SAS 2021

Paper 1051-2021

Opening the door to next generation data mining & machine
learning — Python & SAS together at last!

George S. Habek, M.S., CT Global Solutions, Inc.; Suman Kumar Das, CT Global
Solutions, Inc.

Have you developed Python models to solve a business problem and wish to leverage that
asset into a next generation analytical framework?

Learn how to create a bridge between open source, using Python, and a state-of-the-art
data mining & machine learning environment, using SAS® VDMML, which is automated,
dynamic, and scalable - right at your fingertips. Compete and compare next generation
algorithms to select a champion seamlessly.

The business problem will be within the transportation shipping industry. A variety of data
elements such as internal factors of package size, delivery day of the week, # transit days;
external factors of weather and financial effects will also be used. The ultimate business
question — What is the best subset of factors that drive cost? What is the optimal model to
use to score a new prospect file with the predicted average cost?

Discover how Python and SAS® VDMML can work together to answer these critical
questions for the shipping company!

The world has been severely impacted by COVID-19. As a result, many organizations are
facing unprecedented challenges. Specifically, the transportation shipping industry, needs
to qualify the factors causing fluctuations of its shipping cost across their networks. Given
the possible complexity of various networks, the desire to have a comprehensive data
mining & machine learning platform has become mission critical. Due to the numerous
possible causal factors within the industry, ensuring the “best” algorithm is utilized to
determine the most important factors driving costs is at the forefront of the organization’s
needs.

Why is this so important? The transportation company ultimately desires to be profitable
across all their customers. Therefore, establishing the most important causal factors driving
shipping cost enables the company to better price the various package shipments across the
network for the customers. This creates actionable business results optimizing profitability
among customers.

A variety of factors (external and internal) are available for the analysis. Figure 1 illustrates
the different attributes. First, approximately 145K unique package shipments were utilized
in the model development. External factors pertaining to financial information such as CPI
and Unemployment Rate were used. In addition, external factors related to weather such
as average rainfall and temperature were used. Internal factors pertaining package,
customer, and route information were also utilized.

cel

S &P 500

Oil Index

‘[Financial (External)

Unemployment Rate

Avg Rain

Avg Snowfall
Avg Temp

Weather (External)

—| Package

Cost Predictive Model

\

) fl Route Info

Volume

State

Sales Segment
Shipper Name

Product / Sub-Product

Delivery Day of Week / Month

Weekend
Holiday

Fuel Expense

Figure 1. Available Data

Below is a sample of the raw data used in the analysis.

Shipment |Delivery_ Delivery_ Delivery_ Day_Of_
1 |_ID Date Week_No Week Weekend Sales_Segment Shipper_Name Product Sub_Product Items
2| 10523 1/2/2010 1 0|7_Saturd: 0 Small/Medium Business | Scandinavian Clothing A Next Day Air Expedited Shipment 40
3 | 46447 1/2/2010 1 0 7_Saturd: 0 Small/Medium Business | Force Sports Ground Commercial Residential Pick Up/Delivery 30
4| 71554 1/2/2010 1 0 7_Saturd: 0 Small/Medium Business | Harry Penny Ltd Surepost None 11
5 | 77121 1/2/2010 1 0|7_Saturd: 0 Enterprise Accounts Eclipse Inc Ground Commercial Notifications 9
6 | 10612 1/2/2010 1 0 7_Saturd: 0 Small/Medium Business |Rell-Over Inc Next Day Air Expedited Shipment 10
7 | 63629 1/2/2010 1 0 7_Saturd: 0 Small/Medium Business | Magnifico Sports Surepost Notifications 10
8 | 83256 1/2/2010 1 0|7_Saturd: 0 Amazon 3Top Sports Ground Commercial None 8
9 | 82534 1/2/2010 1 0|7_Saturd: 0 Enterprise Accounts Eclipse Inc Next Day Air Expedited Shipment 20
10 | 69463 1/2/2010 1 0 7_Saturd: 0 Amazon 3Top Sports Ground Residential Limited Access 11
11 | 35415 1/2/2010 1 0 7_Saturd: 0 Enterprise Accounts Eclipse Inc 3 Day Select Notifications 11
12 | 51530 1/2/2010 1 0 7_Saturd: 0 Small/Medium Business | Norsck A/S Ground Residential Notifications 20
13 | 82260 1/2/2010 1 0|7_Saturd: 0 Small/Medium Business | Pro Sportswear Inc Ground Commercial None 7
14 | 89064 1/2/2010 1 0|7_Saturd: 0 Enterprise Accounts Eclipse Inc Ground Residential None 9
2 81326 1/2/2010 1 0|7_Saturd: 0 Small/Medium Business | CrystalClear Optics Inc | Hundredweight (CWT) Notifications 44

Figure 2A. Sample Data

Average |Delivery_ Shipping_ Holiday_ Average_ Average_ Average_
_Volume [Days Expense Fuel_Expense RGDP CPl SP500 UNRATE OILWTI OIL_INDEX Surge State City. Altitude Temp Snowfall Rain

21.37 1 $300.01 $23.96 14605 217 1124 9.8 $78.34 0.86 0 California Sacramento 28 60.72 0.00 21.17

63.5 0 $40.88 $3.04 14605 217 1124 9.8 $78.34 0.86 0 Florida Lake Worth 15 73.32 0.00 59.52

30.7 0 544.76 $3.25 14605 217 1124 9.8 $78.34 0.86 0 California Visalia 321 63.23 0.10 10.93

10.4 0 $59.06 $3.68 14605 217 1124 9.8 $78.34 0.86 0 Illinois Kenilworth 572 47.33 34.30 34.89

13.9 1 $§177.43 $12.46 14605 217 1124 9.8 $78.34 0.86 0 Texas Dallas 520 64.73 0.10 38.46

1.7 0 $161.48 $7.03 14605 217 1124 9.8 $78.34 0.86 0 California Fontana 1,178 65.30 0.10 12.44

5.3 0 518.57 $1.37 14605 217 1124 9.8 $78.34 0.86 0 Louisiana Mandeville 30 67.63 0.20 62.89

