

1

Paper 2021-1189

Quick, Call the “FUZZ”: Using Fuzzy Logic

Richann Watson, DataRich Consulting; Louise Hadden, Abt Associates Inc.

ABSTRACT

SAS® practitioners are frequently called upon to do a comparison of data between two different data sets
and find that the values in synonymous fields do not line up exactly. A second quandary occurs when
there is one data source to search for particular values, but those values are contained in character fields
in which the values can be represented in myriad different ways. This paper discusses robust, if not warm
and fuzzy, techniques for comparing data between, and selecting data in, SAS data sets in not so ideal
conditions.

INTRODUCTION

SAS has provided a number of tools which can perform “fuzzy matching”. Among these tools are “wild
card” searches in a where statement using the LIKE (alias ?) and CONTAINS operators; string searches
in an if statement using operators and functions; “fuzzy” comparison functions such as COMPGED and
SPEDIS; PROC FCMP; PROC GEOCODE, and data driven control tables enabling user-defined formats
to standardize data. The purpose of this paper is to introduce, by example, each of these tools and
techniques.

WHERE STATEMENT WILD CARD TECHNIQUES

There are times when you may need to subset records in a data file but specifying the full search string
may be an arduous and error prone process, or there may be multiple search strings that have a similar,
identifiable pattern. You could default to the standard logic of VAR in (‘FULL VALUE1’ ‘FULL VALUE2’
etc.), or, you can use the following “fuzzy” techniques.

CONTAINS or ? Operators

If you are using a sub-setting WHERE statement you can use a question mark (?) or the word
CONTAINS instead of an equal (=). The CONTAINS or ? will allow look for records that have values that
contain what is specified.

The CONTAINS and ? operators used in the WHERE statement are demonstrated using the ROSTER
data set below (Data Display 1).

FIRSTNAM
E

LASTNAME GENDER SCORE AGE EMAIL

Jan Write F 1.00000000000012 44.9999999999990 Jan_Write@mail.org

Lucy Smyth F 1.00000000000121 53.9383983572895 Lucy_Smyth@mail.org

Kris Johnson F 1.00324325660746 39.3566050650240 Kris_Johnson@mail.org

Chris Jones M 0.00000000000121 48.8268309377139 Chris_Jones@mail.org

Tracey Smith F 0.00000000000012 46.4499999999991 Tracey_Smith@mail.org

Tracy Besley M 0.00324325660746 47.4999999999990 Tracy_Besley@mail.org

Tracie Smith-jones F -2.00000000000921 35.6659822039699 Tracie_Smith-jones@mail.org

Chrys Jones-Wright F -2.00000000000092 34.1546885694730 Chrys_Jones-Wright@mail.org

Jon Wright M 1.00000000000038 46.8145106091718 Jon_Wright@mail.org

John Hall M 1.00000000000384 42.9949999999900 John_Hall@mail.org

Timothy Bones M -12.00000000000920 48.3504449007529 Timothy_Bones@mail.org

Jason Jaones M -12.00000000000091 48.7118412046543 Jason_Jaones@mail.org

Tyler ones M -5.00413456081936 42.9499999999990 Tyler_ones@mail.org
Data Display 1: ROSTER

mailto:Jan_Write@mail.org
mailto:Lucy_Smyth@mail.org
mailto:Kris_Johnson@mail.org
mailto:Chris_Jones@mail.org
mailto:Tracey_Smith@mail.org
mailto:Tracy_Besley@mail.org
mailto:Tracie_Smith-jones@mail.org
mailto:Chrys_Jones-Wright@mail.org
mailto:Jon_Wright@mail.org
mailto:John_Hall@mail.org
mailto:Timothy_Bones@mail.org
mailto:Jason_Jaones@mail.org
mailto:Tyler_ones@mail.org

2

In order to subset the ROSTER data set for people that have ‘Jones’ in their last name, the CONTAINS or
? operators can minimize the chance of error by searching for any record that contains the word ‘Jones’ in
the variable LASTNAME (SAS Program 1).

data jones_1; data jones_2;
set roster; set roster;

where LASTNAME ? 'Jones'; where LASTNAME contains 'Jones';

run; run;

SAS Program 1: Illustration of CONTAINS and ? operators on WHERE statement

Regardless of which operator is used they will both yield the same results (Data Display 2).

FIRSTNAME LASTNAME GENDER

Chris Jones M

Chrys Jones-Wright F
Data Display 2: Subset of ROSTER for ‘Jones’ using CONTAINS or ? operators

It is important to note that the CONTAINS or ? operators are case sensitive, thus if casing should be
ignored, then it should be used in conjunction with the LOWCASE function or UPCASE function to
force the variable to be one case.

LIKE Operator

Similar to the CONTAINS operator, the LIKE operator searches for specific strings based on a wild-
card (% or _) or a pattern. In addition, the LIKE operator is also case sensitive.

The LIKE operator is illustrated using the ROSTER data set. In this example, we want to find all the
people with ‘Jones’ in the last name. We could use the CONTAINS or ? operator if all we wanted was to
look for records with the value of ‘Jones’, or we could use the LIKE operator. Both methods will yield the
same results.

data jones_3;

set roster;

where LASTNAME like '%Jones%';

run;

SAS Program 2: Illustration of LIKE operator using only a wild card

Data Display 3 shows the data produced from SAS Program 2. So why use the LIKE operator if it does
the same thing as the CONTAINS or ? operators? With the LIKE operator there is a bit more flexibility
with regard to where the value specified is found within the variable.

