithm, 
although that too is incredibly important (see the Priestley quote above).5 

Hasty data work is ill-considered problem articulation, insufficient data cleaning, improper data 
transforms, poorly developed and naive modeling, failure to use common sense, and includes 
insufficient groundwork for statistical inference. Hasty data work leads to unreliable 
conclusions, with the only advantage being arrival at an answer quickly. The analyst is much 
more subject to confirmation bias when sufficient preparatory work has not been done. Hasty 
data work in the end is very costly! 

 

                                                            
4 Phone conversation with the author, September 4, 2019. See Priestley (2019) for similar comments in her 
2019 SAS Global Forum presentation.  
5 Among those younger data scientists who are especially enamored by machine learning and data-driven 
only techniques and who are lackluster at statistics and statistical thinking are very susceptible to Hasty 
Regression and other hasty techniques. In this paper I make a strong case for the necessity of strong 
statistical training. 
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Table 2: Checklist of the Pitfalls of Regression Practice 

 Failure to:  Explanation 

1 Understand why you 
are running the 
regression. 

Regression can be used for explanation or prediction, but 
not both. Proper articulation of the problem being examined 
must be done before beginning. Regression is not for 
exploratory data analysis (EDA), and EDA is to be avoided 
in specifying your regression.  

2 Be a data skeptic and 
understand the data 
generating process. 

Economists are said to be obsessed with the data 
generating process (DGP) and for good reason. This comes 
in large measure from having to use the data we have and 
not the data we want. The DGP, in actuality, will produce 
extreme values that challenge us to delete or transform. 
Important cofounders may be missing, and observations 
may be missing. What variables actually measure may 
differ from what the data owner says they measure.  

3 Examine your data 
before you regress. 

It is critical that you fully understand your data. However, 
Exploratory Data Analysis has both benefits and costs, and 
you must learn the difference. One caution is that you do 
not build your model around correlations that you asked for 
and now cannot un-see.  

4 Examine your data 
after you regress.  

Examine both predictions and residuals to help gauge the 
model performance, noting that these and all statistical 
results in the regression are highly sensitive to model 
misspecification. Just as perturbations and patterns in the 
data may hint at a model specification, perturbations and 
patterns in the residuals can identify the failure of that 
model.  

5 Understand how to 
interpret regression 
results. 

Nearly everyone gets this wrong at times. You must 
understand the use of calculus derivatives (for metrics) 
versus the difference in mathematical expectations for 
binary and categorical variables. For example, a dummy 
(binary) variable in a semi-log equation cannot be directly 
interpreted.  

6 Model both theory 
and data anomalies 
and to know the 
difference. 

A variable may be correctly measured yet yield an 
anomalous result or match a theoretical hypothesis. 
Knowing the difference is not straightforward and often not 
the conclusion from a single test. Modeling theory means 
matching a pattern of statistical testing to the problem at 
hand while understanding that alternative specifications 
may seem near equally valid. The rest of this paper focuses 
primarily on this point. 
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 Failure to:  Explanation 

7 Be ethical.  (see Table 1: Ethics Rules in Applied Econometrics and Data 
Science) To be unethical does not require intent. Ignorance 
of ethics, just like ignorance of how a technique works, is 
not an excuse. You do have to have the intent and do what 
it takes to be ethical. 

8 Provide proper 
statistical testing. 

As mentioned in rule 6, the proper statistical test may not 
be a single test and likely requires a full-on testing strategy 
like the problem illustrated later in this paper. 

9 Properly consider 
causal calculus. 

Economists are especially attuned to causality, but their use 
of causal calculus is more recent. One must establish not 
only that if A occurs, then 'B' will occur, but that if 'B' 
occurs, then 'A' must have occurred. (See Pearl and 
Mackensie (2018) and Cunningham (2021) for more on the 
calculus of causality.) Asking causal questions require 
specific care in the answers. 

10 Meet the assumptions 
of the classical linear 
model. 

No list of pitfalls can be complete without the proper 
homage to the assumptions of the CLM. However, 
regression seems sometimes discarded because the linear 
model is too limiting. There are techniques to address each 
violation, and econometric research in particular has 
continually developed inference to address each of the 
assumptions.  

 

The rest of this paper is a look at a particular problem and how a type of hasty regression will 
lead to a poor conclusion. Specifically, it shows how multiple model specifications of the 
problem will, if not comprehensively applied, lead to dramatically different and seemingly 
equally correct solutions.  

We take the example of a very simple problem with limited data and no cofounders and see 
that the resolution is no simple matter. In other words, we can produce multiple ‘good’ 
regression results by virtue of their fine summary statistics, but the data seem to support a 
variety of contradictory conclusions. We set out on an investigation as a tenacious data 
detective. I remind the reader again to ask, how do you know when your data is lying? 

It might seem easy to know the answer or easy to use advanced and automated techniques to 
answer such a simple question, but below, we find that is not the case. As Pearl and Mackenzie 
(2018, p. 413) tell us  

Data alone can never solve questions of causality.  

More explicitly, "In certain circles there is almost a religious faith that we can find the answers to these 
questions in the data itself, if only we are sufficiently clever at data mining. However, readers of this book 
will know that this hype is likely to be misguided. The questions I have just asked are all causal, and casual 
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questions can never be answered from data alone. They require us to formulate a model of the process 
that generates the data, or at least some aspects of that process.  Anytime you see a paper or a study that 
analyzes the data in a model-free way, you can be certain that the output of the study will merely 
summarize and perhaps transform but not interpret the data. This is not to say that data mining is useless. 
It may be an essential first step to search for interesting patterns of association and pose more precise 
interpretive questions… "  (Pearl and Mackenzie (2018, pp. 413-414)) 
 

A BUSINESS PROBLEM TO ILLUSTRATE HASTY VERSUS GOOD 
REGRESSION PRACTICES 
 
The problem below is one of causality. While it may be interesting to ask whether there is an 
association between a policy change and an outcome variable, that alone does not establish 
causality. This paper does not fully pursue the causality of the problem under study but shows 
equally that automatic solutions, without the human modeling experience, will not lead to a 
satisfactory result. In short, this paper establishes whether 'A' causes 'B,' but without 
completing the loop and showing that 'B' does not occur without 'A' having occurred. Our 
examination is of a lower rung on the causality ladder, no less important but essential for the 
fuller story. 

Let's suggest that an entity, such as a business or government, has a metric of great interest 
to their operation. This success metric, denoted as Y, is tracked and recorded once during each 
period of time.  Y could be output produced, number of people served, number of items sold, 
state domestic product, US gross domestic product, or any other success metric reasonably 
related to the entity's operation. This is the environment of our business problem.   

