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ABSTRACT  

Validation is essential for assessing a predictive model's performance with respect to 

optimism or overfitting. While traditional sample-splitting techniques like cross validation 

require us to divide our data between model building and model assessment, bootstrap 

validation enables us to use the full sample for both. This paper demonstrates a simple 

method for efficiently calculating bootstrap-corrected measures of predictive model 

performance in SAS®. While several SAS procedures have options for automatic cross 

validation, bootstrap validation requires a more manual process. Examples focus on logistic 

regression using the LOGISTIC procedure in SAS/STAT®, with additional discussion of how 

these techniques can be extended to other procedures and statistical models. 

The running example can be downloaded in Jupyter Notebook and .sas file format from 

https://github.com/saspy-bffs/sgf-2021-bootstrap-validation 

 

INTRODUCTION  

The term overfitting is broadly used when a statistical model intended to make general 

predictions about a population instead narrowly describes the unique variations present only 

in the sample dataset used to train it (see, e.g., [9], [11], and [36]). One common cause 

for overfitting is using a sample dataset that's insufficiently representative of the population 

it was drawn from. For the purposes of this paper, though, we only consider the other 

common cause for overfitting, which is building a model with spurious predictors or too 

many predictors. 

Specifically, we study a measure for overfitting called optimism, which we'll assess using 

techniques based on the bootstrap [5]. Optimism is calculated by taking the difference 

between the apparent performance of a model and its performance when predictions are 

made on new data [9]. However, we don't actually need to have new data. Instead, we can 

estimate the optimism by repeating our modeling process (including any automated variable 

selection) on bootstrap samples drawn from our sample dataset. 

Broadly speaking, there are two broad categories of validation techniques for predictive 

models, internal and external [9]. Internal validation consists of various techniques for 

estimating the generalizability of a model using only the data available during model 

development [36]. This typically involves partitioning or resampling from the available data 

to simulate potential variability in the wider population. The most common techniques 

include split-sample validation and various types of cross-validation [14], as well as our 

topic of interest, the bootstrap. (See Sections 1 and 3 for complete definitions.) 

https://github.com/saspy-bffs/sgf-2021-bootstrap-validation
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If data are also available from a different population, setting, or time period, we can also 

perform external validation [36]. External validation is important because it allows us to 

apply scientific standards of reproducibility and to measure the performance of the model in 

actual practice. However, it's not a substitute for internal validation. Even when external 

data are available, internally validated measures of model performance are important. A 

model that hasn't been validated internally is unlikely to improve when validated externally. 

 

SECTION 1. THE BOOTSTRAP VALIDATION ALGORITHM 

First proposed by Bradley Efron [5], the bootstrap is a non-parametric method for 

estimating the sampling distribution of a statistic by resampling with replacement from 

available data. Efron, Gong, and Tibshirani (see [2], [3], [4], [7], and [8]) later explored 

how the original bootstrap could be adapted to calculate nearly unbiased and relatively 

stable estimates of optimism for a specific model performance metric. By subtracting the 

optimism from the performance metric, we can obtain a "corrected" version, which better 

accounts for possible overfitting. As has been shown through numerous simulation studies, 

this method tends to produce much more accurate estimates of true model performance 

than simply obtaining bootstrap estimates of performance metrics directly (see, e.g., [9] 

and [36]).  

The specific steps for Bootstrap Validation are as follows, which we illustrate with a detailed 

example in Section 2 below: 

1. Train a model on a sample dataset, and record the value of a performance metric of 

interest. 

2. Form sufficiently many bootstrap samples1 by drawing randomly with replacement 

from the original sample dataset. 

3. Train a new model2 on each bootstrap sample, and record each corresponding value 

of the performance metric for each bootstrap-sample-derived model. 

4. Apply each bootstrap-sample-derived model to the original sample dataset, and 

measure the performance metric. 

5. Estimate optimism by taking the mean of the differences between the values 

calculated in Step 3 (the apparent performance of each bootstrap-sample-derived 

model) and Step 4 (each bootstrap-sample-derived model's performance when 

tested on the original sample). 

6. Calculate the optimism-corrected value of the performance metric as the difference 

between the values calculated in Step 1 (the naïve value) and Step 5 (the estimated 

optimism).  