FIRSTNAME LASTNAME GENDER

Chris Jones M

Chrys Jones-Wright F

Data Display 3: Subset of ROSTER for ‘Jones’ using LIKE operator and wild card

In some cases, it may be necessary to only keep records where the specified text is found at the
beginning of, or at the end of, a string as illustrated in SAS Program 3 and Data Display 4. SAS
Program 3 searches for records where the first two characters of the value for LASTNAME is ‘Jo’.

data jones_4;

set roster;

where LASTNAME like 'Jo%';

run;

SAS Program 3: Illustration of LIKE operator
using search string at beginning only

FIRSTNAME LASTNAME GENDER

Kris Johnson F

Chris Jones M

Chrys Jones-Wright F
Data Display 4: Subset of ROSTER for last
names that start with ‘Jo’

data jones_5a;

set roster;

where LASTNAME like '%_ones%';

run;

SAS Program 4: Illustration of LIKE operator
using wild card and string pattern

FIRSTNAME LASTNAME GENDER

Chris Jones M

Tracie Smith-jones F

Chrys Jones-Wright F

Timothy Bones M

Jason Jaones M
Data Display 5: Subset of ROSTER for
records with ‘ones’ in last name and at least
one-character preceding ‘ones’

data jones_5b;

set roster;

where LASTNAME like '%ones%';

run;

SAS Program 5: Illustration of LIKE operator
using wild card

FIRSTNAME LASTNAME GENDER

Chris Jones M

Tracie Smith-jones F

Chrys Jones-Wright F

Timothy Bones M

Jason Jaones M

Tyler ones M
Data Display 6: Subset of ROSTER for
records with ‘ones’ in last name

3

If you need to broaden the search to look for any records where ‘ones’ is in the last name and is preceded
by at least one character, you could use a search pattern including an underscore: in this case, a search
pattern of ‘_ones’. The ‘_’ indicates that there is one character that precedes ‘ones’. Each ‘_’ indicates a
character. Thus ‘__ones’ would indicate there are two characters that precede ‘ones’, and a search patter
of ‘_ones_’ would indicate there is one character before and after the ‘ones’. However, we wanted at
least one character to precede ‘ones’ so we would use a search pattern with a combination of ‘%_’ (SAS
Program 4 and Data Display 5).

If we had only used ‘%ones%’, then the record for ‘Tyler ones’ would have been retrieved when it
should not have been, since it did not have at least one character preceding the ‘ones’ (SAS Program
5 and Data Display 6).

With the flexibility of the LIKE operator we can use a combination of wildcards to get the desired output.
For example, we could search for records that start with ‘J’ and contain ‘nes’ and have at least one
character between ‘J’ and ‘nes’ as shown in SAS Program 6 and Data Display 7.

data jones_6;

set roster;

where LASTNAME like 'J%_nes%';

run;

SAS Program 6: Illustration of LIKE operator
searching for first character using wild card
and string pattern

FIRSTNAME LASTNAME GENDER

Chris Jones M

Chrys Jones-Wright F

Jason Jaones M
Data Display 7: Subset of ROSTER for
records that start with ‘J’ and contain ‘nes’

data tracey;

set roster;

where FIRSTNAME =* 'Tracey';

run;

SAS Program 8: Illustration of =* (sounds
like) operator

FIRSTNAME LASTNAME GENDER

Tracey Smith F

Tracy Besley M

Tracie Smith-jones F
Data Display 9: Subset of ROSTER for all
records that have first name that sounds
like ‘Tracey’

4

If we need to search strings containing one of the wild cards, we can take advantage of an ESCAPE
clause. For example, we could search for records with email addresses that contain underscores between
the first and last name, as shown in SAS Program 7 and Data Display 8. Note that the escape character
used must not be an underscore or percent sign.

data jones_7;

set roster;

where email like 'Ch___^_Jo%' escape '^';

run;

SAS Program 7: Illustration of LIKE operator with an escape clause using wild card and string
pattern

FIRSTNAME LASTNAME GENDER EMAIL

Chris Jones M Chris_Jones@mail.org

Chrys Jones-Wright F Chrys_Jones-Wright@mail.org
Data Display 8: Subset of ROSTER for all records that have email with underscores with first name
starting with ‘Ch’ and last name starting with ‘Jo’

=* (Sounds like) Operator

The sounds like operator (=*) allows you to search for records that may phonetically sound like the string
that is provided. SAS Program 8 and Data Display 9 illustrate the use of the sounds like operator.

The downside to these operators is that they will only work on the WHERE statement. They cannot
be used on an IF statement.

SEARCHING FOR A STRING WITH IF STATEMENTS

There are several different SAS functions-based options that can be explored when using IF statements
for which wild card techniques are not applicable. These “fuzzy” search techniques are explored below.

mailto:Chris_Jones@mail.org
mailto:Chrys_Jones-Wright@mail.org

data jones_7;
set roster;

if LASTNAME =: 'Jones';

run;

SAS Program 9: Illustration of character
comparison =:

FIRSTNAME LASTNAME GENDER

Chris Jones M

Chrys Jones-Wright F
Data Display 10: Subset of ROSTER for last
names that start with Jones

data jones_8a;
set roster;

if index(LASTNAME, 'Jones');

run;

SAS Program 10: Illustration of INDEX
function

FIRSTNAME LASTNAME GENDER

Chris Jones M

Chrys Jones-Wright F
Data Display 11: Subset of ROSTER for last
name that contains Jones using INDEX function

data jones_8b;
set roster;

if index(upcase(LASTNAME),

'JONES');

run;

SAS Program 11: Illustration of INDEX
with UPPER function

5

Character Comparison on IF Statement

If you are interested in only matching on a string that is at the beginning of the value in the variable,
then the you can use ‘=:’ to do a character comparison. By default, SAS will truncate the longer value to
the length of the shorter value when doing the comparison and then it will compare each character in
both strings. SAS Program 9 and Data Display 10 provide an illustration of the use of the character
comparison operator.

