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ABSTRACT  

Have you developed Python models to solve a business problem and wish to leverage that 

asset into a next generation analytical framework? 

Learn how to create a bridge between open source, using Python, and a state-of-the-art 

data mining & machine learning environment, using SAS® VDMML, which is automated, 

dynamic, and scalable – right at your fingertips.  Compete and compare next generation 

algorithms to select a champion seamlessly. 

The business problem will be within the transportation shipping industry.   A variety of data 

elements such as internal factors of package size, delivery day of the week, # transit days; 

external factors of weather and financial effects will also be used.  The ultimate business 

question – What is the best subset of factors that drive cost?  What is the optimal model to 

use to score a new prospect file with the predicted average cost? 

Discover how Python and SAS® VDMML can work together to answer these critical 

questions for the shipping company! 

INTRODUCTION  

The world has been severely impacted by COVID-19.  As a result, many organizations are 

facing unprecedented challenges.  Specifically, the transportation shipping industry, needs 

to qualify the factors causing fluctuations of its shipping cost across their networks.  Given 

the possible complexity of various networks, the desire to have a comprehensive data 

mining & machine learning platform has become mission critical.  Due to the numerous 

possible causal factors within the industry, ensuring the “best” algorithm is utilized to 

determine the most important factors driving costs is at the forefront of the organization’s 

needs.   

Why is this so important?  The transportation company ultimately desires to be profitable 

across all their customers.  Therefore, establishing the most important causal factors driving 

shipping cost enables the company to better price the various package shipments across the 

network for the customers.  This creates actionable business results optimizing profitability 

among customers. 

 

 

 

 

 



2 

AVAILABLE DATA 

A variety of factors (external and internal) are available for the analysis.  Figure 1 illustrates 

the different attributes.  First, approximately 145K unique package shipments were utilized 

in the model development.  External factors pertaining to financial information such as CPI 

and Unemployment Rate were used.  In addition, external factors related to weather such 

as average rainfall and temperature were used.  Internal factors pertaining package, 

customer, and route information were also utilized. 

 

Figure 1. Available Data  

 

Below is a sample of the raw data used in the analysis. 

 

Figure 2A. Sample Data  
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Figure 2B. Sample Data  

 

 

OPEN-SOURCE CONNECTION – INSTALL & CONFIGURE PYTHON 2.7.X 

OR 3.4+ 

There are steps required for installing and configuring the Python version utilized.  First, 

Python should be installed in the Compute server of the SAS Viya environment.  Next, the 

executable file must be available in the system path in the SAS Compute server.  The 

system path is in “opt/sas/viya/config/etc/sysconfig/compsrv/default/sas-

compsrv” on compute server.  To connect to python from SAS VDMML, the environment 

variable needs to be set as “export PATH=path_to_your_python_bin_directory:${PATH}” 

in the sas-compsrv file.  The final step is to provide sudo privileges to the python packages 

so that other users can access all the Python libraries/packages. 

   

The following is a snippet of sas-compsrv file with Python path variable. 

 

Figure 3. sas-compsrv file 
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DEVELOP PYTHON MODELS VIA JUPYTER NOTEBOOK 

Python is one of the leading open-source programming languages. Integrating Python with a 

state-of-the-art data mining & machine learning environment – SAS® VDMML will help 

solve the business problem stated earlier. First, let us discuss the native Python models in 

the Jupiter notebook. 

Scikit-learn (Sklearn) is a very popular library for machine learning techniques in Python. 

Sklearn has many useful machine learning models and efficient statistical methods. In this 

paper, we will be using this library for different analysis in native Python and then integrate 

models within SAS. There are many features of the Sklearn library, including Clustering, 

Ensemble Methods, Supervised Models, Cross-Validation (estimation of the accuracy of 

supervised models on new data), etc.… 

 

In this section, we are going to cover 4 different supervised models in native Python.  

• Linear Regression with Elastic Net  

• Neural Network using Multi-layer Perceptron (MLP) 

• Decision Tree  

• Random Forest 

 

Linear Regression with Elastic Net 

For linear regression, we are using the Elastic Net regularized regression method which 

combines L1 and L2 penalties. You can control these penalties separately also. 