The entity implemented a policy change seven periods ago and now wonders whether a 
retrospective examination will show whether it "paid off" in higher values of the success 
metric. To test this "pay off," we have 14 periods of data, seven years before and seven years 
after the policy change. These time periods, for example, can be months, quarters, or years.6    

ARTICULATION OF THE PROBLEM 
The first step in any applied analytic approach is to articulate the problem needing to be solved. Only by 
starting out with a clear statement of the problem can one hope to do all that is possible to solve it. The 
problem to be solved is this: Did a policy or procedure implemented at the end of the 'before' period of 
time cause a change in the outcome metric of interest in the 'after' period over and above any naturally 
occurring change in Y?  

DATA ACQUISITION 
The data for this demonstration are in the code block below. A PROC MEANS procedure is run 
to verify the data have been entered correctly. The code to load and verify the data is:  

 

                                                            
6 While this problem is set in a time-series framework, the concepts of this paper will apply equally well to 
treatments in a common sample, that is whether the subsample that received the treatment are 
substantially better off than the subsample that did not get the treatment.  
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Data Y; 
 input Y @@;  
 datalines;   
 12.35  13.71  16.00  17.94  20.76  21.11  24.63 
 27.56  32.88  35.16  39.26  44.28  47.27  51.55; 
 run; 
 
title 'The correct mean of y is 28.890 and the Std Dev is 12.9719'; 
proc means data=y mean std maxdec=4;  
    run; 

 

DATA CLEANING 
Preparation of the data should involve much work exploring and cleaning the data, but in this 
illustration, we accept the data as is. In practice, skipping this step will almost always lead to 
peril.  

DATA TRANSFORMATIONS FOR ANALYSIS 
Our business problem suggests a course of action. The first question to explore is what is the 
pattern of the data, and how do they trend over time? Are there any obvious characteristics to 
that data and its trend? Are there significant perturbations in the data, or is it fairly smooth? 
These and other questions will be addressed below, but it becomes obvious that some 
variables need to be created or transformed as shown:  

Data trdata; 
 /* Problem is to explain the trend in variable Y. */ 
 /* H0: An intervention that begins in T=8 has no effect on the trend line.*/ 
 /* H1: An intervention at T=8 changes the trend line. */ 
 /* Alternative problem: */ 
 /* The actual equation is simply nonlinear in variables such as y = T TSQ.*/ 
 
 set Y;   
 T=_N_;    /* 1. create time variable. */ 
 TSQ = T*T;   /* 2. and time-squared value. */ 
 D=0; if T>=8 then D=1;  /* 3. Create binary variable for the intervention. */ 
 DT = D*T;    /* 4. create interaction of D and T. */ 
 run; 

 

Four variables are created to aid the analysis, T which is the linear time measure, and TSQ, 
which will allow for a suspected quadratic trend. To that, we use dummy variable, D, which is 
the intervention or treatment variable, and DT, which allows that the influence of D may vary 
with time, T.7   

                                                            
7 In this example there are no other possible confounders, no other variables to acquire. This is never the 
case in real analytical scenarios and serves well here for this particular example. TSQ is added because as 
the exploration continues a quadratic model seems a possibility as shown below as the story unfolds (See 
First Look: Is it quadratic?). 
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MODEL SPECIFICATION 
After articulating the problem and cleaning the data should follow the model specification 
stage. Much of the contention of this paper is, what if little to no thought and investigation 
goes into this step? The remainder of the paper (starting at A better starting point) takes this 
up primarily by offering a roadmap—a roadmap of how to think your way through all problems. 
The roadmap has to include the ten ethics rules and avoiding the ten pitfalls of regression 
practice, but first, what if it does not? 

HASTY REGRESSION AS A STARTING POINT 
We have data, and we have a question: does D affect Y? So let's run a regression based on a 
model pulled out of the air without regard to the theoretical problem under study and without 
rigor in the model specification stage, all the while giving no regard to whether the data is 
clean and ready for analysis.  

What could go wrong?   

I use the term hasty regression to describe when a researcher quickly runs a regression with 
minimal or no articulation of the problem, virtually no data cleaning and preparation, a lack of 
understanding of the data generating process (DGP), or no critical thought on or empirical 
investigation into the appropriate model specification. Who would do this, you might ask? 
Nearly all of us. The temptation is just too great. We become anxious about what may be 
learned, but we can never un-see those initial and hasty regression results which will bias our 
approach whether the binary variable is significant or not.  

Mistakes of commission and omission made in the articulation of the problem and the 
specification, identification, and selection of the model may prove fatal to your analysis, but 
the results do not identify as fatal. Indeed they look the same as results from better well-
conceived designs. The poorly conceived problem and the undoubtedly misspecified model can 
lead us to what can only be described as a failure. Further, large t's and F's and a high R-
square are not in and of themselves indicative of a good model.  

Researchers legitimately use binary or dummy variables to ascertain whether a point or many 
such points are significant deviations from the overall trend in a linear regression model.  

The dummy variable, D, is defined as D=0 for before the intervention and D=1 after the 
intervention of the policy. We run the following models and test whether D is significant. The 
use of labels on model and test statement prove to be quite helpful when sifting through 
copious output.  

The code for our first models is: 

 

proc reg data=work.trdata; 
  model_1: model y = t; 
  model_2: model y = t tsq; 
  model_3: model y = t d; 
  model_3A: model y = t tsq d; 
  title1 'Regression Specifications - full sample' ; 
     title2 'Full Sample, T=1,..., 14'; 
  run; 
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The Hasty Regression is model_3 and the results are shown in column 3 of Table 3. This is 
likely the first and perhaps the last regression run by the hasty researcher. Model 1 is the base 
model; the model proffered when the policy variable is not included. Models 2 and 3A emerge 
as a possibility when residuals from models 1 or 3 are examined, and a quadratic pattern in 
the residuals is observed as shown below. 

Table 3: Hasty Regressions with Policy Dummy Variable, D. 

(Y is the dependent variable)  

 model  

  (1) (2) (3) (3A)  

constant 5.93*** 11.12*** 6.2*** 11.38***  

  (4.87) (14.96) (4.22) (14.41)  

    
   

 

T 3.06*** 1.12*** 2.97*** 1.03***  

  (21.39) (4.9) (9.91) (4.16)  

    
   

 

TSQ   0.13*** 
 

0.13***  

    (8.77) 
 

(8.77)  

    
   

 

D   
 

0.85 0.85  

    
 

(0.35) (0.99)  

      

n 14 14 14 14  

𝑅𝑅�2  0.972 0.996 0.970 0.996  

F 457.6 1713.4 212.2 1717.1  

RMSE 2.16 0.80 2.24 0.80  

DW 0.44 2.07 0.46 2.40  

Note: All regressions estimated with OLS using the SAS REG procedure. T-stats in 
parentheses.  
*** significant at the .01 level 
** significant at the .05 level 
* significant at the . 01 level 
 

For purposes of this paper, autocorrelation in this time-series is ignored, but Durbin-Watson 
(DW) statistics are shown. Readers may want to experiment with autocorrelation corrections 
after all these data are a time-series, but the fundamental points being made in this paper do 
not change with the corrections. 