The disadvantage of this technique is that it will only match on the first part of a character string, so if you
need to have a match on any other parts of a character string, then additional techniques should be
implemented.

INDEX Function

If you need to search for a string anywhere within a variable or another string, then the INDEX function
could be utilized. With the INDEX function you would need to provide two arguments: the variable or
string to be searched and the string that you are searching for.

Syntax: INDEX(source, excerpt)

The downside of using INDEX is that it is case sensitive. If you need to look for values regardless of case
status, you could use the UPCASE function or LOWCASE function to force the source string to be one
case and then specify the excerpt string to be the same case. SAS Program 11 and Data Display 12
show that LASTNAME = ‘Smith-jones’ was missed in the initial program execution because ‘jones’ was
not proper case.

FIRSTNAME LASTNAME GENDER

Chris Jones M

Tracie Smith-jones F

Chrys Jones-Wright F
Data Display 12: Subset of ROSTER for last
name that contains Jones regardless of casing
using INDEX function

data jones_9a;
set roster;

if find(LASTNAME,'jones','i');

run;

SAS Program 12: Illustration of FIND
function with ‘i’ modifier

FIRSTNAME LASTNAME GENDER

Chris Jones M

Tracie Smith-jones F

Chrys Jones-Wright F
Data Display 13: Subset of ROSTER for last
name that contains Jones regardless of
casing using FIND function

6

FIND Function

An alternative to using the INDEX function with either the UPCASE or LOWCASE function to ensure you
capture all possible case statuses, is the use of the FIND function. The FIND function works in a similar
fashion to the INDEX function, with the difference being that the FIND function allows for a start position
and/or modifier(s) including instructions regarding case.

Syntax: FIND(string, substring <, modifier(s)> <, start-position>)

FIND(string, substring <, start-position> <, modifier(s)>)

The modifiers that can be used are described in Table 1. When specifying the modifier(s), it should be
enclosed in quotation marks. If specifying both modifiers, then they will both be enclosed in a single set
of quotation marks.

Modifier Description

i or I Indicates that casing should be ignored when searching for the substring within the string

t or T Indicates that trailing blanks should be removed from both the string and substring

Table 1: FIND Modifiers

Notice that SAS Program 12 yields the same set of records as SAS Program 11. In both sample code the
casing of the last name was essentially ignored so that all possible records that contained the search
string were retrieved.

The start-position indicates where in the string the search should start from. Notice in SAS Program 13
that the order in which the modifier(s) and start-position are specified in the function are interchangeable.

data jones_9b; data jones_9c;
set roster; set roster;

if find(LASTNAME, 'jones', 'i', 5); if find(LASTNAME, 'jones', 5, 'i');
run; run;

SAS Program 13: Illustration of FIND function with ‘i’ modifier and start position searching left to
right

By specifying the starting search position as 5, the search will only pick up any records where ‘jones’ is
found in positions 5 or greater in the source string (Data Display 14).

FIRSTNAME LASTNAME GENDER

Tracie Smith-jones F
Data Display 14: Subset of ROSTER for last name that contains Jones regardless of casing but
starting in position 5 searching left to right

7

If the value is a negative number, it indicates that the search will be from right to left, while a positive
number searches from left to right. The default search is left to right. Note that the position of the start is
the absolute value of the start-position. For example, start-position = 5 and start-position = -5 both start
the search in position 5 of the string. The sign just indicates the direction of the search.

In the example illustrated by SAS Program 14 and Data Display 15, notice that the search starts in the
same position as the search done in SAS Program 13 with the difference being that it will search the first
5 characters only for the value of ‘jones’ (Data Display 15).

data jones_9d;
set roster;

if find(LASTNAME, 'jones', -5, 'i');

run;

SAS Program 14: Illustration of FIND function with ‘i’ modifier and start position searching right to
left

FIRSTNAME LASTNAME GENDER

Chris Jones M

Chrys Jones-Wright F
Data Display 15: Subset of ROSTER for last name that contains Jones regardless of casing
but starting in position 5 searching right to left

PRXMATCH Function

PRXMATCH function uses either a regular expression ID or PERL-regular expressions and can be used
to search for a string within another string. With the various options indicated in the expression, you can
indicate that you wish to ignore casing.

Syntax: PRXMATCH(regular-expression-id | perl-regular-expression, source)

Notice that SAS Program 15 yields the same results as SAS Program 12 (see Data Display 13 and Data
Display 16).

data jones_10;
set roster;

if prxmatch('m/Jones/i', LASTNAME);

run;

SAS Program 15: Illustration of PRXMATCH function with ‘i’ option

FIRSTNAME LASTNAME GENDER

Chris Jones M

Tracie Smith-jones F

Chrys Jones-Wright F
Data Display 16: Subset of ROSTER for last name that contains Jones regardless of casing
using PRXMATCH function

8

However, with the PRXMATCH function, you can search for more than one string within another. As
illustrated in SAS Program 16 and Data Display 17, records that contain the values of ‘Jones’ or
‘Jaones’ regardless of casing in the source string are retrieved.

data jones_11;
set roster;

if prxmatch('m/Jones|Jaones/oi', LASTNAME);

run;