 

The following table illustrates the basic parameters for the Elastic Net regression method. 

Parameter name Description 

Alpha Constant that multiplies the penalty terms. Default value 

is 1.0. 

L1_Ratio This ratio defines how L1 and L2 parameter applied. 

Default value is 0.5. For l1_ratio = 0 the penalty is an L2 

penalty. For l1_ratio = 1 it is an L1 penalty. 

For 0 < l1_ratio < 1, the penalty is a combination of L1 

and L2. 

Fit_Intercept Default value is True means Data is not centered. 

Normalize Default value is True which means regressors X will be 

normalized before regression by subtracting the mean 

and dividing by the l2-norm. 

Warm_Start Default value is True. When set to True, reuse the 

solution of the previous call to fit as initialization, 

otherwise, just erase the previous solution 

Selection Default value is ‘cycle’. If set to ‘random’, a random 

coefficient is updated every iteration rather than looping 

over features sequentially by default. 

 

Table 1. Basic parameters for Linear Regression with Elastic Net 
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Before we start building the model, there are always data preparation steps required which 

includes cleaning the data, removing unwanted variables, removing variables that show 

multicollinearity, encoding categorical string values to numeric value, etc... 

 

Figure 4.  Python Overall Data Preparation 

 

Now the data is ready for the supervised models. We build the Linear Regression model 

penalized with Elastic Net (L1: 50% and L2: 50%) in Jupiter notebook. When predicting the 

value, the validation dataset will be used. The validation data set is created in the data 

preparation step. Model comparison will happen based on the Root Mean Square Error 

(RMSE).  The model with the smallest RMSE will be deemed the champion. 

 

Figure 5.  Python Linear Regression Model using Elastic Net 

 

Neural Network using Multi-layer Perceptron (MLP)  

 

After we build one of the simple supervised models, i.e., linear regression, we are now 

ready to build a series of linear regression iterations, which is called a neural network 

model. A Multi-layer Perceptron (MLP) regressor is used for the neural network Model. 

Advantages of using MPL regressors are the following: 
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• Capability to learn non-linear models 

• Capability to learn models in real-time (on-line learning). 

• Supports multi output regression so that the sample can have more than one target. 

MLP has different layers: 

• Input Layer - Input variables or visible layer 

• Hidden Layers – Layers of different nodes between input layer and output layer. 

• Output Layers – This Layer represents the output variables 

 

The following table illustrates the basic parameters for the Neural Network MLP algorithm. 

Parameter Name Description 

Hidden_Layer_Sizes Default value is (100,). The ith element represents the 

number of neurons in the ith hidden layer. 

Activation Default value is ‘relu’. Activation function for the hidden 

layer. 

• ‘identity’, no-op activation, useful to 

implement linear bottleneck, returns f(x) = x 

• ‘logistic’, the logistic sigmoid function, 

returns f(x) = 1 / (1 + exp(-x)). 

• ‘tanh’, the hyperbolic tan function, returns 

f(x) = tanh(x). 

• ‘relu’, the rectified linear unit function, 

returns f(x) = max(0, x) 
 

Solver Default value is ‘adam’. This value used for weight 

optimization. Default value works very well on large 

datasets in terms of training time and validation score. 

• ‘lbfgs’ is an optimizer in the family of quasi-

Newton methods. 

• ‘sgd’ refers to stochastic gradient descent. 

• ‘adam’ refers to a stochastic gradient-based 

optimizer 
 

Alpha Default value is 0.0001. L2 penalty parameter. 

Max_Iter Default value is 200. Maximum number of iterations. The 

solver iterates until convergence (determined by ‘tol’) or 

this number of iterations. For stochastic solvers (‘sgd’, 

‘adam’), note that this determines the number of epochs 

(how many times each data point will be used), not the 

number of gradient steps. 

 

Table 2. Basic parameters for Neural Network with MLP 
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For the MLP regressor parameters, 3 hidden layers are modelled here, with 30 neurons in 

each layer. Therefore, there are total of 5 layers including the input and output layers. We 

are using the ‘lbfgs’ optimizer which works best when you have limited memory. It stores 

only the last few updates to save memory. In addition, activation is ‘relu’ (rectified linear 

activation function) which uses a linear function for output but in fact, a non-linear function 

allows complex modelling in the hidden layers. With this activation, it is easier to train the 

model and achieve better performance. Also, maximum iteration is 500 for this model to run 

until it converges. 