 

 

 

 

                                                           
1 Steyerberg reports that 100-200 bootstrap replicates are often sufficient [36]. However, one simulation study found 

that stability continued to improve in small datasets up to 500 bootstraps [35]. More bootstraps are recommended for 

smaller sample sizes, but the choice may be limited by available computing resources. 
2 All steps of the original modeling process, including any automated variable selection, should be repeated when 

models are trained on each bootstrap sample. 
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Figure 1. The first few rows of the sample dataset example_dataset used in the 

running example in Section 2. 

 

SECTION 2. A SIMPLE AND EFFICIENT SAS IMPLEMENTATION 

While many statistical procedures in SAS have built-in options for data partitioning (e.g., 

the PARTITION statement in PROC HPLOGISTIC [26]) or cross-validation (e.g., the 

CVMETHOD= options in PROC GLMSELECT [25]), none appear to be available for bootstrap 

estimation of optimism as of SAS version 9.4M63. The example below illustrates how SAS 

language tools for iteration across groups in datasets can be used instead. 

For this example, we use a combination of the LOGISTIC [28] and SURVEYSELECT [32] 

procedures from SAS/STAT, as well as the SQL procedure [22] and the DATA step [21] from 

Base SAS. We also use ODS OUTPUT [16] statements to capture output from PROC 

LOGISTIC, as well as additional ODS statements to suppress output during bootstrapping as 

recommended by Rick Wicklin [39]. In addition, we use macro variables to store the names 

of repeated variable lists. 

Specifically, we use PROC LOGISTIC to predict a binary outcome (hypertension4) from 

various vital measures and demographic characteristics, and we use concordance5 (aka C-

statistic or AUC) as our performance metric of interest. Our sample dataset is based on 

publicly available data from a CDC tutorial [15], with the first few rows shown in Figure 1. 

All steps used to create the example dataset, as well as the full example itself, can be found 

at https://github.com/saspy-bffs/sgf-2021-bootstrap-validation.  

                                                           
3 For a full list of SAS procedures with options for resampling see http://support.sas.com/kb/22/220.html. 
4 Hypertension is a medical term for a condition in which a patient suffers from unusually high blood pressure, often 

diagnosed when multiple high blood pressure readings are recorded over several weeks [37]. For this example, we 

define hypertension based on an average systolic blood pressure over 140, an average diastolic reading over 90, or a 

patient taking prescribed antihypertensive medication. We also use as predictors patient BMI, age, 

cholesterol/triglyceride levels, country of birth, service in the armed forces, annual household income, and substance 

abuse. (Note: This model is presented purely to illustrate SAS programming techniques. It is not intended as a 

serious or effective diagnostic tool.) 
5 For binary outcomes, the C-statistic is equivalent to the area under the receiver operating curve and represents the 

probability that a patient with an outcome is given a higher probability by the model than a random patient without 

the outcome. See [36] for a full overview. 

https://github.com/saspy-bffs/sgf-2021-bootstrap-validation
http://support.sas.com/kb/22/220.html
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Figure 2. Part of the output from PROC LOGISTIC when training the initial model in 

Step 1 of the running example. 

 

RUNNING EXAMPLE — STEP 1: TRAIN A MODEL 

We begin by training our initial model using a typical PROC LOGISTIC step preceded by a 

common ODS trick: 

 

* SAS Code producing the output shown in Figure 2;  

ods output Association=model_association_table(  

    where=(Label2='c')  

    keep=Label2 nValue2  

    rename=(nValue2=original_model_c_statistic)  

); 

proc logistic data=example_dataset;  

    class &class_variables.;  

    model &outcome. = &predictor_variables.;  

run; 

 
The ODS OUTPUT statement in  captures the table of association measures produced by 

– and shown in Figure 2, and the naïve C-statistic is saved in a dataset called 

model_association_table using ODS OUTPUT with dataset options in . (For an 

explanation of how lines – were constructed, see Appendix A at the end of this paper.) 

Also, to keep the example code concise, the following macro variables have been used to 

encapsulate variables from the original source CDC dataset: 

 

%let outcome = hyper(EVENT='1'); 

%let class_variables = bpq100d dmq051 dmd110; 

%let predictor_variables = lbxtc bpq100d bmxbmi ridageyr lbxtr dmq051 

dmd110 indhhinc indfmpir; 
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Figure 3. The output of PROC SURVEYSELECT when used to construct bootstrap 

samples in Step 2 of the running example. 