92.0 1 $184.58 $12.70 14605 217 1124 9.8 $78.34 0.86 0 Louisiana Metairie 0 67.63 0.20 62.89

4.5 0 $25.91 $1.83 14605 217 1124 9.8 $78.34 0.86 0 Missouri Pevely 529 55.98 11.50 43.18

10.2 3 528.03 $1.95 14605 217 1124 9.8 $78.34 0.86 0 Georgia Atlanta 956 58.61 1.80 50.68

11.4 0 $33.86 $2.74 14605 217 1124 9.8 $78.34 0.86 0 North Carolina Cherryville 944 60.40 0.90 42.97

3.0 0 524.14 $1.56 14605 217 1124 9.8 $78.34 0.86 0 Michigan Grosse Pointe 611 47.78 31.40 32.80

1.4 0 520.89 $1.45 14605 217 1124 9.8 $78.34 0.86 0 Missouri Pevely 529 55.98 11.50 43.18

165.1 0 $138.70 $13.32 14605 217 1124 9.8 5$78.34 0.86 0 California Lake Forest 362 62.53 0.00 14.45

Figure 2B. Sample Data

There are steps required for installing and configuring the Python version utilized. First,
Python should be installed in the Compute server of the SAS Viya environment. Next, the
executable file must be available in the system path in the SAS Compute server. The
system path is in “opt/sas/viya/config/etc/sysconfig/compsrv/default/sas-
compsrv” on compute server. To connect to python from SAS VDMML, the environment
variable needs to be set as “export PATH=path_to_your_python_bin_directory:${PATH}"”
in the sas-compsrv file. The final step is to provide sudo privileges to the python packages
so that other users can access all the Python libraries/packages.

The following is a snippet of sas-compsrv file with Python path variable.

| sas-compsrv - Notepad - [} X
File Edit Format View Help

Config for compute server
#COMPUTESERVER_LOG_PATH="/opt/sas/viya/config/var/log/compsrv/default”

#Uncomment the following line to enable lockdown for the compute server
#export COMPUTESERVER_LOCKDOWN_ENABLE=1

#ARM_SUBSYS=[ARM_PROC | ARM_DSIO | ARM_ALL | ARM_NONE]
#export ARM_SUBSYS=ARM_PROC

export PATH=/opt/sasinside/anaconda3/bin:$%{PATH} I

Figure 3. sas-compsrv file

Python is one of the leading open-source programming languages. Integrating Python with a
state-of-the-art data mining & machine learning environment - SAS® VDMML will help
solve the business problem stated earlier. First, let us discuss the native Python models in
the Jupiter notebook.

Scikit-learn (Sklearn) is a very popular library for machine learning techniques in Python.
Sklearn has many useful machine learning models and efficient statistical methods. In this
paper, we will be using this library for different analysis in native Python and then integrate
models within SAS. There are many features of the Sklearn library, including Clustering,
Ensemble Methods, Supervised Models, Cross-Validation (estimation of the accuracy of
supervised models on new data), etc....

In this section, we are going to cover 4 different supervised models in native Python.

Linear Regression with Elastic Net

Neural Network using Multi-layer Perceptron (MLP)
Decision Tree

Random Forest

Linear Regression with Elastic Net

For linear regression, we are using the Elastic Net regularized regression method which
combines L1 and L2 penalties. You can control these penalties separately also.

The following table illustrates the basic parameters for the Elastic Net regression method.

Parameter name Description

Alpha Constant that multiplies the penalty terms. Default value
is 1.0.

L1_Ratio This ratio defines how L1 and L2 parameter applied.

Default value is 0.5. For I1_ratio = 0 the penalty is an L2
penalty. For I1_ratio = 1 it is an L1 penalty.
For 0 < I1_ratio < 1, the penalty is a combination of L1

and L2.
Fit_Intercept Default value is True means Data is not centered.
Normalize Default value is True which means regressors X will be

normalized before regression by subtracting the mean
and dividing by the 12-norm.

Warm_Start Default value is True. When set to True, reuse the
solution of the previous call to fit as initialization,
otherwise, just erase the previous solution

Selection Default value is ‘cycle’. If set to ‘random’, a random
coefficient is updated every iteration rather than looping
over features sequentially by default.

Table 1. Basic parameters for Linear Regression with Elastic Net

Before we start building the model, there are always data preparation steps required which
includes cleaning the data, removing unwanted variables, removing variables that show
multicollinearity, encoding categorical string values to numeric value, etc...

#Changing the Categorical string values to numerical value before build the model
from sklearn.metrics import r2_score, mean_squared_error
from sklearn.preprocessing import LabelEncoder
lencoders = {}
for col in proc_data.select_dtypes(include=['object']).columns:
lencoders[col] = LabelEncoder()
proc_data[col] = lencoders[col].fit_transform(proc_data[col])

#Dropping the Shipment_Expense variable from input variables
X=proc_data.drop('shipping_expense', axis=1)

#Setting the Shipment_Expense as target variable for the model
Y=proc_data['shipping_expense']

#Splitting the data for train the model and validate
from sklearn.model_selection import train_test_split
x_train, x_val, y_train, y_val=train_test_split(X,Y,test_size=0.16,random_state=12345)

Figure 4. Python Overall Data Preparation

Now the data is ready for the supervised models. We build the Linear Regression model
penalized with Elastic Net (L1: 50% and L2: 50%) in Jupiter notebook. When predicting the
value, the validation dataset will be used. The validation data set is created in the data
preparation step. Model comparison will happen based on the Root Mean Square Error
(RMSE). The model with the smallest RMSE will be deemed the champion.