Let's take a look at these results. 
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Table 3 (above) shows the parameters estimated for Model_1, which has an adjusted R-
squared, 𝑅𝑅�2, of 0.972 and a RMSE (Root Mean Squared Error) of 2.16, showing that this seems 
to be a pretty good representation of the trend of Y. One might be tempted to say that with 
such strong results that this 'proves' that the regression is linear, but this proves nothing. The 
t-values and the F statistic for the model show that the variable T is statistically significant 
based on a null hypothesis that Y is equal to random error.  This is hardly confirmation. Every 
test we normally encounter are called nested tests. The tests compare a restricted model to an 
unrestricted model.  

In this section the restricted and unrestricted models are carefully pointed out and how they 
match the model estimated. 

The first regression (Model 1) compares the restricted model that Y is a constant to Y is 
influenced by a time trend. The F-test is the same as the t-test in showing that the slope is 
zero. This is clearly rejected. This case is shown in Figure 1. 

 

Figure 1: The linear model without regard to the intervention 

 
 

THE RESULTS OF OUR HASTY REGRESSION: DOES D MATTER? 
Model 2 shows that the trend is consistent with a quadratic pattern. Model 3 shows that the 
effect of D is zero when compared to a linear trend in Model 1, and Model 3A shows that the 
effect of D is zero when compared to a base model that exhibits a quadratic trend.  

The policy variable, according to the hasty regression, whether that hasty model is linear or 
quadratic, has no effect on our target value.  

The test in model 3 is very specific and is illustrated in Figure 2. The test of the hypothesis on 
D requires that no other variables are in the model and that the slope, the effect of T on Y is 
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held constant and not allowed to change. (A similar figure can be produced to show the same 
test of shifting intercept holding constant the linear and quadratic terms in T). 

 

Figure 2: Test of an intercept difference holding slopes the same (Model 3) 

 
At this point (whether model 3 or 3A), the hasty analyst may conclude that D has no effect on 
Y and stop their questioning. This is hasty regression at its finest (read sarcasm). By saying 
that D is unimportant in explaining Y as a general statement, then this is a lie from our data. 
As we will show, D is far more important than this would imply. Our hasty researcher is on to 
other tasks, while our better researcher starts this analysis very differently.  

WHY HASTY REGRESSION IS A WRONG STARTING POINT 

Hasty regression should never be used. There I said it.  

Why do the insignificant results of Models 3 and 3A not prove the policy has no effect? The 
statistician's dilemma is he or she can never know the truth. What is known is an estimate 
based on an estimator (formula) given a specific sample data set. The statistician wants to test 
a hypothesis on an unknown population estimator by using a known sample estimate. Type I 
errors occur when we reject the null hypothesis, but in reality, the null hypothesis is true. Type 
II errors have us failing to reject the null hypothesis when indeed, the null hypothesis is false. 
Figure 3 illustrates this nicely. The green text shows a correct decision and the red text shows 
a wrong decision. Proof is not possible, ever. Let me say again we can never prove anything 
because the truth cannot be known, but we use statistics to set the decision criteria for our 
behavior. What happens when multiple tests point in different directions?  
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Figure 3: The statistician's decision, to reject or not reject 

 
I used courtroom "testing" as an example in Figure 3. Don't we say that we prove someone's 
innocence in court? The null hypothesis in court is "innocent," and we say "innocent until 
proven guilty," but in actuality, we do not prove guilty; we reject the null hypothesis of 
innocence based on the evidence. In the same way, we do not prove innocence either. We fail 
to reject their innocence based on a lack of evidence. You can trace through the same 
courtroom test if the null hypothesis is "guilty until proven innocent."  

We can never prove; we can only falsify on the basis of this estimator and this dataset. The 
best we can do is use the most powerful test based on the best estimators from our best-
specified model. In a controlled experiment, we can replicate the experiment and test over and 
over, but in observational data, there is often, if not always, no replication possible. The 
history is we all we have.   

The statistical community has called into disuse the declaration of models being significant or 
not significant based on a crossed threshold by our test. The tables below do show a 
breakdown by threshold, but in this case, this is for convenience, and the exact p-values in this 
paper are universally extremely small (very close to 0.00) or quite large (over 0.30).  

DEALING WITH INDECISION 
Evidence! I need more evidence! In the words of Fenton Hardy, the fictional father of the 
Hardy Boys, a series I read religiously a half-century ago, we must "leave no stone unturned."  

So what to do? Obviously, time to overturn some stones. That is to dig deeper, to go beyond 
the obvious as in the hasty regression above.  

Our grand hypothesis is about D, or rather about what D is measuring. Did the intervention 
have an impact on the outcome variable as measured by the Y variable? Two points: First, it is 
easy to think we are seeking truth from data, but the manner as I write this paper is that data 
will lie to you. We need to first think of and seek an overall explanation of why D would affect 
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Y and then measure every effect we can think of. Falling short of that means the data may still 
lead us astray. Second point: tests of statistical hypothesis have three parts, (1) the null 
hypothesis, which we try to reject, (2) the alternative hypothesis, and (3) the maintained 
hypothesis that is not subject to test. The latter is indicative that what other variables are in a 
model and, equally important, what is not in a model affects the restricted/unrestricted tests. 
Consider Models 3 and 3A below, each with the same test of the effect of D having the same 
null and alternative hypotheses, however the maintained hypotheses are different because 
TSQ is held constant in Model 3A and ‘allowed to be free” in Model 3.  

 

Model_3:  Model Y = T D; 
          Test_3: Test D=0; 
Model_3A: Model Y = T TSQ D; 
          Test_3A: Test D=0; 

 

Analysts need not only develop a modeling and estimation strategy but must have a testing 
strategy to answer the overall question. In this simple case of this paper, I show that it takes 
eight separate tests to answer one grand hypothesis. No single equation answers the question 
until we have rejected all other competitors.  

MODEL SELECTION AND SPECIFICATION VERSUS BEING DATA-DRIVEN 
Some analytic approaches start with the idea that the truth is in the data and what is revealed 
is true, but the premise of this paper is that data can and does "lie" or greatly mislead. Some 
think that being data-driven will yield the best results, but being theory-driven is far more 
important. The art of model specification requires we consider theory and common sense as we 
begin our process and that we validate our data by inspecting it before we regress, that we 
learn about the DGP. In this case, the DGP strongly suggests that the growth in Y is quadratic 
or linear when allowing for a structural break based on the value of D. 