 

Figure 6.  Python Neural Network model using MLP 

 

Decision Tree  

The decision tree algorithm is one of the most popular models in supervised learning, 

because it is very easy to explain.  The decision tree algorithm uses if-else conditions and 

splits the data into multiple segments. The algorithm selects the optimal number of splits. 

The goal of the algorithm is to ask questions on the data while narrowing the possible 

values within each split until the model achieves confidence to make a prediction.   

 

The following table illustrates a sample of the basic parameters for the Decision Tree 

algorithm used. 

Parameter Name Description 

Criterion The function to measure the quality of split. 

Possible options are – 

• ‘mse’, - mean squared error 

• ‘friedman_mse’ – mean squared error with 

Friedman’s improvement score for potential 

splits 

• ‘mae’ – mean absolute error. 

• ‘Poisson’ – uses reduction in Poisson 

deviance to find splits. 
 

Splitter The strategy uses to choose the split at each node in the 
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tree. Default option is ‘best’. Options are ‘best’ and 

‘random’. 

Max_Depth The maximum depth of the tree. 

Max_Features The number of features to consider when looking for the best 

split.  

 

Table 3. Basic parameters for the Decision Tree algorithm 

 

In the Decision Tree model, we have considered the ‘friedman_mse’ function as the 

criterion to split the data. Also, the splitter = ‘best’ option is used so that the algorithm will 

take the feature with the highest importance instead of randomness. The maximum feature 

for our model is ‘sqrt’ which means sqrt(n_features) where n_features is the number of 

features when the model fit is performed.  

 

Figure 7.  Python Decision Tree algorithm 

 

Random Forest  

After the decision tree model is developed, we can extend that tree and build a series of 

decision trees, which is called a Random Forest model. The random forest algorithm creates 

random samples of the data, and then the algorithm creates a separate tree for each 

sample.  Finally, the model prediction is created by taking the average of each tree to 

improve model accuracy and control over-fitting.   

 

The following table illustrates the basic parameters for the Random Forest algorithm. 

Parameter Name Description 

N_Estimators The number of trees in the forest.  

Criterion The function to measure the quality of a split. Supported 

criteria are “mse” for the mean squared error, which is 

equal to variance reduction as feature selection criterion, 

and “mae” for the mean absolute error. 

Max_Depth The maximum depth of the tree.  
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Min_Samples_Split The minimum number of samples required to split an 

internal node. 

Min_Samples_Leaf The minimum number of samples required to be at a leaf 

node. 

 

Table 4. Basic parameters for Random Forest algorithm 

 

The following parameters were utilized for the random forest algorithm:  

• Maximum depth of the tree equal to 20.  

• Minimum samples required to split at any leaf equal to 5. 

• Total number of trees in the forest is 100. 

• All other parameters are set to default. 

 

Figure 8.  Python Random Forest algorithm 

 

Now that four Python models have been developed, it makes sense to compare them and 

select a champion.  The random forest algorithm was deemed to be the champion model 

based on the Root Mean Square Error (RMSE), which provided the smallest value across the 

four models. 

 

INCORPORATE PYTHON MODELS WITHIN SAS VDMML PIPELINE 

 

We will now shift our focus to a state-of-the-art data mining & machine learning 

environment – SAS® VDMML.  This platform resides on VIYA, which is a cloud-enabled, in-

memory analytics engine that provides a dynamic, automated, and scalable insights, leading 

to actionable business results.  Before we begin incorporating Python and SAS® VDMML, we 

need to discuss the metadata for the business problem outlined earlier.  If you recall, the 

business challenge is to establish the causal factors that drives the shipping expense for 

each package shipment across the logistics transportation network.  There are three basic 

layers of the metadata that needs to be assigned: 
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• Target – This is what we are trying to predict (Y or Response) – in our example it is 

Shipping_Expense 

• Inputs – These are the independent factors (X’s) – which includes attributes around 

external information like weather and financial data, as well as internal information 

related to the logistics organization.  This is referenced in Figure 1 in the paper 

earlier. 