 

RUNNING EXAMPLE — STEP 2: GENERATE BOOTSTRAP SAMPLES 

Bootstrap samples, which should be drawn randomly with replacement from the original 

sample dataset, can be generated using PROC SURVEYSELECT as follows: 

 
* SAS Code producing the output shown in Figure 3;   

proc surveyselect 

        data=example_dataset  

        out=bootstrap_samples  

        seed=1354687  

        method=urs  

        outhits  
        rep=500  

        samprate=1  

    ; 

run; 

 

The dataset bootstrap_samples created in  containing the bootstrap samples, which were 

generated using random sampling based on the seed6 specified in . In addition, the 

options in  and  ensure elements are drawn with equal probability and with replacement. 

(In other words, selecting the same observation more than once will result in distinct 
observations in a bootstrap sample.) Finally, the options in  and  specify that 500 

bootstrap samples (following the findings in [35]) of the same size as the original dataset 

should be formed. 

Note that while it's also possible to generate random samples with a DATA step [40], PROC 

SURVEYSELECT is custom-made for straightforward sample-selection. However, a DATA 

step could potentially be more efficient, especially when sample sizes are very large [34]. 

                                                           
6 The seed value is arbitrary and only serves to make results reproducible. 
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Figure 4. The first few rows of the dataset bootstrap_association_table created in 

Step 3 of the running example, when C-statistics are calculated for the models 

trained on each bootstrap sample in the running example. 

 

RUNNING EXAMPLE — STEP 3: TRAIN MODELS IN EACH BOOTSTRAP 

Now that we have our bootstrap samples, it's time to train models using PROC LOGISTIC 

with a BY statement. We also suppress output as the 500 logistic regression models are 

created: 

 
* turn off all output; 

ods graphics off;  

ods exclude all;  

ods noresults;  

 

* SAS Code producing the dataset shown in Figure 4;  

ods output Association=bootstrap_association_table(  

    where=(Label2='c')  

    keep=Replicate Label2 nValue2  

    rename=(nValue2=c_statistic_value)  

); 

proc logistic data=bootstrap_samples outmodel=bootstap_models;  

    by Replicate;  

    class &class_variables.;  

    model &outcome. = &predictor_variables.;  

run; 

 

After opening a "no output sandwich" in , which we close in the Step 4 below, C-statistics 

for each of the 500 models created in – are captured in output dataset 

bootstrap_association_table in  using the dataset options in . (As a reminder, the 

technique for constructing – can be found in Appendix A at the end of this paper.) We 

also use the OUTMODEL option in  to capture the models created7 by iterating over the 

bootstrap samples with the BY statement in .  

The PROC LOGISTIC step in – is identically to the one used to train our original mode in 

Step 1 above, with the Replicate column created by PROC SURVEYSELECT used to iterate 

over the bootstrap samples without a macro loop. Due to the increased overhead of starting 

and stopping PROC LOGISITIC repeatedly, a macro loop would most likely be significantly 

less efficient [38]. (See Appendix B for an example macro implementation.) 

                                                           
7 We could also use a CODE or STORE statement, but it would change how the saved models are processed later. 

An example of the STORE statement can be found in Appendix E at the end of this paper, performing Cox 

regression with PROC PHREG. 
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Figure 5. The first few rows of the dataset bootstrap_scores created in Step 4 of 

the running example, when the models trained on bootstrap samples in Step 3 are 

evaluated using the original sample dataset. (Note that the C-statistics tend to be 

lower for each Replicate when compared to Figure 4, suggesting possible 

overfitting.) 

 

RUNNING EXAMPLE — STEP 4: TEST BOOTSTRAP MODELS 

We now test each of the 500 models created in Step 3 with one final PROC LOGISTIC step 

using the previously saved dataset of logistic models: 

 

* SAS Code producing the dataset shown in Figure 5; 

ods output Scorefitstat=bootstrap_scores(  

    keep=Replicate AUC  

    rename=(AUC=c_statistic_value)  

); 

proc logistic inmodel=bootstap_models;  

    score  

        data=example_dataset  

        fitstat  

    ; 

    by Replicate;  

run; 

 

* turn output back on; 

ods results;  

ods select all;  

ods graphics on;  

 

C-statistics8 for each of the 500 models created in Step 3 are captured in output dataset 

bootstrap_scores in  using the dataset options in . (As a reminder, the technique for 

constructing – can be found in Appendix A at the end of this paper.) Rather than 

specifying an input dataset in , we instead load the models previously we trained in Step 

3, and we use a SCORE statement in  to apply each of the 500 models to the original 

dataset sample. 