Those that start out with hasty regression may compound the problem by running variations of 
the original hasty regression to try to get a better fit. These additional equations are based on 
an initial set of results that may have already lied to them. Building a better model on a shaky 
foundation is not good building practice.  Better to start with a firm theoretical foundation in 
the first place, but after seeing hasty regression results your reasoning has already been 
contaminated.  

A data scientist and former student of mine said that when his team is given a new problem, 
he puts them in a conference room and asks them to formulate and solve the problem before 
he allows them to see the data. In this manner, his team can never run a hasty regression or a 
hasty machine learning model. I asked if this was from his economic training, and he said 
100%. When his team begins their investigation of a new problem, considerable thought has 
already gone into that process. I think this is one of many competing ways to make sure that 
much human thought goes into the specification process.  

A data-driven technique-only approach invites anomalies to rear their ugly heads and suggest 
a finding where it is not there. Likewise, a data-driven approach to over-clean8 the data and 
transform it has the effect of removing meaningful perturbations in the data by assuming they 
are just anomalies to be flattened.  

                                                            
8 “Over-clean” is too much data cleaning, not unlike the concept of “over-fitting.” 
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As attributed (correctly or incorrectly) to Nobel Laureate Ronald Coase: "If you torture the data 
long enough, it will confess." Of course, the tormentor will stop the beating when their biases 
are confirmed. We have all seen the TV drama of a torturer beating an innocent person 
because the (wrongly) expected truth fails to emerge. If all you want to do is to confirm your 
expected solution, then why do the data work at all?  

 

If you are willing to let the data speak for itself without much or any human intervention, 
then why think at all?  

QUANTITATIVE AND QUALITATIVE VARIABLES REQUIRE DIFFERENT APPROACHES 
The values Y and T and TSQ are quantitative. The binary class variable, D, is qualitative 
(categorical) with a value of zero for the first seven periods (called 'before') and a value of 1 
for the last seven periods (called 'after'). While D is indeed qualitative, because of the 0, 1 
coding, it has desirable quantitative properties, chiefly among these is the mean is the portion 
of observations 'after' when compared to the total sample.  

Mathematically the treatment of right-hand side (RHS) quantitative and qualitative variables 
are quite different.  

Let's begin with Model 1 shown in equation 1. For the purposes of this paper, this is our 
starting point. Models 2, 3, and 4 are all extensions to that model and can each be tested to 
see if they differ from the linear model. 

 

Model 1, 
linear 

𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝑇𝑇 + 𝜀𝜀 1 

 

When we use binary or categorical variables on the right-hand side of the regression equation, 
we have to treat them very differently than quantitative or metric variables. Take two 
equations that are quite different (equations 2 and 3).  

 

Model 2, 
quadratic 

 

𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝑇𝑇 + 𝛽𝛽2𝑇𝑇
2 + 𝜀𝜀  2 

Model 4, 
structural 
break 

𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝑇𝑇 + 𝛽𝛽2𝐷𝐷 + 𝛽𝛽3𝐷𝐷𝑇𝑇 + 𝜀𝜀  3 

 

T is quantitative, and the interpretation of the effect of T on Y in equations 2 and 3 is the 
partial derivative of Y with respect to T, which differs because of the different specifications. 
Based on the quadratic model, equation 4 shows the estimate of the effect of T on Y is a 
function of T.  
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 Based on the the structural break of equation 3, the effect of T on Y is a function of D and is 
either one of two values: 𝛽𝛽1 in the before period where D=0, or 𝛽𝛽1 + 𝛽𝛽3  in the after period 
where D=1.  

I show this not to introduce calculus into the paper for effect, but rather to say the effect of the 
variation in T on the variance of Y is an easily notable math equation because T is quantitative. 
No such partial derivative exists when discussing the effect of D on Y. Partial derivatives 
represent small changes of the numerator variable, and small changes are not possible in D, 
because D is either 0 or 1.  

To estimate the effect of D on Y, we first find the mathematical expectation of the targey or 
dependent variable Y as shown in equations 6.  Likewise the mathematical expectation of Y 
when D=1 is shown in equation 7.  

The effect of D on Y is then found by the difference in the mathematical expectations of Y 
under the two states represented by D.  This result is shown in equation 8, and is the 
difference between equations 6 and 7. 

This difference in expectation are derived from model 4 only since model 2 does not include 
the dummy variable. Substitution zero for D in equation 6 and one for D in equation 7 is shown 
in equations 6 and 7.  

 

 E[Y|D=0] = 𝛽𝛽0 + 𝛽𝛽1𝑇𝑇 + 𝛽𝛽20 + 𝛽𝛽30 ∗ 𝑇𝑇 = 𝛽𝛽0 + 𝛽𝛽1𝑇𝑇 6 

 E[Y|D=1] = 𝛽𝛽0 + 𝛽𝛽1𝑇𝑇 + 𝛽𝛽21 + 𝛽𝛽31 ∗ 𝑇𝑇 = (𝛽𝛽0 + 𝛽𝛽2) + (𝛽𝛽1 + 𝛽𝛽3)𝑇𝑇 7 

 E[Y|D=1] – E[Y|D=0] = 𝛽𝛽2 + 𝛽𝛽3𝑇𝑇 8 

 

Therefore to test the effect of D on Y in model 4 we can certainly judge t-tests on the separate 
parameters in equation 7, but the most accurate test is executed as shown in this code block:  

 

Proc reg data=work.trdata; 
  model_4: model y = T D DT; 
  test_4:  test D=DT=0; 
  title1 'Regression Specifications - full sample' ; 
          title2 'Full Sample, T=1,..., 14'; 
  run; 

 

The test of H0: β2= β3 =0 in Model 4 as expressed in equation 3 is characterized in the code 
block as test D=DT=0, and that yields a Wald test testing the unrestricted model of equation 3 
against the null hypothesis that Y is simply linear in T (model 1).   

 𝜕𝜕𝑌𝑌
𝜕𝜕𝑇𝑇

=   𝛽𝛽1 + 2𝛽𝛽2𝑇𝑇  4 

 𝜕𝜕𝑌𝑌
𝜕𝜕𝑇𝑇

=   𝛽𝛽1 + 𝛽𝛽3𝐷𝐷 5 
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A BETTER STARTING POINT 
A cursory inspection of the data would (or should) prevent a hasty regression like Model 3 from 
being run. Let's think our way through the modeling process.  

FIRST LOOK: IS THE BASE MODEL LINEAR? 
Equation 1 is the base model for this investigation, and we are about to visualize and estimate 
it. The base model for a problem like this one is the best model to explain the variance in the 
dependent variable without regard to the policy variable of interest. In our simple example, T 
(our time trend variable) is the only variable in our dataset that will affect Y except for 
variables derived from D.  