SAS Program 16: Illustration of PRXMATCH function with ‘i’ and ‘o’ options

FIRSTNAME LASTNAME GENDER

Chris Jones M

Tracie Smith-jones F

Chrys Jones-Wright F

Jason Jaones M
Data Display 17: Subset of ROSTER for last name that contains Jones or Jaones regardless of
casing

Multiple options or metacharacters can be used to build the desired search string. For example, if you
wanted to only retrieve the records from a source string that contains the certain values that are found at
the beginning of the source string, then the use of ‘A’ metacharacter indicates the beginning position and
will only retrieve records that find the search string at the beginning of the source string. SAS Program 17
and Data Display 18 demonstrate the use of the ‘A’ metacharacter. Notice that the record for ‘Tracie
Smith-jones’ is not retrieved because ‘Jones’ was not at the beginning of the source string.

data jones_12;
set roster;
if prxmatch('m/^Jones|Jaones/oi', LASTNAME);

run;

SAS Program 17: Illustration of PRXMATCH function with ‘i’ and ‘o’ options and ‘A’ metacharacter

FIRSTNAME LASTNAME GENDER

Chris Jones M

Chrys Jones-Wright F

Jason Jaones M
Data Display 18: Subset of ROSTER for last name that contains Jones or Jaones regardless of
casing at beginning of source string

Below are several resources when using PRX functions:

• A complete list of metacharacters:
https://support.sas.com/documentation/cdl//en/lefunctionsref/69762/HTML/default/viewer.htm#p0
s9ilagexmjl8n1u7e1t1jfnzlk.htm.

• A SAS tip reference sheet: https://support.sas.com/rnd/base/datastep/perl regexp/regexp-tip-
sheet.pdf.

• A tool to check syntax of PRX expression: https://regex101.com/.

https://support.sas.com/documentation/cdl/en/lefunctionsref/69762/HTML/default/viewer.htm#p0
https://support.sas.com/rnd/base/datastep/perl
https://regex101.com/

9

FUZZY COMPARISONS

CHARACTER FUZZY COMPARISONS

Character strings, especially strings describing names and addresses, are notoriously dirty and prone to
spacing, length and punctuation issues. Any real-world comparison of character strings or selection
based on character strings needs to be both flexible and configurable, i.e. the degree of “sameness”
needs to be quantifiable. SAS provides several character functions that allow you to make a fuzzy
comparison: COMPARE, COMPGED, COMPLEV, SOUNDEX and SPEDIS. Each of these functions use
a different fuzzy algorithm and can be used in conjunction with one another to achieve a (subjectively)
optimal match. Use of these functions produces inexact results by definition, and results must be
reviewed carefully. Examples and explanations of each of these functions follow.

COMPARE Function

The COMPARE function determines the first character at which two character variables differ and returns
the position of the first character difference. If there are no differences between the two variables, then it
will return a 0.

Syntax: COMPARE(string-1, string-2 <, modifier(s)>)

The modifiers that can be used are described in Table 2. When specifying the modifier(s), it should be
enclosed in quotation marks. If specifying multiple modifiers, then all modifiers will be enclosed in a
single set of quotation marks.

Modifier Description

i or I Indicates that casing should be ignored for both strings.

l or L Indicates that leading blanks should be removed from both strings before comparison.

n or N Indicates that quotation marks from either argument should be removed and that
casing should be ignored.

: (colon) Indicates that the longer string should be truncated to the length of the shorter string. If
this is not specified, then the shorter string is padded with blank spaces to the length of
the longer string.

Table 2: COMPARE Modifiers

The ROSTER data in Data Display 1 is augmented to include additional values for FIRSTNAME and
LASTNAME (Data Display 19). The differences between the original values and the additional values are
highlighted in pink.

10

FIRSTNAME LASTNAME FIRSTNAME2 LASTNAME2

Jan Write Jan Wright

Lucy Smyth Lucy Smith

Kris Johnson Chris Johnson

Chris Jones Chris Jones

Tracey Smith Tracey Smith

Tracy Besley Tracey Besley

Tracie Smith-jones Tracie Smith-Jones

Chrys Jones-Wright Chris Jones-Wright

Jon Wright Jon Wright

John Hall John Hall

Timothy Bones Timothy Jones

Jason Jaones Jason Jones

Tyler ones Tyler Jones
Data Display 19: Augmented ROSTER (NEWROSTER)

SAS Program 18 and Data Display 20 illustrate the use of COMPARE function without the use of a
modifier and with the use of the ‘i’ modifier.

data roster_compare;
set newroster;

FNCOMP = compare(FIRSTNAME, FIRSTNAME2);

LNCOMP = compare(LASTNAME, LASTNAME2);

FNCOMP_I = compare(FIRSTNAME, FIRSTNAME2, 'i');

LNCOMP_I = compare(LASTNAME, LASTNAME2, 'i');

run;

SAS Program 18: Illustration of COMPARE function without modifiers and with ‘i’ modifier

FIRSTNAME LASTNAME FIRSTNAME2 LASTNAME2 FNCOMP FNCOMP_I LNCOMP LNCOMP_I

Jan Write Jan Wright 1 1 4 4

Lucy Smyth Lucy Smith 0 0 3 3

Kris Johnson Chris Johnson 1 1 0 0

Chris Jones Chris Jones 0 0 0 0

Tracey Smith Tracey Smith 0 0 0 0

Tracy Besley Tracey Besley 5 5 0 0

Tracie Smith-jones Tracie Smith-Jones 0 0 7 0

Chrys Jones-Wright Chris Jones-Wright 4 4 0 0

Jon Wright Jon Wright 0 0 0 0

John Hall John Hall 0 0 0 0

Timothy Bones Timothy Jones 0 0 -1 -1

Jason Jaones Jason Jones 0 0 -2 -2

Tyler ones Tyler Jones 0 0 1 1
Data Display 20: Illustration of COMPARE function without modifiers and with ‘i’ modifier

11

With the use of the ‘i’ modifier notice that ‘Smith-jones’ and ‘Smith-Jones’ are considered the same value.
Notice that for Jason Jaones (Jones) the COMPARE function returns a -2. This is because if ‘Jaones’
and ‘Jones’ were sorted ‘Jaones’ would come first in a sort sequence. Therefore, the sign on the value
returned indicates the order of the arguments. A negative number represents the first argument occurring
first in a sort sequence and a positive number represents the second argument occurring first in the sort
sequence.