We also close the "no output sandwich" from Step 3 in  since we've finished iterating over 

our bootstrap samples. 

                                                           
8 C-statistics are referred to as Area Under the Curve (or AUC) in this example for technical reasons beyond the 

scope of this paper. See [36] for an overview. 
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Figure 6. The dataset model_optimism created in Step 5 of the running example. 

 

RUNNING EXAMPLE — STEP 5: ESTIMATE OPTIMISM 

We're now ready to calculate the optimism of each model trained on a bootstrap sample, 

with the mean of these values being an estimate for the optimism of the original model 

created in Step 1: 

 

* SAS Code producing the dataset shown in Figure 6; 

proc sql; 

    create table model_optimism as  

        select 

            avg(A.c_statistic_value-B.c_statistic_value) as optimism  

        from 

            bootstrap_association_table as A  

            inner join  

            bootstrap_scores as B  

            on A. Replicate = B. Replicate  
    ; 

quit; 

 

Here, a PROC SQL step is used to simultaneously accomplish the following tasks: 

 Build a new dataset in , which stores the estimated optimism for the model from 

Step 1. 

 Compute the optimism for each of the models built from bootstrap samples in Step 3 

by taking its naïve C-statistic and subtracting the scored C-statistic calculated in Step 

4 (when the models were applied to the original sample dataset). In particular, the 

datasets formed in Steps 3 and 4 are joined on Replicate in –, allowing us to 

calculate the mean of their row-by-row differences in . 

Note that while we could also have accomplished these same tasks using a combination of 

DATA steps and other PROC steps, PROC SQL makes it straightforward to quickly estimate 

optimism in a single program step. 
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Figure 7. The dataset corrected_model_evaluation created in Step 6 of the running 

example, when the naïve C-statistic computed in Step 1 is corrected using the 

optimism computed in Step 5. 

 

RUNNING EXAMPLE — STEP 6: ADJUST PERFORMANCE WITH OPTIMISM 

We're now ready to use the estimated optimism from Step 5 to adjust the naïve C-statistic 

calculated in Step 1: 

 

* SAS Code producing the output shown in Figure 7; 

data corrected_model_evaluation;  

    set model_association_table;  

    set model_optimism;  

     

    corrected_c_statistic = original_model_c_statistic - optimism;  

 

    label  

        original_model_c_statistic = 'Naive C-Statistic'  

        optimism = 'Optimism'  

        corrected_c_statistic = 'Optimism-Corrected C-Statistic'  

    ; 

     

    keep original_model_c_statistic optimism corrected_c_statistic;  

run; 

proc print  

        data=corrected_model_evaluation  

        noobs  

        label  

    ; 

run; 

 

Here, we create a new dataset in  by combining datasets from Steps 1 and 5 in –. We 

then compute the optimism-corrected C-statistic for the model built in Step 1 by subtracting 

the estimated optimism from Step 5. Finally, we make output easier to read with a LABEL 
statement in  and a KEEP statement in  before printing the resulting dataset in . 

 

EXTENSIONS TO OTHER PERFORMANCE MEASURES OR MODELS 

The method demonstrated in the running example is readily generalizable. For example, as 

shown in Appendix C, variable selection can be added, as long as identical conventions are 

used when training models in Steps 1 and 3. In addition, high-performance versions of 

procedures can also be used, as illustrated with PROC HPLOGISTIC in Appendix D. 

Per Appendix A, ODS TRACE can also be used to determine the appropriate ODS OUTPUT 

statements for capturing many performance measures other than the C-statistic. This allows 

the running example to be extended to other models and their corresponding SAS 

procedures, despite varying syntax. When using a PROC that doesn't support the 
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OUTMODEL and INMODEL options (e.g., PROC GLM), a CODE statement and subsequent 

DATA step can be used to make predictions on test data (see, e.g., [23] and [24]). 

Alternatively, the STORE statement could be used with a subsequent invocation of PROC 

PLM [31], as illustrated with Cox regression in Appendix E. 

  

SECTION 3. RELATIVE ADVANTAGES OF THE BOOTSTRAP OVER 

OTHER VALIDATION TECHNIQUES 

Compared to alternate internal validation techniques like split-sample and cross validation, 

which are already implemented in SAS, the bootstrap has certain distinct advantages. 