The first step is to establish the 'best' model before invoking D. The right way to look at D, is 
does it offer additional explanatory power over and above the best model we can produce 
without regard to D.  

If there were more variables in this example that affected Y, then our first task would be to 
create the best model specification, including all relevant variables. 

Visualization, especially, in this case, can help us learn much about our data. Figure 4 shows 
the estimated linear regression line surrounded by its confidence interval, and the actual 
observations.  

Here is the PROC SGPLOT code to create Figure 4:  

 

ods graphics on / noborder width=5in; 
%let xref = %str(xaxis values=(1 to 14 by 1); refline 7.5 /  
axis=x label="<-- Policy change" labelloc=inside labelpos=min ;); 
 
title1 'Model 1: Y follows a Linear Trend.'; 
title2 'PROC SGPLOT with REG Statement.'; 
PROC SGPLOT data=trdata ; 
 reg x=T y=Y / CLM CLI ; 
 &xref; 
 run; 

 

The first three lines of the code assures graphics are on and the macro token &xref is defined 
as a common setting for all X axis in the following graphs.  
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Figure 4: Explore the trend of the metric Y 

 
Figure 4 suggests that the regression line is possibly linear but, by inspection, at least five of 
the 14 observations are large enough to be outside the 95% confidence interval of the linear 
model. The points from the scatter also suggest a quadratic shape.   

The pattern of residuals (vertical differences between the actual observations and the line 
plotted in Figure 4 not shown) show a strong "U" pattern where at low and high values of T the 
residuals are positive while in the middle of the series the residuals are negative.  

FIRST LOOK: IS IT QUADRATIC? 
Change the last code to add degree=2 as an option to the PROC SGPLOT REG command. The 
default is degree=1 and plots the regression of Y on X as in Figure 1, while a change to 
degree=2 plots Y as a quadratic in T. The code is: 

 

title1 'Model 2: Y follows a Quadratic Trend.'; 
title2 'PROC SGPLOT with REG Statement.'; 
PROC SGPLOT data=trdata ; 
 reg x=T y=Y / degree=2 CLM CLI ; 
 &xref; 
 run; 
 

 

The result of this change is shown in Figure 5 and rather clearly suggests that the trend in Y 
may be quadratic and have little to do with the intervention, D. 
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Figure 5: Y as a quadratic function of T 

 

FIRST LOOK: A NONPARAMETRIC LOOK AT THE TREND. 
What if we do not impose either a linear or quadratic form on the trend in Y, but rather use a 
nonparametric technique invoked by the PROC SGPLOT command LOESS to trace out the most 
obvious pattern. The LOESS is a nonparametric regression, also called local regression, which 
will trace out the scatter points by running a regression only among the nearest neighbors to 
each data point.9  That way, the many regressions run are not sensitive to points far away 
from the point of interest. In the loess command, we can choose cubic or linear, and each with 
a degree of one or two. You can run all four combinations and see that, in this case, the lines 
look the same for each combination, all suggestive of a quadratic trend. 

 

We can compare visually the linear model with the nonparametric model. graph the linear 
regression plot (changing the code from last time to degree=1 and causing it to be somewhat 
transparent) and the loess plot drawn over the regression plot. The code is:   

                                                            
9 A high-level look at Loess is found at https://en.wikipedia.org/wiki/Local_regression. See recommended 
readings for more.  

https://en.wikipedia.org/wiki/Local_regression
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title1 'Nonparametric Local Regression LOESS Model.'; 
title2 'Tracing out the points with LOESS and comparing to the Linear Trend.'; 
PROC SGPLOT data=trData; 
 reg x=T y=Y / degree=1 CLM CLI CLMTRANSPARENCY=.5; 
 loess x=T y=Y /interpolation=linear degree=2;   
 &xref; 
    run; 

 

 

Figure 6 shows that the loess plot seems to trace out a fairly definite quadratic-looking 
relationship and in this case, the scatter seems to show points closer to the quadratic than the 
linear.  

Figure 6: What does a nonparametric trend reveal? 

 
So what can we conclude from the investigation so far? It seems that the steps have led us to 
prefer the quadratic model as an explanation of higher values in the second part of the data.  
This is another lie in this data, but we have to continue to be curious, to continue the analysis 
to know that!  
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HOW DOES THE TREND LOOK SEPARATELY BY GROUP? 
Our interest is “did the intervention, D, affect the trend?”  What if we apply the modeling 
separately by group, that is, before (D=0) and after (D=1). For this visual, we modify the code 
to overlay the before and after regressions on top of the full-sample linear regression. The 
group=D option on the second reg plot instructs the plot to plot first the observations with D=0 
and then the last observations with D=1. The code now looks like this: 

 

title1 'Model 4: Structural Break with Linear Trend by Group=D'; 
title2 'Separate linear regressions before and after policy change'; 
PROC SGPLOT data=trdata; 
 reg x=T y=Y / CLM CLI CLMTRANSPARENCY=.5; 
 reg x=T y=Y / CLM CLI CLMTRANSPARENCY=.25 group=D 
                 markerattrs=(symbol=circlefilled color=black size=10px); 
 &xref; 
run; 

 

Figure 7: What does the regression look like before and after the intervention? 

 
It seems obvious from Figure 7 that there is a different trend line before (blue line) and after 
(red line). This suggests that there is strong evidence that the trend is consistent with a 
structural break and that D has a strong influence. Why a structural break? Figure 7 shows a 
linear trend with a upward slope and then in the after period exhibits a much higher slope.   
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DOES THE TREND APPEAR QUADRATIC, BEFORE AND AFTER? 
The local regression in Figure 6 traced out a strong looking quadratic relationship, and that was 
said to be a lie in the data. To see why we can visualize the local regression of the last seven 
periods separately from the first seven periods to get a feel if the separate periods (groups) 
are more linear such as in Figure 7 or more likely due to a natural quadratic-like relationship as 
in Figure 5. The following code will overlay the full-sample linear trend with the local 
regressions in the before and after time-slice of the full sample: 

 

title1 'Local regression by group=D'; 
title2 'Separate LOESS regressions before and after policy change'; 
PROC SGPLOT data=trData; 
 reg x=T y=Y / CLM CLI CLMTRANSPARENCY=.5; 
 loess x=T y=Y / group=D interpolation=linear degree=1  
                       markerattrs=(symbol=circlefilled color=black size=10px) 
                       CLMTRANSPARENCY=.25;   
 &xref; 
run; 

 

Our result in Figure 8 is that the quadratic relationship visualized over the entire sample 
seemingly vanishes when each group is analyzed separately. But of course, we have only beat 
the data a little so far, and this confession seems pretty weak. Like much analysis, we have 
dug into the data but have not yet confirmed our assertions using statistical inference. We turn 
to that next.  
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Figure 8: What do the separate trends by D look like? 