• Rejected – These are factors that will not be used in the analysis, as they are either 

not related to the business problem or are highly influential to the Target. 

 

Next, we will introduce the concept of a pipeline, where the data mining & machine learning 

will be executed.  Since we must compare Python & SAS models, there are 8 total 

algorithms that will be assessed.  Therefore, two pipelines were created for ease of use.  Let 

us discuss the first pipeline.  Before, we start applying the models, it is a best practice to 

explore the data.  There are some analytical preparation tasks that are usually done prior to 

model development.  For example, inspection for variable skewness, which indicates the 

need for possible transformations; another task is inspection for missing data, which 

indicates the need for possible imputations.  In our analysis, there was no need to apply any 

transformations or imputations to the data. 

 

In the first pipeline, we will discuss Linear Regression & Decision Tree models for Python & 

SAS.  To include the SAS models, you select Supervised Learning Models from the Data 

node.  Then, you select Linear Regression & Decision Tree models, respectively.  There are 

several options to select for each model setting.  We will review some basic ones.  For 

Linear Regression, there are three options utilized: 

 

• Stepwise – This uses a hybrid approach of forward and backward selection, which 

has been proven to be powerful in establishing significant factors driving the 

response (Shipping_Expense). 

• Adjusted R-Square – This is the statistic utilized to select the final subset of factors, 

which accounts for the factors introduced in the model, and measures the amount of 

true variability being explained with respect to the Target. 

• Model interpretability using variable importance – This illustrates the final set of 

factors ordered from the most to least significant in predicting the Target. 

 

Now, we will discuss the Python models for the first pipeline.  To include open-source code 

within the pipeline, you need to select “Add child node” >> “Miscellaneous” >> “Open-

Source Code”.  The next step is to choose what type of open-source code is desired.  In our 

example, we will select Python.  Please make sure to select the “Use output data in child 

nodes” option, otherwise, the data will not be passed to any other following nodes in the 

pipeline, such as scoring, if that is desired.  By default, this option is not selected. 
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  Figure 9.  Python Node Properties 

 

The final step is to insert the Python Linear Regression model, which we have developed in 

the previous section, by clicking on the Open Code Editor button. Before we use the Python 

code, let us review some of the key terms that will be used within the Python open-source 

code. 

• dm_input – The list which represents the input variables (interval and categorical). 

• dm_partitionvar – The String variable, identifies the name of the data partition. 

Values can be 1, 0 and 2 for training, validation, and test, respectively. 

• dm_partition_train_val – This variable contains the value of the data partition for 

training set. The value is 1. 

• dm_inputdf – This is a data frame which represents sample input data observations. 

• dm_dec_target – This is the target variable in this case ‘Shipping_Expense’ 

• dm_traindf – This is a data frame which holds a sample training data. 

• dm_nodedir – This variable contains node’s working directory. 

 

All these variables are set by SAS VDMML based on the data and selection options we 

chose. We fit the model based on the training partition data. This has been accomplished by 

adding the ‘fullX_enc[dm_partitionvar] == dm_partition_train_val’ code. If desired to 

use the validation data instead for the model, then the code can be replaced by 

‘fullX_enc[dm_partitionvar] == dm_partition_valid_val’. Finally, the model predicted 

the average ‘Shipping Expense’ on the complete input data.  
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We have used the same parameters and algorithms that we have used in native Python to 

build the model. All the Python code from SAS VDMML will be passed to the Python 

environment and executed from there, and the result returned to SAS VDMML to display the 

variable importance, plots, files, and any of the result tables. 

When the output results or files created are stored in the ‘dm_nodedir’ location, then 

those fields can be displayed in the result pane. We are displaying the variable importance 

files to the result window. 

 

The following is the Python Linear Regression model code. 

 

Figure 10.  Python Linear Regression Model Code in SAS VDMML 

 

Now, we are ready to discuss the SAS Decision Tree model.  There are some basic options 

utilized: 

 

• Splitting – The default settings are fine; however, the Minimum Leaf Size is set to 30 

instead of 5, which allows for the smallest number of training observations that a leaf 

can have.  This value is a recommended best practice to ensure enough data exists 

for the splitting process. 