Split-sample validation involves partitioning the available data into two or three sub-

samples, training the model on one sample and evaluating its performance using the others 

(see, e.g., [9] , [14], and [36]). The main advantage is less intensive computation as the 

model only needs to be trained once. Because large numbers of observations are not used 

in the modeling process, though, the model that gets validated may be substantially 

different than the model that would have been produced using all of the available data. 

When deciding about whether to deploy a model, this may mean we lack important 

information. Additionally, if the validation sample is chosen randomly, the estimates of 

performance may have high variance, even if they are unbiased on average. In other words, 

repeating the modeling process might yield substantially different results! However, these 

disadvantages are reduced as sample sizes grow, which is why split-sample validation is 

only recommended for extremely large sample datasets. Also, split-sample validation does 

not always rely on subsamples being chosen randomly. For example, data from an earlier 

time period can be used for development, and data from a later time period can be reserved 

for validation. This allows split-sample validation to potentially measure the effect of non-

random variation in the source data, which bootstrap validation does not. 

Cross validation is an extension of split-sample techniques [11]. Multiple versions of the 

model are trained while leaving out a different subset each time, and model performance is 

measured on each omitted subset. Taking the average of the performance in each of these 

folds yields a cross-validated estimate of model performance. The number of folds can be 

increased until only a single observation is left out, which is equivalent to a procedure 

known as the jack-knife. Cross-validation allows a larger portion of the available data to be 

used in training the model than simple split-sample, and simulation studies have shown that 

cross-validation often needs to be replicated multiple times with different random splits to 

produce truly stable validation results [36]. Merely increasing the number of folds does 

reduce bias in the cross-validation estimator, but also decreases stability as training subsets 

become more similar. When the number of folds is large, cross-validation may 

underestimate variation in the underlying population, leading to misleadingly consistent 

variable selection in the model. Meanwhile, cross-validation with a small number of folds 

still holds back a significant amount of data from the modeling process. 

Relative to these two methods, the bootstrap is unique in allowing the entire sample to be 

used for both model development and model validation, while still providing nearly unbiased 

estimates of model performance [9]. Also, unlike split-sample and cross validation, 

bootstrapping allows us to estimate optimism and also gauge overfitting. Optimism-

corrected estimates of performance are relatively stable compared to estimates produced by 

other resampling techniques because the bootstrap samples vary widely in composition and 

use the full sample size. This variability also helps the bootstrap appropriately model 

variation in variable selection. 

There is evidence that bootstrap estimates can be biased when the size of the training data 

is small relative to the number of predictors (see [9] and [23]). However, even in cases 
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where cross-validation estimates are less biased, Efron demonstrated that they also have 

much higher variance than bootstrap estimates of optimism-corrected performance [6]. 

Efron and Tibshirani have also described two bootstrap variants (known as the .632 and 

.632+ methods; see [4] and [6]) that may be less biased in such situations. These 

modifications are especially useful in very high-dimensional settings, such as genetic data 

(see [13] and [33]). Simulations have also shown that Efron's original bootstrap produces 

less biased estimates than either variant with 30 predictors and 200 observations (see [9] 

and [10]). In fact, Breiman [1] has shown that the bootstrap is as effective as having a 

separate test sample twice the size of the training data. 

The main downside of the bootstrap is that it can be relatively resource-intensive when 

validating complex machine learning models on large datasets since all modeling steps must 

be repeated many times. Cross-validation, in particular, will often be less computationally 

intensive than the bootstrap when the number of folds is not large [36]. 

 

APPENDIX A: ODS TRACE AND ODS OUTPUT 

The running example in this paper make heavy use of the ODS OUTPUT statement [18] for 

capturing output objects. The basic syntax is as follows: 

 

ods output <output object name> = <dataset name>; 

 

Any output object with matching name will then be captured in the specified dataset. 

However, the names of the output objects produced by a procedure are usually not obvious. 

To discover them, it's helpful to use the ODS TRACE statement [19]. 

Repeating the PROC LOGISTIC step from Section 2, we can create an "ODS TRACE 

sandwich" as follows, toggling object-name reporting in the log: 

 

ods trace on; 

proc logistic data=example_dataset; 

    class &class_variables.; 

    model &outcome. = &predictor_variables.; 

run; 

ods trace off; 

 

This will create a long string of log entries, including the following: 

 

Output Added: 

------------- 

Name:       Association 

Label:      Association Statistics 

Template:   Stat.Logistic.Association 

Path:       Logistic.Association 

 

We can then capture the contents of the named output Association in a dataset using ODS 

OUTPUT before the same PROC LOGISITC step: 
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Figure 8. The dataset model_association_table created using an ODS OUTPUT 

statement to capture the named output Association generated by PROC LOGISTIC. 