 
 

SUMMARY OF THE VISUAL ANALYSIS 
Visual evidence for a quadratic trend and a structural break is found with the structural break 
model having more credence because the before and after periods exhibit no quadratic form 
and appear linear. Now we turn to quantify this relationship.   

REGRESSION SPECIFICATION TESTING: DID A STRUCTURAL 
CHANGE OCCUR OR IS IT A NATURAL QUADRATIC 
PROGRESSION? 
In the visual inspection of the data in part 1, two possible models emerge, one called a 
structural break model where D is quite important (see Figure 9) and a quadratic model where 
D is likely unimportant (see Figure 10).  
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Figure 9: Test of changing intercept and changing slope by the intervention, D. 

 
Figure 10: Alternate model, test of a quadratic form 

 
The following code block sets up the full set of regressions and tests needed for this 
investigation in a linear regression format. The results of the first PROC REG are shown in 
Table 4  
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Title1 'Statistical models'; 
proc reg data=work.trdata; 
  model_1: model Y = T      ;  /* Linear Model     */ 
  model_2: model Y = T TSQ  ;  /* Quadratic Model  */ 
  model_3: model Y = T D    ;  /* Hasty model      */ 
  model_4: model Y = T D DT ;  /* Structural Break */ 
  title2 'Full Sample, T=1,..., 14'; 
  run; 

 

Table 4 shows every adjusted R-square term is very high and close to 1, and RMSE are all low, 
but the quadratic and structural break models stand out the most, with the structural break 
model edging out the quadratic model with adjusted R2 of .998 > .996 for the quadratic model, 
hardly a significant difference. Also, the structural break model has a lower RMSE of 0.65 
<0.80 for the quadratic model.  Nevertheless, both models appear quite strong, and while both 
reject the linear model, there is at this point no test of the difference between the two.  
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Table 4: Full Sample Statistical Models (Y is the dependent variable) 

  (1) (2) (3) (4)  

constant 5.93*** 11.12*** 6.2*** 10.01***  

  (4.87) (14.96) (4.22) (18.25)  

    
   

 
T 3.06*** 1.12*** 2.97*** 2.01***  

  (21.39) (4.9) (9.91) (16.42)  

    
   

 

TSQ   0.13*** 
  

 
    (8.77) 

  
 

    
   

 

D   
 

0.85 -13.47***  

    
 

(0.35) (-9.12)  

    
   

 
DT   

  
1.91***  

    
  

(11.01)  

           

n 14 14 14 14  

𝑅𝑅�2  0.972 0.996 0.970 0.998  

F 457.6 1713.4 212.2 1717.1  

RMSE 2.16 0.80 2.24 0.65  

DW 0.44 2.07 0.46 3.30  

Note: All regressions estimated with OLS using the SAS REG procedure. T-stats in 
parentheses.  
*** significant at the .01 level 
** significant at the .05 level 
* significant at the . 01 level 
 

In testing both models against the linear base model, we see that unfortunately, both models 2 
and 4 reject the null hypothesis or restricted model of Model 1.  The test statements generate 
Wald-type F-tests of a restricted versus an unrestricted model. These are known as nested 
tests since one fits in the other by a model reduction when the null hypothesis is applied. In 
the quadratic case, the F test is the square of the t-stat on the single parameter by a well-
known theorem. In the structural break case, the Wald test differs from the two separate 
parameters test. Let's run the following code: 
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title2 'Testing the Quadratic Model against the Linear Model'; 
proc reg data=trdata; 

 model_2:     model Y = T  TSQ; 
 Quadratic:   test tsq=0;       
 run; 

title2 'Testing the Structural Break model against the Linear Model'; 
proc reg data=trdata; 

 model_4:  model Y = T  D  DT; 
 Structural_break:  test D=DT=0;  
 run; 

  

As a result, we are presented with two test results, each asking whether the model (quadratic 
or structural break) rejects the linear model, Model 1.   

 

Figure 11: Both the Quadratic and Structural Break models are "acceptable." 
 

F Value P-value 𝑹𝑹�2 Root MSE 

Quadratic Model:  

test tsq=0; 

76.84 <.0001 0.996 0.80 

Structural break:  

test D=DT=0; 

61.32 <.0001 0.998 0.65 

 

The results are explicit. Both the quadratic model and the structural break model reject the 
linear model. If we agree that the word "acceptable" is not proof of truth because it is not, 
then here is the problem in a nutshell: Both models are "acceptable." The quadratic model 
says D has no effect and the structural break model says D has a large and positive effect. 

Are we done? Is that it? Hardly. Read on.  

 

REGRESSION SPECIFICATION: BEFORE AND AFTER 
 

Based on the visual analysis of Figure 7 and Figure 8, the regression should hold in the before 
and the after periods. A structural break would imply that there is a different linear trend 
before and after the policy, but that each period trend line is linear. In the case of a quadratic 
trend, the before and after trends should also exhibit a quadratic shape. 

The code that generated the results of Table 4 above can be easily changed to separate the 
results by the before and after time periods as shown in the following code block: 
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Title1 'Statistical models'; 
proc reg data=work.trdata; 
  model_5: model Y = T      ; 
  model_6: model Y = T TSQ  ; 
  title2 'Partial Sample, T=1,...,7 Before'; 
  where D=0;; 
  run; 
 
proc reg data=work.trdata; 
  model_7: model Y = T      ; 
  model_8: model Y = T TSQ  ; 
  title2 'Partial Sample, T=8,...,14 After'; 
  where D=1; 
  run; 
 

 

The code uses the same regression specifications but adds a where statement to indicate which 
observations are to be used.  

Table 5 shows each of the models run on the before and after samples. Models 5 and 7 show 
strong linear models which have higher adjusted R2s and lower RMSE scores than the quadratic 
models 6 and 8. Indeed the addition of TSQ to the linear model is not significantly different 
from zero. Hence the linear model superiority on the full model is confirmed in each of the 
segments of time, before and after. Linear in each the before and after time periods is 
consistent with the structural break model.10  

                                                            
10 I acknowledge a potential degree of freedom problem in these very small sample regressions, but would 
point out that the two highlighted coefficients are themselves very small suggesting that is not a problem 
here.  
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Table 5: Before and After Regressions (Y is the dependent variable) 

  (5) (6)  (7) (8)  

constant 10.01*** 10.42***  -3.45** -3.19  

  (17.13) (9.87)  (-2.42) (-0.03)  

    
 

   
 

 
T 2.01*** 1.74**  3.92*** 3.87**  

  (19.04) (2.88)  (30.76) (2.13)  

    
 

   
 

 

TSQ   0.034    0.002  

    (0.46)    (0.03)  

            

n 7 7  7 7  

𝑅𝑅�2  0.980 0.976  0.994 0.992  

F 293.5 123.7  946.1 378.5  

root MSE 0.62 0.68  0.68 0.75  

       
Note: All regressions estimated with OLS using the SAS REG procedure. T-stats in 
parentheses.  
*** significant at the .01 level 
** significant at the .05 level 
* significant at the .01 level 
 

Nevertheless, this still is not the best test between the two, indeed it is not a test between the 
two models at all. That will require non-nested hypotheses testing as shown below. But first 
Table 6 shows a convenient summary of all models so far and what we learned. 
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Table 6: Summary of all eight statistical models 

Model  Sample Model 
name 

 

1 Full 
n=14 

Linear Y is trending upward linearly. 