#Parameters for the Linear Regression Model using ElasticNet. L1_ratio 6.5 means L1=560 and L2=50.
#ALL other parameters will have default values.
params_lr={'l1l_ratio':0.5}

#Build the Linear regreassion model with Elastic Net
from sklearn.linear_model import ElasticNet
model_lr=ElasticNet(**params_1r)
model_lr.fit(x_train,y_train)

#Prediction on the validation data
pred_train_enet=model_lr.predict(x_val)

#Calculate the Mean Squared Error and display the Root Mean Squared Error value
mse=mean_squared_error(y_val,pred_train_enet)
print("Root Mean Squared Error = {}".format(math.sqrt(mse)))

Root Mean Squared Error = 19.85975150253088

Figure 5. Python Linear Regression Model using Elastic Net

Neural Network using Multi-layer Perceptron (MLP)

After we build one of the simple supervised models, i.e., linear regression, we are now
ready to build a series of linear regression iterations, which is called a neural network
model. A Multi-layer Perceptron (MLP) regressor is used for the neural network Model.
Advantages of using MPL regressors are the following:

e Capability to learn non-linear models

e Capability to learn models in real-time (on-line learning).

e Supports multi output regression so that the sample can have more than one target.
MLP has different layers:

e Input Layer - Input variables or visible layer

e Hidden Layers - Layers of different nodes between input layer and output layer.

e Output Layers — This Layer represents the output variables

The following table illustrates the basic parameters for the Neural Network MLP algorithm.

Parameter Name Description

Hidden_Layer_Sizes Default value is (100,). The ith element represents the
number of neurons in the ith hidden layer.

Activation Default value is ‘relu’. Activation function for the hidden
layer.

e ‘identity’, no-op activation, useful to
implement linear bottleneck, returns f(x) = x

e ‘logistic’, the logistic sigmoid function,
returns f(x) = 1/ (1 + exp(-x)).

e ‘tanh’, the hyperbolic tan function, returns
f(x) = tanh(x).

e ‘relu’, the rectified linear unit function,
returns f(x) = max(0, x)

Solver Default value is ‘adam’. This value used for weight
optimization. Default value works very well on large
datasets in terms of training time and validation score.
o 'Ibfgs’is an optimizer in the family of quasi-
Newton methods.
e 'sgd’ refers to stochastic gradient descent.
o ‘'adam’ refers to a stochastic gradient-based

optimizer
Alpha Default value is 0.0001. L2 penalty parameter.
Max_Iter Default value is 200. Maximum number of iterations. The

solver iterates until convergence (determined by ‘tol’) or
this number of iterations. For stochastic solvers (‘sgd’,
‘adam’), note that this determines the number of epochs
(how many times each data point will be used), not the
number of gradient steps.

Table 2. Basic parameters for Neural Network with MLP

For the MLP regressor parameters, 3 hidden layers are modelled here, with 30 neurons in
each layer. Therefore, there are total of 5 layers including the input and output layers. We
are using the ‘Ibfgs’ optimizer which works best when you have limited memory. It stores
only the last few updates to save memory. In addition, activation is ‘relu’ (rectified linear
activation function) which uses a linear function for output but in fact, a non-linear function
allows complex modelling in the hidden layers. With this activation, it is easier to train the
model and achieve better performance. Also, maximum iteration is 500 for this model to run
until it converges.

#Parameters for the Neural Network Model with MLP regressor
params = {'hidden_layer_sizes': (36,30,30), 'activation': 'relu', 'solver': 'lbfgs', 'max_iter': 5080}

#Build the MLP regressor model

from sklearn.neural_network import MLPRegressor
model_lr = MLPRegressor(**params)
model_lr.fit(x_train,y_train)

#Prediction on the validation data
pred_train_enet=model_lr.predict(x_val)

#Calculate the Mean Squared Error and display the Root Mean Squared Error value
mse=mean_squared_error(y_val,pred_train_enet)
print("Root Mean Squared Error = {}".format(math.sqrt(mse)))

Root Mean Squared Error = 21.57568790004138

Figure 6. Python Neural Network model using MLP

Decision Tree

The decision tree algorithm is one of the most popular models in supervised learning,
because it is very easy to explain. The decision tree algorithm uses if-else conditions and
splits the data into multiple segments. The algorithm selects the optimal number of splits.
The goal of the algorithm is to ask questions on the data while narrowing the possible
values within each split until the model achieves confidence to make a prediction.

The following table illustrates a sample of the basic parameters for the Decision Tree
algorithm used.

Parameter Name Description

Criterion The function to measure the quality of split.

Possible options are -

e 'mse’, - mean squared error

e ‘friedman_mse’' — mean squared error with
Friedman’s improvement score for potential
splits

e ’'mae’ — mean absolute error.

e 'Poisson’ — uses reduction in Poisson
deviance to find splits.

Splitter The strategy uses to choose the split at each node in the

tree. Default option is ‘best’. Options are ‘best’ and
‘random’.

Max_Depth The maximum depth of the tree.

Max_Features The number of features to consider when looking for the best
split.

Table 3. Basic parameters for the Decision Tree algorithm

In the Decision Tree model, we have considered the ‘friedman_mse’ function as the
criterion to split the data. Also, the splitter = *best’ option is used so that the algorithm will
take the feature with the highest importance instead of randomness. The maximum feature
for our model is ‘sqrt” which means sqrt(n_features) where n_features is the number of
features when the model fit is performed.

#Parameters for the Decision Tree Model
params = {'criterion': "friedman_mse", 'splitter': "best", 'max_depth': 16, 'max_features': "sqrt"}

#Build the Decession Tree Regressor model

from sklearn.tree import DecisionTreeRegressor
model_lr = DecisionTreeRegressor(**params)
model_lr.fit(x_train,y_train)

#Prediction on the validation data
pred_train_enet=model_lr.predict(x_val)

#Calculate the Mean Squared Error and display the Root Mean Squared Error value
mse=mean_squared_error(y_val,pred_train_enet)
print("Root Mean Squared Error = {}".format(math.sqrt(mse)))

Root Mean Squared Error = 23.739729124856627

Figure 7. Python Decision Tree algorithm

Random Forest

After the decision tree model is developed, we can extend that tree and build a series of
decision trees, which is called a Random Forest model. The random forest algorithm creates
random samples of the data, and then the algorithm creates a separate tree for each
sample. Finally, the model prediction is created by taking the average of each tree to
improve model accuracy and control over-fitting.

The following table illustrates the basic parameters for the Random Forest algorithm.

Parameter Name Description
N_Estimators The number of trees in the forest.
Criterion The function to measure the quality of a split. Supported

criteria are “mse” for the mean squared error, which is
equal to variance reduction as feature selection criterion,
and “"mae” for the mean absolute error.