Even though the column names aren't terribly descriptive, we can see that the 

fourth row contains information about the C-statistic, and that column nValue2 

gives the numerical value we're interested in capturing. 

 

* SAS Code producing the dataset shown in Figure 8; 

ods output Association=model_association_table; 

proc logistic data=example_dataset; 

    class &class_variables.; 

    model &outcome. = &predictor_variables.; 

run; 

 

Note that objects should be listed in the log in the order they're displayed in other ODS 

destinations, and that they usually have names similar to the headings of the tables they 

capture. In Section 2, we captured the table labeled Association of Predicted Probabilities 

and Observed Responses (see Figure 2), which corresponds to output object Association. 

Once this information has been discovered, we are ready to capture the output in a dataset.  

 

APPENDIX B: MACRO ALTERNATIVE FOR STEP 3 

In the running example for this paper, we make heavy of by-group processing. Here's a 

macro alternative for Step 3 (train bootstrap models) and Step 4 (test bootstrap models) 

combined: 

 

* turn off all output; 

ods graphics off; 

ods exclude all; 

ods noresults; 

 

%macro bootstrap_train_test(); 

    %do i = 1 %to 500; 

        ods output 

            Association=bootstrap_association_table_&i.( 

                where=(Label2='c') 

                keep=Label2 nValue2 

                rename=(nValue2=train_c_statistic_value) 

            ) 

            Scorefitstat=bootstrap_score_&i.( 

                keep=AUC 

                rename=(AUC=test_c_statistic_value) 
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            ) 

        ; 

        proc logistic data=bootstrap_samples; 

            where replicate = &i.; 

            class &class_variables.; 

            model &outcome. = &predictor_variables.; 

            score 

                data=example_dataset 

                fitstat 

            ; 

        run; 

    %end; 

%mend; 

%bootstrap_train_test() 

 

* turn output back on; 

ods results; 

ods select all; 

ods graphics on; 

 

The above took about 12 seconds to run on a relatively new personal computer, versus 1.5 

seconds for the by-statement version. Presumably, this is due to the macro version needing 

to repeatedly compile PROC LOGISTIC calls, which we've tried to minimize by combining 

both model creation and scoring into a single step. Also, for larger datasets, repeated PROC 

LOGISITC steps might become I/O-bound.  

 

APPENDIX C: ADDING VARIABLE SELECTION 

As an illustration of possible generalizations, variable selection could be added to the 

running example for this paper, as long as the exact same conventions are used when 

building models in Step 1 (train initial model) and Step 3 (build bootstrap models). 

As an illustration, the following code could be used in place of Step 1: 

 

ods output Association=model_association_table(  

    where=(Label2='c')  

    keep=Label2 nValue2  

    rename=(nValue2=original_model_c_statistic)  

); 

proc logistic data=example_dataset;  

    class &class_variables.;  

    model &outcome. = &predictor_variables.  

        / selection=backward slstay=0.1 fast  

    ; 

run; 

 

The ODS OUTPUT statement in  is identical, as are the model specification components in  

. The main change is to the model statement in , with variable-selection added in . Any 

of the variable-selection options available could be used (see, e.g., [27]). Here, we've 

chosen fast backwards selection, which would also need to be reproduced exactly in Step 3, 
per  below: 
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* turn off all output; 

ods graphics off; 

ods exclude all; 

ods noresults; 

 

ods output Association=bootstrap_association_table( 

    where=(Label2='c') 

    keep=Replicate Label2 nValue2 

    rename=(nValue2=c_statistic_value) 

); 

proc logistic data=bootstrap_samples outmodel=bootstap_models; 

    by Replicate; 

    class &class_variables.; 

    model &outcome. = &predictor_variables. 

        / selection=backward slstay=0.1 fast  

    ; 

 

run; 

 

The complete code for this example can be found at https://github.com/saspy-bffs/sgf-

2021-bootstrap-validation. 

 

APPENDIX D: SWITCHING TO HIGH-PERFORMANCE PROCS 

As another illustration of possible generalizations, we could replace PROC LOGISTIC with its 

high-performance alternative PROC HPLOGISTIC. An overview of high-performance 

procedures can be found in [20]. 