• Pruning – The default settings are fine. 

• Model interpretability using variable importance – This illustrates the final set of 

factors ordered from the most to least significant in predicting the Target. 

 

Next, we will add another open-source node for the Python Decision Tree model, similarly to 

the Python Linear Regression model discussed previously in this section.  The following 

figure is the Python Decision Tree model with all the same parameters that have been used 

in native Python. Also, the partition logic for the decision tree model uses the same code as 

the Linear Regression model open-source code. 
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Figure 11.  Python Decision Tree Model Code in SAS VDMML 

 

The following figure illustrates the finished Pipeline 1 diagram. 

 

Figure 12.  SAS® VDMML Pipeline 1 
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After Pipeline 1 has been run, the model comparison node displays that SAS VDMML Linear 

Regression is the wining model with 18.27 for the Root Average Squared Error (RASE).  The 

champion model was selected due to having the lowest value for RASE.  Although there are 

many options to choose for model comparison, best practice suggests using the RASE, as it 

is an absolute measure of fit.  It is a good measure of how accurately the model predicts the 

response (Shipping_Expense), and it is the most important criterion for fit if the main 

purpose of the model is prediction. 

 

Figure 13.  SAS® VDMML Pipeline 1 Model Comparison 

 

Let us now proceed to Pipeline 2.  In the second pipeline, we will discuss Neural Network & 

Random Forest models for Python & SAS.  To include the SAS models, you select 

Supervised Learning Models from the Data node.  Then, you select Neural Network & 

Random Forest models, respectively.  There are several options to select for each model 

setting.  We will review some basic ones.  For the Neural Network model, we will use the 

default settings with one minor change: Model interpretability using variable importance – 

This illustrates the final set of factors ordered from the most to least significant in predicting 

the Target.  

Next, we will add another open-source node for the Python Neural Network model, similarly 

to the other Python models already discussed in the previous section.  The following figure 

is the Python Neural Network model code with all the same parameters that have been used 

in native Python. Also, the partition logic for the Neural Network model uses the same code 

as for the previous Python code. 

 

Figure 14.  Python Neural Network Model Code in SAS VDMML 
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Now, we are ready to discuss the SAS Random Forest model.  The default settings including 

building 100 trees within the forest and one minor change: Model interpretability using 

variable importance – This illustrates the final set of factors ordered from the most to least 

significant in predicting the Target.  

Next, we will add another open-source node for the Python Random Forest model, similarly 

to the other Python models already discussed in the previous section.  The following figure 

is the Python Random Forest model code with all the same parameters that have been used 

in native Python. Also, the partition logic for the Random Forest model uses the same code 

as for the previous Python code. 

 

Figure 15.  Python Random Forest Model Code in SAS VDMML 

The following figure illustrates the finished Pipeline 2 diagram. 

 

Figure 16.  SAS® VDMML Pipeline 2 
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After Pipeline 2 has been run, the model comparison node displays that the Python Random 

Forest is the winning model with approximately 17.3 for the Root Average Squared Error 

(RMSE).  The champion model was selected due to having the lowest value for RMSE. This 

analysis resembles the same conclusion that we have seen in the previous section that the 

Python Random Forest model was the champion. 

 

Figure 17.  SAS® VDMML Pipeline 2 Model Comparison 

 

Now, we need to compare all models across both pipelines.  Based on the Average Squared 

Error (ASE), it is evident that the final champion model has been deemed to be the Python 

Random Forest model, which has the lowest ASE value. 