Max_Depth The maximum depth of the tree.

Min_Samples_Split The minimum number of samples required to split an
internal node.

Min_Samples_Leaf The minimum number of samples required to be at a leaf
node.

Table 4. Basic parameters for Random Forest algorithm

The following parameters were utilized for the random forest algorithm:
e Maximum depth of the tree equal to 20.
e Minimum samples required to split at any leaf equal to 5.
e Total number of trees in the forest is 100.

e All other parameters are set to default.

#Parameters for the Random Forest Regressor Model
params = {'n_estimators': 100, 'max_depth': 20, 'min_samples_leaf': 5}

#Build the Random forest Regressor model

from sklearn.ensemble import RandomForestRegressor
model_lr = RandomForestRegressor(**params)
model_lr.fit(x_train,y_train)

#Prediction on the validation data
pred_train_enet=model_lr.predict(x_val)

#Calculate the Mean Squared Error and display the Root Mean Squared Error value
mse=mean_squared_error(y_val,pred_train_enet)
print("Root Mean Squared Error = {}".format(math.sqrt(mse)))

Root Mean Squared Error = 14.567331985702683

Figure 8. Python Random Forest algorithm

Now that four Python models have been developed, it makes sense to compare them and
select a champion. The random forest algorithm was deemed to be the champion model
based on the Root Mean Square Error (RMSE), which provided the smallest value across the
four models.

We will now shift our focus to a state-of-the-art data mining & machine learning
environment - SAS® VDMML. This platform resides on VIYA, which is a cloud-enabled, in-
memory analytics engine that provides a dynamic, automated, and scalable insights, leading
to actionable business results. Before we begin incorporating Python and SAS® VDMML, we
need to discuss the metadata for the business problem outlined earlier. If you recall, the
business challenge is to establish the causal factors that drives the shipping expense for
each package shipment across the logistics transportation network. There are three basic
layers of the metadata that needs to be assigned:

e Target — This is what we are trying to predict (Y or Response) - in our example it is
Shipping_Expense

e Inputs - These are the independent factors (X’s) — which includes attributes around
external information like weather and financial data, as well as internal information
related to the logistics organization. This is referenced in Figure 1 in the paper
earlier.

e Rejected - These are factors that will not be used in the analysis, as they are either
not related to the business problem or are highly influential to the Target.

Next, we will introduce the concept of a pipeline, where the data mining & machine learning
will be executed. Since we must compare Python & SAS models, there are 8 total
algorithms that will be assessed. Therefore, two pipelines were created for ease of use. Let
us discuss the first pipeline. Before, we start applying the models, it is a best practice to
explore the data. There are some analytical preparation tasks that are usually done prior to
model development. For example, inspection for variable skewness, which indicates the
need for possible transformations; another task is inspection for missing data, which
indicates the need for possible imputations. In our analysis, there was no need to apply any
transformations or imputations to the data.

In the first pipeline, we will discuss Linear Regression & Decision Tree models for Python &
SAS. To include the SAS models, you select Supervised Learning Models from the Data
node. Then, you select Linear Regression & Decision Tree models, respectively. There are
several options to select for each model setting. We will review some basic ones. For
Linear Regression, there are three options utilized:

e Stepwise — This uses a hybrid approach of forward and backward selection, which
has been proven to be powerful in establishing significant factors driving the
response (Shipping_Expense).

e Adjusted R-Square - This is the statistic utilized to select the final subset of factors,
which accounts for the factors introduced in the model, and measures the amount of
true variability being explained with respect to the Target.

e Model interpretability using variable importance - This illustrates the final set of
factors ordered from the most to least significant in predicting the Target.

Now, we will discuss the Python models for the first pipeline. To include open-source code
within the pipeline, you need to select “Add child node” >> “Miscellaneous” >> “Open-
Source Code”. The next step is to choose what type of open-source code is desired. In our
example, we will select Python. Please make sure to select the “Use output data in child
nodes” option, otherwise, the data will not be passed to any other following nodes in the
pipeline, such as scoring, if that is desired. By default, this option is not selected.

10

»
Python Linear Regression P EO R

Dascription:

Runs Pythan or R cade.

Open Code Editor

Language:

| Python v

v Input to Open Source
> Data Sample

Drop rejected variables

Generate data frame

Use cutput data in child nodes

Use the exact percentile method for lift
calculations

Figure 9. Python Node Properties

The final step is to insert the Python Linear Regression model, which we have developed in
the previous section, by clicking on the Open Code Editor button. Before we use the Python
code, let us review some of the key terms that will be used within the Python open-source
code.

e dm_input - The list which represents the input variables (interval and categorical).

e dm_partitionvar — The String variable, identifies the name of the data partition.
Values can be 1, 0 and 2 for training, validation, and test, respectively.

e dm_partition_train_val - This variable contains the value of the data partition for
training set. The value is 1.

e dm_inputdf - This is a data frame which represents sample input data observations.
e dm_dec_target - This is the target variable in this case ‘Shipping_Expense’
e dm_traindf - This is a data frame which holds a sample training data.

e dm_nodedir - This variable contains node’s working directory.

All these variables are set by SAS VDMML based on the data and selection options we

chose. We fit the model based on the training partition data. This has been accomplished by
adding the ‘fullX_enc[dm_partitionvar] == dm_partition_train_val’ code. If desired to
use the validation data instead for the model, then the code can be replaced by
‘fullX_enc[dm_partitionvar] == dm_partition_valid_val’. Finally, the model predicted
the average 'Shipping Expense’ on the complete input data.

11

We have used the same parameters and algorithms that we have used in native Python to
build the model. All the Python code from SAS VDMML will be passed to the Python
environment and executed from there, and the result returned to SAS VDMML to display the
variable importance, plots, files, and any of the result tables.

When the output results or files created are stored in the ‘dm_nodedir’ location, then
those fields can be displayed in the result pane. We are displaying the variable importance

files to the result window.