2 Full 
n=14 

Quadratic Y is better described as trending upward 
quadratically. 

3 Full 
n=14 

Hasty 
regression 

Based on the linear model, D has no apparent 
effect. 

4 Full 
n=14 

Structural 
break 

Based on the linear model, D (through D and 
DT) has a large effect. The Structural break 
model seems better than the quadratic 

5 Before 
n=7 

Linear for 
D=0 

Before, Linear model is trending upward at 
about 2 points a period. 

6 Before 
n=7 

Quadratic 
for D=0 

The linear model of Model 5 is not rejected in 
favor of the quadratic model in the before 
period. 

7 Before 
n=7 

Linear for 
D=1 

After, Linear model is trending upward at 
almost 4 points a period. 

8 Before 
n=7 

Quadratic 
for D=1 

The linear model of Model 5 is not rejected in 
favor of the quadratic model in the after 
period. 

 

ALTERNATE TOOLS FOR SPECIFICATION 
Before we go on to a test of the structural break model versus the quadratic model directly, 
let's consider an alternative manner of selecting the models and an additional way to test for 
Misspecification. 

WHAT OF AUTOMATIC MODEL SELECTION? 
Table 7 shows the results of using the powerful features in PROC REG to automatically choose 
variables for the model. PROC REG has seven automatic selection criteria for right-hand 
variable selection using the SELECTION= option.  

The data of this paper were subjected to all seven methods of automatic selection, and the 
results show the structural break model in three cases, the quadratic model in one case, and 
all of the variables in the data three times. That is, the revealed model by the "black box" of 
selection is totally dependent on which selection method is used. Obviously, this is not a 
superior solution to reveal the truth of the data as we know it or one would have to be able to 
assert which method is superior a priori.  
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Table 7: Use of automatic model selection in PROC REG 

Regression selection 
process 

winning model 

Selection=adjRsq T D DT 

Selection=Stepwise T TSQ 

Selection=Forward T TSQ D DT 

Selection=Backward T D DT 

Selection=maxR T TSQ D DT 

Selection=minR T TSQ D DT 

Selection=CP T D DT 

 

USING A TEST FOR MISPECIFICATION 
Another approach is to subject our models to a Ramsey Specification Test (see Ramsey 
(1969)). This tests whether there is any additional information in higher-order polynomials of 
the fitted Y values when added to the model being tested for misspecification. The test is 
whether there are any nonlinear terms not picked up in the linear expression. The SAS code 
follows, and it is worth noting that this test is available only in the SAS/ETS PROC AUTOREG. 

 

PROC autoreg data=trdata; 
 model_1: model y = T  / reset; 
  run; 
PROC autoreg data=trdata; 
  model_2: model y = T TSQ/ reset; 
  run; 
PROC autoreg data=trdata; 
 model_3: model y = T D / reset; 
 run; 
PROC autoreg data=trdata; 
 model_4: model y = T D DT/ reset ; 
 run; 

 

The reset option produces estimates of these higher order polynomials (power 2=squared, 
3=cubic, 4=quadratic) and tests whether they are significant. The results for all four models 
are shown in Table 8 and indicate that both the structural and quadratic models seem to be 
successful, while the linear and hasty regression are rejected. 
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Table 8: Ramsey Specification Tests Results (SAS/ETS PROC AUTOREG) 

Model Squared 
Polynomial 
of order 2 

Cubic 
Polynomial of 
order 3 

Quadratic 
Polynomial 
of order 4 

1 Y=T              Linear model is  Rejected Rejected Rejected 

2 Y=T TSQ      Quadratic model is Not rejected  Not rejected  Not rejected  

3 Y=T D          Hasty Regression is Rejected Rejected Rejected 

4 Y=T D DT    Structural Break Not rejected  Not rejected  Not rejected  

 

NON-NESTED HYPOTHESIS TESTING: QUADRATIC VERSUS 
STRUCTURAL BREAK MODEL 
Both the visual analysis and the statistical-inference analysis lead to the conclusion that the 
model of a structural break and the implication that D has a large influence is a better model. 
Still, as shown by the tests reported in Figure 11 and Table 8, both the quadratic and the 
structural break models are "acceptable."11 How can we redress this? Which one is actually the 
better model? 

The models of structural break and quadratic have not been tested directly, but rather they 
have been tested as to whether they are better than the linear. Looking beyond the structural 
break "win," by the logic above, we turn to test whether the two models are actually 
statistically different from each other.  

To test whether the quadratic model and the structural model are significantly different, we 
evoke a non-nested hypothesis test. It is non-nested since the models are different, and one 
does not fit inside (or nest within) the other. That is, there is no model we can run (either 
Model_2 or Model_4) that will allow linear restrictions on the parameters of one to reveal the 
other. Notice every test above in this paper is a nested test.  

Two tests can be run on the two alternative models, the variance encompassing J-test and the 
mean encompassing F-test as described in Kennedy (2008) with appropriate references.12 
Together the variance and mean encompassing tests make up the complete encompassing test 
and has 16 possible results (as shown in Table 10). Each test, the J-test, and the F-test, have 
four possibilities: Neither model is acceptable, Both models are acceptable, and model A is 
acceptable, and B is not, or model B is acceptable, and A is not.  

These are the desired null and alternative hypotheses: 

                                                            
11 Above I made the point that we can never proof a hypothesis, therefor we cannot not accept a 
hypothesis, only reject it. This leads to difficult writing and speaking about results when there are many 
tests. So in this section I use the word “acceptable” as a short hand where we all realize we can only reject 
and fail to reject.   
12 The J-test as implemented here is found in the ETS documentation, accessed at 
https://support.sas.com/rnd/app/ets/examples/spec/index.htm. Kennedy (2008, pp. 87-88, gives a clear 
description). Mizon and Richard (1986) discuss the encompassing tests in detail.  
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  HA: 𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝑇𝑇 + 𝛽𝛽2𝐷𝐷 + 𝛽𝛽3𝐷𝐷𝑇𝑇 + 𝜀𝜀    a structural break 

 Versus HB: 𝑌𝑌 = 𝛽𝛽0 + 𝛽𝛽1𝑇𝑇 + 𝛽𝛽2𝑇𝑇2 + 𝜀𝜀    a quadratic model    

The following code block shows the non-nested tests, first for the J-test and then followed by 
the non-nested F-test. The J-test starts with estimating the quadratic and the structural break 
model and outputting the predicted values of each model. Then the prediction of one model is 
added as an explanatory variable of the second model. If the parameter of that new variable, 
the prediction from the other model, is significant, then the model being estimated is rejected.  