SAS Program 19 and Data Display 21 demonstrate the use of the ‘l’ modifier to remove any leading
blanks and also shows the use of multiple modifiers in one function call.

data roster_compare2;
set newroster;

FNCOMP_L = compare(FIRSTNAME, FIRSTNAME2, 'l');

LNCOMP_L = compare(LASTNAME, LASTNAME2, 'l');

FNCOMP_IL = compare(FIRSTNAME, FIRSTNAME2, 'il');

LNCOMP_IL = compare(LASTNAME, LASTNAME2, 'il');

run;

SAS Program 19: Illustration of COMPARE function with ‘l’ and ‘il’ modifier(s)

FIRSTNAME LASTNAME FIRSTNAME2 LASTNAME2 FNCOMP_L FNCOMP_IL LNCOMP_L LNCOMP_IL

Jan Write Jan Wright 0 0 4 4

Lucy Smyth Lucy Smith 0 0 3 3

Kris Johnson Chris Johnson 1 1 0 0

Chris Jones Chris Jones 0 0 0 0

Tracey Smith Tracey Smith 0 0 0 0

Tracy Besley Tracey Besley 5 5 0 0

Tracie Smith-jones Tracie Smith-Jones 0 0 7 0

Chrys Jones-Wright Chris Jones-Wright 4 4 0 0

Jon Wright Jon Wright 0 0 0 0

John Hall John Hall 0 0 0 0

Timothy Bones Timothy Jones 0 0 -1 -1

Jason Jaones Jason Jones 0 0 -2 -2

Tyler ones Tyler Jones 0 0 1 1
Data Display 21: Illustration of COMPARE function with ‘l’ and ‘il’ modifier(s)

In SAS Program 18 we noticed that it yielded a mismatch for the first name of the first record. However,
with the use of the ‘l’ modifier, there is now a match.

COMPGED Function

The COMPGED function determines how close the two arguments are in regard to matching (i.e., it
determines the generalized edit distance between the two values).

Syntax: COMPGED(string-1, string-2 <, cutoff > <, modifier(s)>)

The cutoff is a numeric value that is returned if the generalized edit distance is greater than the cutoff
value. The modifiers that can be used are the same as those used for COMPARE, described in Table 2.

Refer to the following SAS documentation for details on computing the generalized edit distance
https://documentation.sas.com/?docsetId=lefunctionsref&docsetTarget=p1r4l9jwgatggtn1ko81fyjys4s7.ht
m&docsetVersion=9.4&locale=en

https://documentation.sas.com/?docsetId=lefunctionsref&docsetTarget=p1r4l9jwgatggtn1ko81fyjys4s7.ht

12

SAS Program 20 and SAS Program 21 are used to demonstrate how the generalized edit distance can be
calculated based on differences in the two strings.

data roster_compged;
set newroster;

FNCOMP = compged(FIRSTNAME, FIRSTNAME2);

LNCOMP = compged(LASTNAME, LASTNAME2);

FNCOMP_I = compged(FIRSTNAME, FIRSTNAME2, 'i');

LNCOMP_I = compged(LASTNAME, LASTNAME2, 'i');

run;

SAS Program 20: Illustration of COMPGED function without modifiers and with ‘i’ modifier

FIRSTNAME LASTNAME FIRSTNAME2 LASTNAME2 FNCOMP FNCOMP_I LNCOMP LNCOMP_I

Jan Write Jan Wright 20 20 210 210

Lucy Smyth Lucy Smith 0 0 100 100

Kris Johnson Chris Johnson 300 300 0 0

Chris Jones Chris Jones 0 0 0 0

Tracey Smith Tracey Smith 0 0 0 0

Tracy Besley Tracey Besley 100 100 0 0

Tracie Smith-jones Tracie Smith-Jones 0 0 100 0

Chrys Jones-Wright Chris Jones-Wright 100 100 0 0

Jon Wright Jon Wright 0 0 0 0

John Hall John Hall 0 0 0 0

Timothy Bones Timothy Jones 0 0 200 200

Jason Jaones Jason Jones 0 0 100 100

Tyler ones Tyler Jones 0 0 200 200
Data Display 22: Illustration of COMPGED function without modifiers and with ‘i’ modifier

In the first row of Data Display 22, we see that for the first name the generalized edit distance without
modifiers and with the modifier to ignore casing both yield a value of 20. This is because for
FIRSTNAME2 there are two blank spaces that precede the value ‘Jan’. The unit cost for each blank
space is 10 units, therefore, the total unit cost is 20 units. For the last name we have to replace ‘gh’ with
‘te’ and truncate the value. The unit cost to replace a character is 100 units per character and the unit
cost to truncate the output string is 10 units per character truncated. Since we had to replace two
characters and truncate one character, the total unit cost is 210.

data roster_compged2;
set newroster;