The following is the Python Linear Regression model code.

r «
G Python Variables

jol

dm_class_input
dm_classtarget_intovar
dm_classtarget_level
dm_dec_target
dm_input

dm_inputdf
dm_interval_input
dm_model
dm_nodedir
dm_partition_train_val
dm_partitionvar
dm_predictionvar
dm_scoreddf
dm_traindf
node_data.csv

node_scored.csv

[}

L T R R O N

SGF2021_Shipping_CostModel > Python Linear Regression

P @ & e
|

import sys
#Linear Regression by Elasticnet
from sklearn.linear_model import Elasticlet

#Partition The Data

dm_input.insert(®, dm_partitionvar)

fullX = dm_inputdf.loc[:, dm_input]

fullX_enc = pd.get_dummies(fullX, columns=dm_class_input, drop_first=True)
X_enc = fullX_enc[fullX_enc[dm_partitionvar] == dm_partition_train_val]
X_enc = X_enc.drop(dm_partitionvar, 1)

y = dm_traindf[dm_dec_target]

#Build the Model
dm_model = ElasticNet()
dm_model.fit(X_enc, y)
print(dm_model)

#Display the Variable Importance
varimp = pd.DataFrame(list(zip(X_enc, dm model.coef }), columns=['Variable Name', 'Importance'])
varimp.to_csv(dm_nodedir + '/rpt_var_imp.csv', index=False)

fullX_enc = fullX_enc.drop(dm_partitionvar, 1)
#Prediction On The Validation Data
dm_scoreddf = pd.DataFrame(dm_model.predict(fullX_enc), columns=['P_shipping_expense'])

Figure 10. Python Linear Regression Model Code in SAS VDMML

Now, we are ready to discuss the SAS Decision Tree model. There are some basic options

utilized:

e Splitting — The default settings are fine; however, the Minimum Leaf Size is set to 30
instead of 5, which allows for the smallest number of training observations that a leaf
can have. This value is a recommended best practice to ensure enough data exists
for the splitting process.

e Pruning - The default settings are fine.

e Model interpretability using variable importance - This illustrates the final set of
factors ordered from the most to least significant in predicting the Target.

Next, we will add another open-source node for the Python Decision Tree model, similarly to
the Python Linear Regression model discussed previously in this section. The following
figure is the Python Decision Tree model with all the same parameters that have been used
in native Python. Also, the partition logic for the decision tree model uses the same code as
the Linear Regression model open-source code.

12

ng_expense'])

SGF2021_Shipping_CostModel > * Python Decision Tree
«
Python Variables =509 T A
G
1|
0 |12 ‘#Decision Tree Model

3 from sklearn.tree import DecisionTreeRegressor

dm_class_input ¢

. 5 #Partition The Data
dm_classtarget_intovar 6 ‘dm_input.inser‘t(@, dm_partitionvar)
dm_classtarget_level 7 ;'Full)(= dm_inputdf.loc[:, dm_input]

8 "Full)(_enc = pd.get_dummies(fullX, columns=dm_class_input, drop_first=True)
dm_dec target 9 X_enc = fullX_enc[fullX_enc[dm_partitionvar] == dm_partition_train_val]
dm_input 10 ;X_enc = X_enc.drop(dn_partitionvar, 1)
dm_inputd 11 y = dm_traindf[dm_dec_target]

no
dm_interval_input 13 #Build the Model
dm._model 14 ‘params = {'criterion': "friedman_mse", 'splitter': "best", 'max_depth': 16, 'max_features': "sqrt"}

- 15 ‘dm_model = DecisionTreeRegressor(**params)
dm_nededir 16 ‘dm_model.'Fit(X_enc, y)
dm_partition_train_val 17 ‘print(dm_model)
dm_partitionvar 18 ‘
- 19 #Display the Variable Importance
dm_predictionvar 20 ;varimp = pd.DataFrame(list(zip(X_enc, dm_model.feature_importances_)), columns=['Variable Name', 'Importance'])
dm_scoreddf 21 varimp.to_csv{dm_nodedir + '/rpt_var imp.csv', index=False)

22
dm_rzingf 23 ‘fullxienc = fullX_enc.drop(dm_partitionvar, 1)
node_data.csv 24 ‘#Predict On the Validation Data

§ 25 dm_scoreddf = pd.DataFrame(dm_model.predict(fullX_enc), columns=['P_shippi
node_scored.csv

Figure 11. Python Decision Tree Model Code in SAS VDMML

The following figure illustrates the finished Pipeline 1 diagram.

Pipeline 2

+

g8 Data Explora'®. :

Run Pipeline

A k. Y
|# Linear Regre:@.. : I l ' Decision Tree®@ | ’ [5 Python Linea @ | I [Python Decis@... :
— _—

~— i

I e

& Model Comg@.. : I

Figure 12. SAS® VDMML Pipeline 1

13

After Pipeline 1 has been run, the model comparison node displays that SAS VDMML Linear
Regression is the wining model with 18.27 for the Root Average Squared Error (RASE). The
champion model was selected due to having the lowest value for RASE. Although there are
many options to choose for model comparison, best practice suggests using the RASE, as it
is an absolute measure of fit. It is a good measure of how accurately the model predicts the
response (Shipping_Expense), and it is the most important criterion for fit if the main
purpose of the model is prediction.

SGF2021_Shipping_CostMode! > "Model Comparison® Results Close

Model Comparison L7
Champion Name Algorithm Name Average Squared Error Root Average Squared Error
= Linear Regression Linear Regression 333.8898 18.2727
Open Source Code 412.7342 20.3159
Pythen Decision Tree Open Source Code 715.2395 26.7440

Decision Tree Decision Tree 835.3924 28.9032

Figure 13. SAS® VDMML Pipeline 1 Model Comparison

Let us now proceed to Pipeline 2. In the second pipeline, we will discuss Neural Network &
Random Forest models for Python & SAS. To include the SAS models, you select
Supervised Learning Models from the Data node. Then, you select Neural Network &
Random Forest models, respectively. There are several options to select for each model
setting. We will review some basic ones. For the Neural Network model, we will use the
default settings with one minor change: Model interpretability using variable importance -
This illustrates the final set of factors ordered from the most to least significant in predicting
the Target.