In the case of the F-test, a supermodel of all the variables is formed with Wald-type TEST 
statements to reduce the supermodel to the model being tested. If the Wald test is significant, 
then the model is rejected.  

The code shown uses PROC REG and parallels the mathematics of the non-nested hypotheses 
test for both the J-test, known as the variance-encompassing test, and the F-test, known as 
the mean encompassing test. The J-test utilizes a t-test on the predicted Y variable from the 
other model, so there are two tests to look at in the J-test. The mean encompassing test builds 
a supermodel of all of the variables in both models. Then by exclusionary restriction proffers 
two tests as one set of exclusions reduces to the first model and the other set of restrictions 
lead to the second model. So there are a total of two possible t-tests and two possible F-tests. 
This leads to 16 possibilities: two t's, two F's and two outcomes (rejected or fail to reject) and 
are shown in Table 10. 

Here is the code for doing the non-nested hypotheses test. 
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Title1 'Non-nested hypothesis - J-test'; 
Title2 ‘Variance encompassing test’; 
Proc reg data=trdata; 
   model_2: model Y = T TSQ; 
  output out=Mquad p=Yquadhat; 
  run; 
Proc reg data=trdata; 
   model_4: model Y = T D DT; 
  output out=Minter p=Yinterhat; 
  run; 
Proc reg data=mquad; 
 model_4A: model Y = T D DT Yquadhat; 
 run; 
Proc reg data=Minter; 
  model_2A: model Y = T TSQ Yinterhat; 
 run; 
 
Title1 'Non-nested hypothesis test - super model, F-test'; 
Title2 ‘Mean encompassing test’; 
Proc reg data=trdata; 
 Super: model Y = T TSQ D DT ; 
 quadratic: test TSQ = 0; 
 structural_shift: test D =DT=0; 
   run; 

 

The results of the four tests are highlighted in Table 9 and with explanatory call out blocks to 
help reduce the confusion. 
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Table 9: Non-nested Hypotheses Testing 

 
 

J-TEST – THE VARIANCE ENCOMPASSING TEST 
Table 9 shows that the predictions from the structural break model (column 2 j-test 
highlighted) are significant and thus contribute additional explanatory power to the quadratic 
model and therefore rejects the quadratic model. Also shown is the predictions from the 
quadratic model (column 4 j-test highlighted) fail to reach significance and thus do not 
contribute additional explanatory power to the structural break model and therefore fails to 
reject (finds "acceptable") the structural break model.  

F-TEST – THE MEAN ENCOMPASSING TEST  
When a supermodel of all variables from the structural break model and the quadratic model 
combined, the variables unique to the quadratic model fails to reject the null hypothesis of 
zero effect. So the quadratic model is not acceptable. However, the unique variables to the 
structural break model do contribute to the explanatory power over and above the quadratic 
model, meaning the structural break model is not rejected (found "acceptable").  

J-TEST AND F-TEST TOGETHER – THE COMPLETE ENCOMPASSING TEST 
As highlighted in Table 10, the J and F non-nested hypothesis tests both agree that the only 
model "acceptable" is the structural break model; therefore, the intervention as measured by 
D did have an effect. This is not a guaranteed outcome. Because all of the tests line up to 
reject the quadratic and support the structural break, we can be very confident in this 
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conclusion. However, in general, these results can conflict, rejecting both or failing to reject 
both.  

Table 10: Sixteen possible outcomes from the complete encompassing test for Non-Nested 
Hypotheses (with results of this paper highlighted) 

J-test F-test 

Quadratic Model Structural Break Quadratic Model Structural Break 

“Acceptable” “Acceptable” “Acceptable” “Acceptable” 
  

"Acceptable" "not Acceptable" 
  

"not Acceptable" "Acceptable" 
  

"not Acceptable" "not Acceptable" 

"Acceptable" "not Acceptable" "Acceptable" "Acceptable" 
  

"Acceptable" "not Acceptable" 
  

"not Acceptable" "Acceptable" 
  

"not Acceptable" "not Acceptable" 

"not Acceptable" "Acceptable" "Acceptable" "Acceptable" 
  

"Acceptable" "not Acceptable" 
  

"not Acceptable" "Acceptable" 
  

"not Acceptable" "not Acceptable" 

"not Acceptable" "not Acceptable" "Acceptable" "Acceptable" 
  

"Acceptable" "not Acceptable" 
  

"not Acceptable" "Acceptable" 
  

"not Acceptable" "not Acceptable" 

 

CONCLUSION 
This paper has attempted to take on the bad practices of Hasty Regression and, indeed, by 
implication, every application of regression-type strategies that violate the ethical practices 
and fall into the pitfalls of regression practice. What is missing throughout all hasty strategies 
is the lack of serious thought in articulating the problem, cleaning the data, and specifying the 
model. This paper seeks to show the amount of work that goes into thinking about the model 
specification. Readers will be able to think of many different ways to attack the problem within 
and are encouraged to think of different strategies. The operative word is “think.” The more 
thinking that goes into the process, the better for all our analysis.  

As to our example of a causal effect on a trending variable, visually, we liked two models on 
the entire sample, and only the linear model emerged on the sub-samples. 
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We showed that a Hasty Regression led to a false conclusion, namely that D did not matter. 
Not only did D have no effect in Model Y = T D; it also has no effect in Model Y = T TSQ D. This 
was the biggest lie in the data. Hasty regression lies to you whether you assume a base linear 
or nonlinear model in time.  

Eight regressions were necessary to complete a testing strategy that convinced us that the 
structural break model was a better representation of the data. A structural break model that 
breaks on D shows that D is very important to the data.  

A Ramsey test for misspecification was run on all models and found the structural break and 
quadratic models both "acceptable." 

The 'quadratic model' was tested against the 'structural break' model directly by the use of 
non-nested hypotheses: four tests were run, and in each case, the 'quadratic model' was found 
lacking.  

Finally, automatic processes may arrive at the same conclusion, but that is not at all clear. The 
seven selection features of PROC REG did not all point to the same model and instead gave 
quite mixed results.  

Most importantly, this paper suggests that human critical thinking processes are critical for 
making sense of this data. Our overall conclusion, data alone cannot solve casual questions.  
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