To adapt the running example, we'll first need to make changes to Step 1 (train initial 

model): 

 

ods output Association=model_association_table(  

    keep=C  

    rename=(C=original_model_c_statistic)  

); 

proc hplogistic data=example_dataset;  

    class &class_variables.;  
    model &outcome. = &predictor_variables. / association;  

run; 

 

The ODS OUTPUT statement in  captures the table of association measures, but the 

techniques used in Appendix A were needed to modify the names of the output components. 
Then, other than updating the procedure name in , the only other change is the addition 

of the association option in , which displays a table with model-diagnostic statistics 

including the C-statistic. 

Step 2 (generate bootstrap samples) also needs updating as follows: 

 

proc surveyselect  

        data=example_dataset 

        out=bootstrap_samples 

        seed=1354687 

https://github.com/saspy-bffs/sgf-2021-bootstrap-validation
https://github.com/saspy-bffs/sgf-2021-bootstrap-validation
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        method=urs 

        outhits 

        rep=500 

        samprate=1 

    ; 

run; 

 

 

data partition_roles;  

    set bootstrap_samples;  

    by replicate;  

    test = 0;  

    output;  

    if last.replicate then do p = 1 to n;  

        set example_dataset nobs=n point=p;  

        test = 1;  

        output;  

    end; 

run;  

 

The creation of the dataset bootstrap_samples in  is identical. However, in order to take 

advantage of the PARTITION statement in PROC HPLOGISTIC, we need to augment each 
bootstrap sample with a copy of the original dataset using the DATA STEP in . Specifically, 

we read in bootstrap_samples in  and use by-group processing tricks in  and random-

access via the POINT= option in  to repeatedly reread example_dataset and copy its 

values 500 times into the new dataset partition_roles being created. 

Next, we can combine Step 3 (train bootstrap models) and Step 4 (test bootstrap models) 

as follows: 

 

* turn off all output; 

ods graphics off;  

ods exclude all;  

ods noresults;  

 

ods output PartFitStats=bootstrap_fit(  

    where=(statistic='Area under the ROCC')  

);  

proc hplogistic data=partition_roles;  

    by replicate;  

    class &class_variables.;  

    model &outcome. = &predictor_variables.;  

    partition rolevar=test(train=0 test=1);  

run; 

 

* turn output back on; 

ods results;  

ods select all;  

ods graphics on;  

The "no output sandwich" in  is identical, as are the modified output-capture options in  

and the model-specification components in . The main difference is the PARTITION 

statement in , which allows us to use the test and train flags in partition_roles to 
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distinguish between the bootstrap samples and the observations from our original 

example_dataset, combining training and scoring 500 bootstrap models into a single step. 

As an upshot of putting more work initially into building partition_roles and using the 

PARTITION statement in PROC HPLOGISTIC, Step 5 (estimate optimism) becomes much 

more straightforward. Because the dataset bootstrap_fit created above has everything 

needed to estimate optimism, we can eliminate a join: 

 

proc sql; 

    create table model_optimism as 

        select  

            avg(training - testing) as optimism 

        from 

            bootstrap_fit 

    ; 

quit; 

 

When wrapping up this example, there's no need to modify Step 6 (adjust model 

performance). The complete code can be found at https://github.com/saspy-bffs/sgf-2021-

bootstrap-validation.  

 

APPENDIX E: SWITCHING TO A DIFFERENT MODEL TYPE 

As a final illustration of possible generalizations, we illustrate how to update the technique 

in this paper to Cox regression using PROC PHREG [30] with a different dataset [12], which 
can be loaded into SAS as follows (where the macro variable url has the value 

https://stats.idre.ucla.edu/wp-content/uploads/2016/02/whas500.sas7bdat): 

 

filename whas500 "%sysfunc(pathname(work))/analysis_data.sas7bdat"; 

proc http 

        url="&url." 

        method="get" 

        out=whas500 

    ; 

run; 

 

Using this dataset, we can write Step 1 (train initial model) as follows: 

 

ods output concordance=model_association_table(  

    keep=estimate  

    rename=(estimate=original_model_c_statistic)  

);  

proc phreg data=analysis_data concordance;  

    class gender;  

    model lenfol*fstat(0) = gender age;  

run;  

The ODS OUTPUT statement in  captures the table of association measures, using the 

techniques from Appendix A to specify output component names. Then PROC PHREG is used 

in . The model statement in  specifies time (lenfol) to event (fstat) using gender (a 

https://github.com/saspy-bffs/sgf-2021-bootstrap-validation
https://github.com/saspy-bffs/sgf-2021-bootstrap-validation
https://stats.idre.ucla.edu/wp-content/uploads/2016/02/whas500.sas7bdat
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categorical variable) and age (a numeric variable) as covariates, with fstat=0 indicating a 

censored outcome. 