 

Figure 18.  SAS® VDMML Overall Pipeline Model Comparison 

 

Finally, it is important to assess what the significant factors are from the champion model as 

it pertains to driving the shipping expense for the transportation logistics organization.  The 

figure below illustrates the factors.  For example, the most important variable is the fuel 

expense, which makes sense since the package shipments are delivered by vehicles.  Other 

important factors include the product (type of shipment), delivery time in days, shipper 

name (customer), average number of items for each package shipment, etc.  It is 

interesting to note that all the important factors related to internal data elements.   
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Figure 19.  SAS® VDMML Overall Model Champion – Python Random Forest 

Significant Factors Driving Shipping Expense 

 

MODEL DEPLOYMENT – SCORING PROSPECT FILE USING CHAMPION 

MODEL 

 

In this section, the focus will shift to applying the champion model to score a new prospect 

file to predict the average shipping expense for each package shipment.  If you recall, the 

overall champion model was deemed to be the Python Random Forest model from Pipeline 

2.  The next step is to include a Score Data Node to Pipeline 2 underneath the champion 

model. 

 

Figure 20.  SAS® VDMML Model Deployment Via Scoring 
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An important aspect in the model scoring & deployment process is to carefully assess how 

accurate the model’s predictions are.  In this example, the predictions were compared to 

actual shipping expenses for new prospects across the transportation network hierarchy. 

 

Figure 21.  SAS® VDMML Model Scoring – Actual VS. Predicted Shipping Expense 

 

The figure above illustrates the model’s prediction is very close to the actual values of 

shipping expense.  For a better visualization of this, let us view the graphs below. 

 

Figure 22A.  Model Scoring Visualization – Actual VS. Predicted Shipping Expense 

 

The above visualization illustrates a slice of the complete scoring data within the 

transportation network hierarchy.  For example, we selected the state of North Carolina, 

the sales segment of Enterprise Accounts.  You can observe for the various customers, 

the actual and predicted shipping expense values are very close.  We can further dive 

deeper into the hierarchy and observe a specific customer, illustrated in the following figure. 
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Figure 22B.  Model Scoring Visualization – Actual VS. Predicted Shipping Expense 

 

The figure above illustrates the specific customer of “Eclipse Inc” across the various 

product types used for the package shipments.  Again, observe the actual and predicted 

shipping expense values are extremely close.  The two preceding illustrations clearly show 

the very good accuracy of the model.  

 

CONCLUSION – SUMMARY & RECOMMENDATIONS 

 

In this paper, we have outlined a shipping organization’s critical need to determine the 

causal factors for the cost of package shipments across the transportation network.  

Especially during this Covid disrupted world, being proactive instead of reactive towards 

pricing package shipments has become a necessary analytic endeavor.  Understanding 

these significant causal factors helps the company to establish pricing for their customers to 

become more profitable and brings business value in terms of scenario analysis and 

dynamic pricing.  

Furthermore, assessing specific characteristics of these factors and how they affect the 

shipping expense fluctuation (+/-), has proven to be extremely valuable to the organization.  

Integrating open-source models using Python, within a next generation data mining & 

machine learning environment, allowed for a very comprehensive analysis to address the 

critical business need.  The transportation shipping industry can be rather complex within 

the network, so the need to have state of the art analytics, leaving no stone unturned, has 

provided actionable business results. 

Furthermore, it is a best practice to always revisit the data elements to assess if other 

possible factors can be introduced to enhance the modeling process.  Therefore, it would be 

a good exercise to investigate if other data attributes can be captured relevant to package 

shipments. 

Finally, another valuable exercise would be to inject the shipping expense causal factors 

from the champion ML & AI model revealed in this discussion into a time series forecast – 

projecting the shipping expense for a specific time in the future.  From a best practice 

perspective, this has proven to substantially increase the forecast accuracy! 
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APPENDIX 

 

import sys 

#Linear Regression by Elasticnet 

from sklearn.linear_model import ElasticNet 

 

#Partition The Data 

dm_input.insert(0, dm_partitionvar) 

fullX = dm_inputdf.loc[:, dm_input] 

fullX_enc = pd.get_dummies(fullX, columns=dm_class_input, drop_first=True) 

X_enc = fullX_enc[fullX_enc[dm_partitionvar] == dm_partition_train_val] 

X_enc = X_enc.drop(dm_partitionvar, 1) 

y = dm_traindf[dm_dec_target] 

 

#Build the Model 

dm_model = ElasticNet() 

dm_model.fit(X_enc, y) 

print(dm_model) 

 

#Display the Variable Importance 

varimp = pd.DataFrame(list(zip(X_enc, dm_model.coef_)), columns=['Variable Name', 