FNCOMP_L = compged(FIRSTNAME, FIRSTNAME2, 'l');

LNCOMP_L = compged(LASTNAME, LASTNAME2, 'l');

FNCOMP_IL = compged(FIRSTNAME, FIRSTNAME2, 150,
'il'); LNCOMP_IL = compged(LASTNAME, LASTNAME2, 200,
'il'); run;

SAS Program 21: Illustration of COMPGED function with ‘l’ and ‘il’ modifier(s) and cutoff option

13

FIRSTNAME LASTNAME FIRSTNAME2 LASTNAME2 FNCOMP_L FNCOMP_IL LNCOMP_L LNCOMP_IL

Jan Write Jan Wright 0 0 210 200

Lucy Smyth Lucy Smith 0 0 100 100

Kris Johnson Chris Johnson 300 150 0 0

Chris Jones Chris Jones 0 0 0 0

Tracey Smith Tracey Smith 0 0 0 0

Tracy Besley Tracey Besley 100 100 0 0

Tracie Smith-jones Tracie Smith-Jones 0 0 100 0

Chrys Jones-Wright Chris Jones-

Wright

100 100 0 0

Jon Wright Jon Wright 0 0 0 0

John Hall John Hall 0 0 0 0

Timothy Bones Timothy Jones 0 0 200 200

Jason Jaones Jason Jones 0 0 100 100

Tyler ones Tyler Jones 0 0 200 200
Data Display 23: Illustration of COMPGED function with ‘l’ and ‘il’ modifier(s) and cutoff option

In the first row of Data Display 23, we notice that the total unit cost is 210 as previously determined. Even
if we ignore casing for the last name it would still have a unit cost of 210, yet the value for LNCOMP_IL =
200. This is because we have implemented a cutoff value. For the last name the cutoff value of 200 was
specified, indicating that regardless of the final generalized edit distance, the value would be cutoff at 200.
The same is true for the first name, we implemented a cutoff value of 150 and even though for the third
row it shows that the generalized edit distance is 300, for FNCOMP_IL, the value shown is 150.

COMPLEV Function

COMPLEV function is similar to the COMPGED function but instead of computing the generalized edit
distance it computes the Levenshtein edit distance. COMPLEV will count the number of operations (e.g.,
insertions, deletions, replacements) needed to convert one string to the same value of the other.

Syntax: COMPLEV(string-1, string-2 < cutoff > <, modifier(s)>)

Continuing with the use of the new roster data, we use SAS Program 22 to show how the Levenshtein
edit distance is determined.

data roster_complev;
set newroster;

FNCOMP = complev(FIRSTNAME, FIRSTNAME2);

LNCOMP = complev(LASTNAME, LASTNAME2);

FNCOMP_I = complev(FIRSTNAME, FIRSTNAME2, 'i');

LNCOMP_I = complev(LASTNAME, LASTNAME2, 'i');

run;

SAS Program 22: Illustration of COMPLEV function without modifiers and with ‘i’ modifier

14

FIRSTNAME LASTNAME FIRSTNAME2 LASTNAME2 FNCOMP FNCOMP_I LNCOMP LNCOMP_I

Jan Write Jan Wright 2 2 3 3

Lucy Smyth Lucy Smith 0 0 1 1

Kris Johnson Chris Johnson 2 2 0 0

Chris Jones Chris Jones 0 0 0 0

Tracey Smith Tracey Smith 0 0 0 0

Tracy Besley Tracey Besley 1 1 0 0

Tracie Smith-jones Tracie Smith-Jones 0 0 1 0

Chrys Jones-

Wright

Chris Jones-Wright 1 1 0 0

Jon Wright Jon Wright 0 0 0 0

John Hall John Hall 0 0 0 0

Timothy Bones Timothy Jones 0 0 1 1

Jason Jaones Jason Jones 0 0 1 1

Tyler ones Tyler Jones 0 0 1 1
Data Display 24: Illustration of COMPLEV function without modifiers and with ‘i’ modifier

For the first row in Data Display 24, two operations are required to get FIRSTNAME and FIRSTNAME2
to match because we need to remove two blank spaces. Three operations are needed to make
LASTNAME and LASTNAME2 match because we would need to replace ‘te’ with ‘gh’ which counts as
two operations, and the ‘t’ in LASTNAME2 needs to be truncated which counts as the third operation.

The concept of cutoff for COMPLEV is the same as with COMPGED. Instead of using a cutoff based on
operation unit costs, the cutoff is based on number of operations.

SOUNDEX Function

The SOUNDEX function determines how much two character variables sound alike. It works best with
the English language. It is equivalent to using =* (sounds like) on a WHERE statement.

Syntax: SOUNDEX(argument)

With the SOUNDEX function vowels and the letters ‘H’, ‘W’ and ‘Y’ are excluded except when it is the
first character in the argument when determining if the argument sounds like a specific value. Other
characters in the English alphabet are assigned one of the following values:

• B, F, P, V -) 1

• C, G, J, K, Q, S, X, Z -) 2

• D, T -) 3

• L -) 4

• M, N -) 5

• R -) 6

The value generated from SOUNDEX is the first character in the argument and then for each character in
the argument that is not excluded is assigned one of the values above. If there are two or more
consecutive characters assigned the same numeric value, then only the first one is kept.