Next, we will add another open-source node for the Python Neural Network model, similarly
to the other Python models already discussed in the previous section. The following figure
is the Python Neural Network model code with all the same parameters that have been used
in native Python. Also, the partition logic for the Neural Network model uses the same code
as for the previous Python code.

(o)

SGF2021_Shipping_CostMode * Python Neural Network
« -
5

Python Variables OB
G

©

import sys
#Nural Network-MLPRegressor
from sklearn.neural_network import MLPRegressor

1

2

3

4

5

6 #Partition The Data
7 |dm_input.insert(®, dm partitionvar)

8 [fullX = dm_inputdf.loc[:, dm_input]

9 fullX_enc = pd.get_dummies(fullX, columns=dm_class_input, drop_first=True)

® [X_enc = fullX_enc[fullX_enc[dm_partitionvar] == dm_partition_train_val]

1 X_enc = X_enc.drop(dm_partitionvar, 1)

2 y = dm_traindf[dm_dec_target]

14 #Build the Model

15 |params = {'hidden layer sizes': (3@,38,38), 'activation': 'relu’, 'solver': 'lbfgs’', 'max iter': 500}
16 dm_model = MLPRegressor(**params)

17 dm_model.fit(X_enc, y)

18 |print(dm_model)

20 #Prediction On The Validation Data
21 fullX_enc = fullX_enc.drop(dm_partitionvar, 1)
22 dm_scoreddf = pd.DataFrame(dm_model.predict(fullX_enc), columns=['P_shipping_expense'])

Figure 14. Python Neural Network Model Code in SAS VDMML

14

Now, we are ready to discuss the SAS Random Forest model. The default settings including
building 100 trees within the forest and one minor change: Model interpretability using
variable importance - This illustrates the final set of factors ordered from the most to least
significant in predicting the Target.

Next, we will add another open-source node for the Python Random Forest model, similarly
to the other Python models already discussed in the previous section. The following figure

is the Python Random Forest model code with all the same parameters that have been used
in native Python. Also, the partition logic for the Random Forest model uses the same code
as for the previous Python code.

o)

SGF2021_Shipping_CostModel > * Python Random Forest

«

~ Python Variables CRERED) 62 0
G
B |
fol 2 import sys
#Random Forest Model
4 from sklearn.ensemble import RandomForestRegressor
5
6 #Partition The Data
7 dm_input.insert(®, dm_partitionvar)
8 fullX = dm_inputdf.loc[:, dm_input]
9 fullX_enc = pd.get_dummies(fullX, columns=dm_class_input, drop_first=True)
10 X_enc = fullX_enc[fullX_enc[dm_partitionvar] == dm partition_train_val]
11 X_enc = X_enc.drop(dm_partitionvar, 1)
12 y = dm_traindf[dm_dec_target]
13
14 #Build the Model
15 params = {'n_estimators': 100, 'max_depth': 20, 'min_samples_leaf': 5}
16 dm_model = RandomForestRegressor(**params)
17 |dm_model.fit(X_enc, y)
18 |print(dm_model)
19
20 #Display the Variable Importance
21 varimp = pd.DataFrame(list(zip(X_enc, dm_model.feature importances_)), columns=['Variable Name', 'Importance'])
22 varimp.to_csv(dm_nodedir + '/rpt_var_imp.csv', index=False)
23
24 #Prediction On The Validation Data
25 fullX_enc = fullX_enc.drop(dm_partitionvar, 1)
26 |dm_scoreddf = pd.DataFrame(dm_model.predict(fullX_enc), columns=['P_shipping_expense’])

Figure 15. Python Random Forest Model Code in SAS VDMML

The following figure illustrates the finished Pipeline 2 diagram.

&5 Data Q :

$ Neural Network @ : s, Forest Q : [Python Neural Ne® [Python Forest (V)

& Mode!l Comparisc®@ :

Figure 16. SAS® VDMML Pipeline 2

15

After Pipeline 2 has been run, the model comparison node displays that the Python Random
Forest is the winning model with approximately 17.3 for the Root Average Squared Error
(RMSE). The champion model was selected due to having the lowest value for RMSE. This
analysis resembles the same conclusion that we have seen in the previous section that the
Python Random Forest model was the champion.

SGF2021_Shipping_CostModel "Model Comparison” Results Close

Model Comparison .
Champion Name Algorithm Name Average Squared Error Root Average Squared Error
= Python Forest Open Source Code 297.8433 17.2581
Python Neural Network Open Source Code 580.6186 24.0960
Forest Forest 928.6298 30.4734

Neural Network Neural Network 8,309.5219 91.1566

Figure 17. SAS® VDMML Pipeline 2 Model Comparison

Now, we need to compare all models across both pipelines. Based on the Average Squared
Error (ASE), it is evident that the final champion model has been deemed to be the Python
Random Forest model, which has the lowest ASE value.

= | SGF2021_Shipping_CostModel e

ne Comparizon

o
-
o

(4]
Champion 4 Name Algorithm Name Pipeline Name Average Squared Error Sum of Frequencie §

£
[

Open Source Code Pipeline 2 297.843 43,903

333.890 43,903

Figure 18. SAS® VDMML Overall Pipeline Model Comparison

Finally, it is important to assess what the significant factors are from the champion model as
it pertains to driving the shipping expense for the transportation logistics organization. The
figure below illustrates the factors. For example, the most important variable is the fuel
expense, which makes sense since the package shipments are delivered by vehicles. Other
important factors include the product (type of shipment), delivery time in days, shipper
name (customer), average number of items for each package shipment, etc. Itis
interesting to note that all the important factors related to internal data elements.

16

Most Important Variables for Champion Model

Relative Importance

Figure 19. SAS® VDMML Overall Model Champion - Python Random Forest
Significant Factors Driving Shipping Expense

MODEL DEPLOYMENT - SCORING PROSPECT FILE USING CHAMPION
MODEL

In this section, the focus will shift to applying the champion model to score a new prospect
file to predict the average shipping expense for each package shipment. If you recall, the
overall champion model was deemed to be the Python Random Forest model from Pipeline
2. The next step is to include a Score Data Node to Pipeline 2 underneath the champion
model.