'Importance']) 

varimp.to_csv(dm_nodedir + '/rpt_var_imp.csv', index=False) 

 

fullX_enc = fullX_enc.drop(dm_partitionvar, 1) 

#Prediction On The Validation Data 

dm_scoreddf = pd.DataFrame(dm_model.predict(fullX_enc), 

columns=['P_shipping_expense']) 

 

 

Figure 10.  Python Linear Regression Model Code in SAS VDMML 
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#Decision Tree Model 

from sklearn.tree import DecisionTreeRegressor 

 

#Partition The Data 

dm_input.insert(0, dm_partitionvar) 

fullX = dm_inputdf.loc[:, dm_input] 

fullX_enc = pd.get_dummies(fullX, columns=dm_class_input, drop_first=True) 

X_enc = fullX_enc[fullX_enc[dm_partitionvar] == dm_partition_train_val] 

X_enc = X_enc.drop(dm_partitionvar, 1) 

y = dm_traindf[dm_dec_target] 

 

#Build The Model 

params = {'criterion': "friedman_mse", 'splitter': "best", 'max_depth': 16, 

'max_features': "sqrt"} 

dm_model = DecisionTreeRegressor(**params) 

dm_model.fit(X_enc, y) 

print(dm_model) 

 

#Display the Variable Importance 

varimp = pd.DataFrame(list(zip(X_enc, dm_model.feature_importances_)), 

columns=['Variable Name', 'Importance']) 

varimp.to_csv(dm_nodedir + '/rpt_var_imp.csv', index=False) 

 

fullX_enc = fullX_enc.drop(dm_partitionvar, 1) 

#Predict On the Validation Data 

dm_scoreddf = pd.DataFrame(dm_model.predict(fullX_enc), 

columns=['P_shipping_expense']) 

 

 

Figure 11.  Python Decision Tree Model Code in SAS VDMML 
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import sys 

#Neural Network-MLPRegressor 

from sklearn.neural_network import MLPRegressor 

 

#Partition The Data 

dm_input.insert(0, dm_partitionvar) 

fullX = dm_inputdf.loc[:, dm_input] 

fullX_enc = pd.get_dummies(fullX, columns=dm_class_input, drop_first=True) 

X_enc = fullX_enc[fullX_enc[dm_partitionvar] == dm_partition_train_val] 

X_enc = X_enc.drop(dm_partitionvar, 1) 

y = dm_traindf[dm_dec_target] 

 

#Build The Model 

params = {'hidden_layer_sizes': (30,30,30), 'activation': 'relu', 'solver': 'lbfgs', 

'max_iter': 500} 

dm_model = MLPRegressor(**params) 

dm_model.fit(X_enc, y) 

print(dm_model) 

 

#Prediction On the Validation Data 

fullX_enc = fullX_enc.drop(dm_partitionvar, 1) 

dm_scoreddf = pd.DataFrame(dm_model.predict(fullX_enc), 

columns=['P_shipping_expense']) 

 

Figure 14.  Python Neural Network Model Code in SAS VDMML 

 

 

import sys 

#Random Forest Model 

from sklearn.ensemble import RandomForestRegressor 

 

#Partition The Data 

dm_input.insert(0, dm_partitionvar) 

fullX = dm_inputdf.loc[:, dm_input] 

fullX_enc = pd.get_dummies(fullX, columns=dm_class_input, drop_first=True) 

X_enc = fullX_enc[fullX_enc[dm_partitionvar] == dm_partition_train_val] 

X_enc = X_enc.drop(dm_partitionvar, 1) 

y = dm_traindf[dm_dec_target] 

 

#Build the Model 

params = {'n_estimators': 100, 'max_depth': 20, 'min_samples_leaf': 5} 

dm_model = RandomForestRegressor(**params) 

dm_model.fit(X_enc, y) 

print(dm_model) 

 

#Prediction On the Validation Data 

fullX_enc = fullX_enc.drop(dm_partitionvar, 1) 

dm_scoreddf = pd.DataFrame(dm_model.predict(fullX_enc), 

columns=['P_shipping_expense']) 
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Figure 15.  Python Random Forest Model Code in SAS VDMML 

 