15

To demonstrate the use of SOUNDEX, we execute the following data step (SAS Program 23) so that we
can calculate the value generated from SOUNDEX using FIRSTNAME. The results are found in Data
Display 25

data roster_soundex;
set roster;

FN_SOUND = soundex(FIRSTNAME);

run;

SAS Program 23: Illustration of SOUNDEX function

FIRSTNAME LASTNAME FN_SOUND

Jan Write J5

Lucy Smyth L2

Kris Johnson K62

Chris Jones C62

Tracey Smith T62

Tracy Besley T62

Tracie Smith-jones T62

Chrys Jones-Wright C62

Jon Wright J5

John Hall J5

Timothy Bones T53

Jason Jaones J25

Tyler ones T46
Data Display 25: Illustration of SOUNDEX
function

For the rows in blue, we see that both yield a
value of ‘C62’. This is because both started with
‘C’ and the ‘h’, ‘y’ and ‘i’ were discarded, leaving
only ‘r’ and ‘s’. The ‘r’ was assigned a value of
‘6’ and ‘s’ was assigned a value of ‘2’. Notice
that if the third row would have started with a ‘C’
instead of a ‘K’ it would have resulted in the
same value. However, since it is started with a
‘K’, the result was ‘K62’.

For the rows in pink, we see that the value was
‘T62’ and this was because we discarded all the
vowels and ‘y’ after the first character, leaving
only ‘r’ and ‘c’.

For the rows in green, the ‘o’ and ‘h’ were
discarded leaving only the ‘n’ after the first
argument, resulting in a value of ‘J5’.

SPEDIS Function

SOUNDEX determines how close in sound two character values are, while SPEDIS determines how
close in spelling two character values are.

Syntax: SPEDIS(query, keyword)

The query identifies the word that will be used to search for a match. The keyword is the target word
used in the query. SPEDIS removes trailing blanks in both the query and keyword.

Refer to the following SAS documentation for details on the cost of each operation between the query and
the keyword
https://documentation.sas.com/?docsetId=lefunctionsref&docsetTarget=p0vmuxh8ljfn7on164nsgvmdrc5d.
htm&docsetVersion=9.4&locale=en

The distance between two values is the sum of the operation costs (see link above) divided by the length
of the query value. The value is rounded down to the nearest whole number if the ratio is greater than
one.

In SAS Program 24 the FIRSTNAME is the query and FIRSTNAME2 is the target word that will be
compared to see if there is a match with FIRSTNAME and determine the distance between the
two values.

https://documentation.sas.com/?docsetId=lefunctionsref&docsetTarget=p0vmuxh8ljfn7on164nsgvmdrc5d

16

data roster_spedis;
set newroster;

FN_SPEDIS = spedis(FIRSTNAME, FIRSTNAME2);

LN_SPEDIS = spedis(LASTNAME, LASTNAME2);

run;

SAS Program 24: Illustration of SPEDIS function

FIRSTNAME LASTNAME FIRSTNAME2 LASTNAME2 FN_SPEDI

S

LN_SPEDIS

Jan Write Jan Wright 66 40

Lucy Smyth Lucy Smith 0 20

Kris Johnson Chris Johnson 62 0

Chris Jones Chris Jones 0 0

Tracey Smith Tracey Smith 0 0

Tracy Besley Tracey Besley 10 0

Tracie Smith-jones Tracie Smith-Jones 0 9

Chrys Jones-Wright Chris Jones-Wright 20 0

Jon Wright Jon Wright 0 0

John Hall John Hall 0 0

Timothy Bones Timothy Jones 0 40

Jason Jaones Jason Jones 0 16

Tyler ones Tyler Jones 0 25
Data Display 26: Illustration of SPEDIS function

Using Data Display 26, we will trace through the calculation of the distance for the first record (i.e., Jan
Write).

The cost to convert ‘ Jan’ to ‘Jan’ is 200. The deletion of the first character is 100. Since the first two
characters were blank spaces both needed to be deleted. The length of the query, ‘Jan’, is 3. Thus,
the distance is 200 / 3 = 66.6666. Recall from above that if the ratio is less than one then it is rounded
down, so the distance is rounded down to 66.

The cost to convert ‘Wright’ to ‘Write’ is 200. We would need to delete a character (‘g’) from the
middle which costs 50. We then need to replace one letter in the middle (‘h’ becomes ‘e’) which costs
100. The last operation needed would then be to swap the order of the last two letters which has an
operation cost of 50. The length of the query is 5, thus the distance is 200 / 5 = 40.

To better illustrate the conversion of ‘Wright’ to ‘Write’, we walk through it step by step.

• Step 1: Delete ‘g’ – ‘Wright’ becomes ‘Wriht’

• Step 2: Replace ‘h’ with ‘e’ – ‘Wriht’ become ‘Wriet’

• Step 3: Swap order of ‘et’ – ‘Wriet’ becomes ‘Write’

NUMERIC FUZZY COMPARISONS

All the techniques illustrated thus far have been dealing with character strings, but what if we have a
numeric value? There are various options available for determining if a numeric value is equivalent to
another numeric value. In some cases, the values will be exactly equal, and no additional comparison is
needed. However, there are some cases where the values are not quite equal but are equal ‘enough’ so

17

that if the values were rounded or truncated or a ‘fuzz’ factor is added then the values would be
considered equal. Depending on the type of ‘fuzz’ factor you wish to consider will determine which
function should be best utilized. Using the ROSTER data in Data Display 1, we will illustrate several
numeric ‘fuzzy’ functions.

CEIL and CEILZ Functions

The CEIL function rounds UP to the nearest smallest integer that is greater than or equal to the
argument, that is it will return an integer value that is greater than or equal to the argument. It uses
fuzzing in order to avoid issues with floating points. If the result returned from the CEIL function is with
1E-12 of the argument, then the value is considered equal to the integer portion of the argument.