Pipeline2 : +
Run Pipeline
IE Data Q : I
,If~/’/// N —— —
i - / —— \w
¥ h. v
2> Neural Networl®@ ‘ [<, Forest Q l [[Python Neural.@ :] [[} Python Forest @ &]
e
_
'/
[& Score Da}a o]
— \ I __
D \"R—\\\::x\ 2 e —
h
[& Model Compar®@. :]

Figure 20. SAS® VDMML Model Deployment Via Scoring

17

An important aspect in the model scoring & deployment process is to carefully assess how
accurate the model’s predictions are. In this example, the predictions were compared to
actual shipping expenses for new prospects across the transportation network hierarchy.

Precicted Shipping

State Sales Segment Shipper Name: Product Sub Product ltems ~ Volume FuelExpensea DeliveryTime(Days) | Shipping Expense
California SmallMedium Business | Nautfius § 3 Day Select Residential Pick Up/D. 1 376 52.14 3
m Busines 3 Day Select Do Not Stack 40 1.85 $2.14 3
Do Not Stack 9 19.15 5214 o
nallMedium Business Do NotStack 10 452 s2.14 0
SmallAVedium Business 3 Day Select None 9 12.07 52.14 3
Ground Commercial None 24 37.32 $§2.14 o
AliSeasans Outdoor Clothing Hundredweight (CWT] Notifications 33 135.35 5214 o
Michigan ATeam Sparts Ground Commercial | Lift Gate 18 42.69 s2.14 0
Califernia 5D Sperting Goads Inc Surepost Weekend Delivery 18 327 52.14 3
lowa Fuller Trading Co. 3 Day Select None 8 16.45 §2.14 3
Indiana aSA Ground Residential Notifications 7 0.50 $2.15 o
Arizona Ground Commercial | Nene 10 .77 5215 0
Washingtan Ground Commercial | None 1 5.30 52.15 0
New Jersey Ground Commercial Weekend Delivery 8 541 §2.15 (]
New Mexico 3 Day Select Do Not Stack 16 75.79 $2.15 3
Ohio Hundredweight (CWT) | Lit Gate 2 21689 52.15 0
Washington Enterprise Accounts Ground Commercial | Do Not Stack 8 751 52.15 0
Florida SmallMedium Business | SD Sporting Goods Inc Ground Commercial | Do Not Stack 18 60.13 5215 6
Smal dium Business Nautlius SportsWear Inc 3 Day Select Lift Gate 10 3.60 $2.16 3
dium Business Ground Commercial | Limited Access 18 7592 s2.16 0
m Business Ground Commercial | Limited Access 2 85.21 s2.16 0
dium Business 10 8.69 52.16 0
10 3.92 $2.16 3
18 95.54 §2.16 3
22 43.49 $2.16 a
Utah 10 11.53 $2.16 5
Maryland Surepost 9 16.12 $2.16 1

lllinois Seandinavian Clothing A/S Surepost ? 15.26 $2.16

Georgia Small/Medium Business ¥an Dammeren Intermational Ground Commercial 8 18.70 $2.16 o

Figure 21. SAS® VDMML Model Scoring — Actual VS. Predicted Shipping Expense

The figure above illustrates the model’s prediction is very close to the actual values of
shipping expense. For a better visualization of this, let us view the graphs below.

Actual vs Predicted Shipping Expense - Champion Model

All Customer_Hierarchy > Morth Carolina v > Enterprise Accounts ¥
Shipping Expense / Predicted Shipping Expense
s125 5123.43
$100

§75

£50

$25

$14.25 1496
Allseasons Outdoor Clothing Eclipse Inc Mayday Inc Fuller Trading Co. Luna sastreria S.A. Triple Sportswear Inc Prime Sports Ltd KN Outdoor Trading Inc
Shipper Name
—— S|

Figure 22A. Model Scoring Visualization - Actual VS. Predicted Shipping Expense

The above visualization illustrates a slice of the complete scoring data within the
transportation network hierarchy. For example, we selected the state of North Carolina,
the sales segment of Enterprise Accounts. You can observe for the various customers,
the actual and predicted shipping expense values are very close. We can further dive
deeper into the hierarchy and observe a specific customer, illustrated in the following figure.

18

Actual vs Predicted Shipping Expense - Champion Model

All Customer_Hierarchy » NorthCarolina * > Enterprise Accounts * > Eclipselnc *

Shipping Expense / Predicted Shipping Expense

5200 $195.42

$185.68

5150

$106.61

£1e0 $101.39

550

$23.14 $15.66

$15.37

Next Day Air ight (CWT) Deferred (2 Day Air) Ground Commercial Surepost Ground Residential 3 Day Select

Product

==Q== Shipping Expente megem Predicted Shipping Expente

Figure 22B. Model Scoring Visualization — Actual VS. Predicted Shipping Expense

The figure above illustrates the specific customer of “Eclipse Inc” across the various
product types used for the package shipments. Again, observe the actual and predicted
shipping expense values are extremely close. The two preceding illustrations clearly show
the very good accuracy of the model.

In this paper, we have outlined a shipping organization’s critical need to determine the
causal factors for the cost of package shipments across the transportation network.
Especially during this Covid disrupted world, being proactive instead of reactive towards
pricing package shipments has become a necessary analytic endeavor. Understanding
these significant causal factors helps the company to establish pricing for their customers to
become more profitable and brings business value in terms of scenario analysis and
dynamic pricing.

Furthermore, assessing specific characteristics of these factors and how they affect the
shipping expense fluctuation (+/-), has proven to be extremely valuable to the organization.

Integrating open-source models using Python, within a next generation data mining &
machine learning environment, allowed for a very comprehensive analysis to address the
critical business need. The transportation shipping industry can be rather complex within
the network, so the need to have state of the art analytics, leaving no stone unturned, has
provided actionable business results.

Furthermore, it is a best practice to always revisit the data elements to assess if other
possible factors can be introduced to enhance the modeling process. Therefore, it would be
a good exercise to investigate if other data attributes can be captured relevant to package
shipments.