Step 2 (generate bootstrap samples) remains unchanged, and Step 3 (train bootstrap 

models) becomes the following: 

 

* turn off all output; 

ods graphics off;  

ods exclude all;  

ods noresults;  

 

ods output concordance=bootstrap_association_table(  

    keep=replicate estimate  

    rename=(estimate=c_statistic_value)  

);  

proc phreg data=bootstrap_samples concordance;  

    by replicate;  

    class gender;  

    model lenfol*fstat(0) = gender age;  

    store coxmodel;  

run;  

 

The "no output sandwich" opened in  is identical, as are the modified output-capture 

options in . In addition, the model-specification components in  are the same as above, 

with the addition of the by-statement in  and the STORE statement in . Just as in the 

running example from this paper, the by-statement allows us to train separate Cox 

regression models on each bootstrap sample, and each of these models is then stored in a 

so-called "item store" coxmodel, which is a binary file and not a normal dataset. 

Once we've stored our bootstrap models in coxmodel, Step 4 (test bootstrap models) 

becomes a bit more involved: 

 

proc plm restore=coxmodel;  

    score  

        data=analysis_data  

        out=scored_data(keep=replicate id lenfol fstat predicted)  

    ;  

run;  

 

proc sql noprint;  
    select count(*) 

        into :totobs 

        from analysis_data; 

quit; 

 

data bootstrap_scores(keep=replicate nch ndh pairs c_statistic_value);  

    set scored_data( 

        keep=replicate id predicted lenfol fstat 

        where=(fstat=1) 

        rename=(id=idn_i predicted=y_i lenfol=x_i) 

    ); 

    by replicate; 

    if first.replicate then do; 
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        nch = 0; 

        ndh = 0; 

        pairs = 0; 

    end; 

    do i=1+((replicate-1)*&totobs) to replicate*&totobs; 

        set scored_data( 

            keep=id predicted lenfol 

            rename=(id=idn_j predicted=y_j lenfol=x_j) 

        ) point=i; 

        if idn_i NE idn_j and x_i < x_j then do; 

            if y_i > y_j then 

                nch + 1; 

            else if y_i EQ y_j then 

                nch + 0.5; 

            else if x_i < x_j then 

                ndh + 1; 

            pairs + 1; 

        end; 

    end; 

    if last.replicate then do; 

        c_statistic_value=nch/pairs; 

        output; 

    end; 

run; 

 

* turn output back on; 

ods results;  

ods select all;  

ods graphics on;  

 

The PROC PLM step in  creates predictions using the SCORE statement, and stores them in 

scored_data, keeping only necessary columns. Unfortunately, unlike the SCORE statement 

in PROC LOGISTIC, PROC PLM does not calculate model performance when scoring the 

original training data in analysis_data. Fortunately, we can determine model performance 

ourselves in  and  using code adapted from [17] to calculate Harrell’s concordance 

statistic [29]. Finally, we close the "no output sandwich" in . 

When wrapping up this example, there's no need to modify Step 5 (estimate optimism) and 

Step 6 (adjust model performance). The complete code can be found at 

https://github.com/saspy-bffs/sgf-2021-bootstrap-validation.  

 

CONCLUSION 

Internal validation is an essential best practice for statisticians, programmers, and 

researchers developing predictive models. Various sample-splitting or resampling techniques 

can be used, but the bootstrap in particular is appealing for producing stable and nearly 

unbiased estimates of model performance using all available data. No validation technique is 

ideal for all scenarios, though, so the analyst must make decisions based on the 

characteristics of the available data, the modeling techniques to be used, and the available 

computing resources. However, bootstrapping has been shown to generally be an effective 

and precise validation technique. While no SAS options currently exist to perform this 

procedure, existing SAS tools for resampling and iteration make it relatively straightforward 

to implement without resorting to complex macro programming. 

https://github.com/saspy-bffs/sgf-2021-bootstrap-validation
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