Finally, another valuable exercise would be to inject the shipping expense causal factors
from the champion ML & AI model revealed in this discussion into a time series forecast -
projecting the shipping expense for a specific time in the future. From a best practice
perspective, this has proven to substantially increase the forecast accuracy!

19

Python Open-source Model guide. Available at https://scikit-learn.org/stable/

SAS Developer Home page for all integration with Open source. Available at
https://developer.sas.com/home.html.

Jagruti Kanjia and Dominique Latour, Jesse Luebbert (2020). “Using Python with Model
Studio for SAS® Visual Data Mining and Machine Learning.” In Proceedings of the SAS
Global Forum 2020 Conference. Cary, NC: SAS Institute Inc. Available at
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-
proceedings/2020/4384-2020.pdf.

June 2020. SAS® Visual Data Mining and Machine Learning 8.5: User’s Guide
SAS Institute Inc., NC.

Our thanks for the excellent feedback and suggestions from the following:
e Dr. Manash R. Ray, Co-Founder & CEO, CT Global Solutions, Inc.
e Marie Tchebanenko, Presenter Coordinator, SAS Institute Inc.

¢ James R. Wolcott, Director of Operations, CT Global Solutions, Inc.

Your comments and questions are valued and encouraged. Contact the authors at:

George S. Habek, M.S.
CT Global Solutions, Inc.
george.habek@ctglobalsolutions.com

Suman Kumar Das

CT Global Solutions, Inc.
suman.das@ctglobalsolutions.com

20

https://scikit-learn.org/stable/
https://developer.sas.com/home.html
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2020/4384-2020.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2020/4384-2020.pdf

import sys
#Linear Regression by Elasticnet
from sklearn.linear_model import ElasticNet

#Partition The Data

dm_input.insert(0, dm_partitionvar)

fullX = dm_inputdf.loc[:, dm_input]

fullX_enc = pd.get_dummies(fullX, columns=dm_class_input, drop_first=True)
X_enc = fullX_enc[fullX_enc[dm_partitionvar] == dm_partition_train_val]
X_enc = X_enc.drop(dm_partitionvar, 1)

y = dm_traindf[dm_dec_target]

#Build the Model
dm_model = ElasticNet()
dm_model.fit(X_enc, y)
print(dm_model)

#Display the Variable Importance

varimp = pd.DataFrame(list(zip(X_enc, dm_model.coef_)), columns=['Variable Name',
'Importance'])

varimp.to_csv(dm_nodedir + '/rpt_var_imp.csv', index=False)

fullX_enc = fullX_enc.drop(dm_partitionvar, 1)

#Prediction On The Validation Data

dm_scoreddf = pd.DataFrame(dm_model.predict(fullX_enc),
columns=['P_shipping_expense'])

Figure 10. Python Linear Regression Model Code in SAS VDMML

21

#Decision Tree Model
from sklearn.tree import DecisionTreeRegressor

#Partition The Data

dm_input.insert(0, dm_partitionvar)

fullX = dm_inputdf.loc[:, dm_input]

fullX_enc = pd.get_dummies(fullX, columns=dm_class_input, drop_first=True)
X_enc = fullX_enc[fullX_enc[dm_partitionvar] == dm_partition_train_val]
X_enc = X_enc.drop(dm_partitionvar, 1)

y = dm_traindf[dm_dec_target]

#Build The Model

params = {'criterion': "friedman_mse", 'splitter': "best", 'max_depth': 16,
'max_features': "sqrt"}

dm_model = DecisionTreeRegressor(**params)

dm_model.fit(X_enc, y)

print(dm_model)

#Display the Variable Importance

varimp = pd.DataFrame(list(zip(X_enc, dm_model.feature_importances_)),
columns=['Variable Name', 'Importance'])

varimp.to_csv(dm_nodedir + '/rpt_var_imp.csv', index=False)

fullX_enc = fullX_enc.drop(dm_partitionvar, 1)

#Predict On the Validation Data

dm_scoreddf = pd.DataFrame(dm_model.predict(fullX_enc),
columns=['P_shipping_expense'])

Figure 11. Python Decision Tree Model Code in SAS VDMML

22

import sys
#Neural Network-MLPRegressor
from sklearn.neural_network import MLPRegressor

#Partition The Data

dm_input.insert(0, dm_partitionvar)

fullX = dm_inputdf.loc[:, dm_input]

fullX_enc = pd.get_dummies(fullX, columns=dm_class_input, drop_first=True)
X_enc = fullX_enc[fullX_enc[dm_partitionvar] == dm_partition_train_val]
X_enc = X_enc.drop(dm_partitionvar, 1)

y = dm_traindf[dm_dec_target]

#Build The Model

params = {'hidden_layer_sizes': (30,30,30), 'activation': 'relu’, 'solver': 'Ibfgs’,
'max_iter': 500}

dm_model = MLPRegressor(**params)

dm_model.fit(X_enc, y)

print(dm_model)

#Prediction On the Validation Data

fullX_enc = fullX_enc.drop(dm_partitionvar, 1)
dm_scoreddf = pd.DataFrame(dm_model.predict(fullX_enc),
columns=['P_shipping_expense'])

Figure 14. Python Neural Network Model Code in SAS VDMML

import sys
#Random Forest Model
from sklearn.ensemble import RandomForestRegressor

#Partition The Data

dm_input.insert(0, dm_partitionvar)

fullX = dm_inputdf.loc[:, dm_input]

fullX_enc = pd.get_dummies(fullX, columns=dm_class_input, drop_first=True)
X_enc = fullX_enc[fullX_enc[dm_partitionvar] == dm_partition_train_val]
X_enc = X_enc.drop(dm_partitionvar, 1)

y = dm_traindf[dm_dec_target]

#Build the Model

params = {'n_estimators': 100, 'max_depth': 20, 'min_samples_leaf': 5}
dm_model = RandomForestRegressor(**params)

dm_model.fit(X_enc, y)

print(dm_model)

#Prediction On the Validation Data

fullX_enc = fullX_enc.drop(dm_partitionvar, 1)
dm_scoreddf = pd.DataFrame(dm_model.predict(fullX_enc),
columns=['P_shipping_expense'])

23

Figure 15. Python Random Forest Model Code in SAS VDMML

24