Syntax: CEIL(argument)

However, if you do not want to consider any fuzzing when rounding up to the nearest integer, then CEILZ
is the function that should be used. CEILZ works the same as CEIL but it does not use fuzzing.
Therefore, even if the return value is within 1E-12 of the argument it will round up to the nearest smallest
integer instead of considering the value equal to the integer portion of the argument.

Syntax: CEILZ(argument)

SAS Program 25 and Data Display 27 illustrate the use of CEIL and CEILZ functions.

data fuzz_score;
set roster;

S_CEIL = ceil(SCORE);

S_CEILZ = ceilz(SCORE);

run;

SAS Program 25: Illustration of CEIL and CEILZ functions

FIRSTNAME LASTNAME GENDER SCORE S_CEIL S_CEILZ

Jan Write F 1.00000000000012 1 2

Lucy Smyth F 1.00000000000121 2 2

Kris Johnson F 1.00324325660746 2 2

Chris Jones M 0.00000000000121 1 1

Tracey Smith F 0.00000000000012 0 1

Tracy Besley M 0.00324325660746 1 1

Tracie Smith-jones F -2.00000000000921 -2 -2

Chrys Jones-Wright F -2.00000000000092 -2 -2

Jon Wright M 1.00000000000038 1 2

John Hall M 1.00000000000384 2 2

Timothy Bones M -12.00000000000920 -12 -12

Jason Jaones M -12.00000000000091 -12 -12

Tyler ones M -5.99999999999999 -6 -5
Data Display 27: Illustration of CEIL and CEILZ functions

Notice that for the pink highlighted cells in Data Display 27 CEIL returns the integer portion of the SCORE
since the return values were within 1E-12 of the original argument. However, for these same records
CEILZ rounds up to the nearest smallest integer because there was zero fuzzing allowed. For the cells
highlighted in blue since the argument was within 1E-12 of -6, then CEIL considers these equivalent and
therefore returns the value of -6, but with CEILZ returned the smallest integer that was greater than the
argument, which is -5.

18

FLOOR and FLOORZ Functions

FLOOR and FLOORZ functions operate in similar manner to CEIL and CEILZ with the difference being
that FLOOR and FLOORZ round DOWN to the nearest largest integer that is less than or equal to the
argument. FLOOR utilizes fuzzing while FLOORZ has zero fuzzing. Thus, return values within 1E-12 of
the argument for FLOOR will return the integer portion.

Syntax: FLOOR(argument)

FLOORZ(argument)

SAS Program 26 and Data Display 28 illustrate the use of CEIL and CEILZ functions.

data fuzz score;
_

set roster;

S_FLOOR = floor(SCORE);

S_FLOORZ = floorz(SCORE);

run;

SAS Program 26: Illustration of FLOOR and FLOORZ functions

FIRSTNAME LASTNAME GENDER SCORE S_FLOOR S_FLOORZ

Jan Write F 1.00000000000012 1 1

Lucy Smyth F 1.00000000000121 1 1

Kris Johnson F 1.00324325660746 1 1

Chris Jones M 0.00000000000121 0 0

Tracey Smith F 0.00000000000012 0 0

Tracy Besley M 0.00324325660746 0 0

Tracie Smith-jones F -2.00000000000921 -3 -3

Chrys Jones-Wright F -2.00000000000092 -2 -3

Jon Wright M 1.00000000000038 1 1

John Hall M 1.00000000000384 1 1

Timothy Bones M -12.00000000000920 -13 -13

Jason Jaones M -12.00000000000091 -12 -13

Tyler ones M -5.99999999999999 -6 -6
Data Display 28: Illustration of FLOOR and FLOORZ functions

Data Display 28 shows that for the cells highlighted in pink that the return values are different. FLOOR
returns the integer portion when the return value is within 1E-12 of the argument, while FLOORZ returns
the largest integer value that is less than the argument.

FUZZ Function

The FUZZ function either returns the nearest integer (i.e., rounds up or down based on normal rounding
rules) if the return value is within 1E-12 of the argument. If the return value is not within 1E-12 of the
argument, then the FUZZ function returns the argument.

Syntax: FUZZ(argument)

SAS Program 27 and Data Display 29 illustrate the use of the FUZZ function. In order to demonstrate that
the FUZZ function returned the argument if the return value was not within 1E-12 of the argument a
format was applied to S_FUZZ.

19

data fuzz_score;
set roster;
format S_FUZZ 20.14;

S_FUZZ = fuzz(SCORE);

run;

SAS Program 27: Illustration of FUZZ function

FIRSTNAME LASTNAME GENDER SCORE S_FUZZ

Jan Write F 1.00000000000012 1.00000000000000

Lucy Smyth F 1.00000000000121 1.00000000000121

Kris Johnson F 1.00324325660746 1.00324325660746

Chris Jones M 0.00000000000121 0.00000000000121

Tracey Smith F 0.00000000000012 0.00000000000000

Tracy Besley M 0.00324325660746 0.00324325660746

Tracie Smith-jones F -2.00000000000921 -2.00000000000921

Chrys Jones-Wright F -2.00000000000092 -2.00000000000000

Jon Wright M 1.00000000000038 1.00000000000000

John Hall M 1.00000000000384 1.00000000000384

Timothy Bones M -12.00000000000920 -12.00000000000920

Jason Jaones M -12.00000000000091 -12.00000000000000

Tyler ones M -5.99999999999999 -6.00000000000000
Data Display 29: Illustration of FUZZ function

For the cells highlighted in pink in Data Display 29, note that the return value was within 1E-12
and therefore, the value was rounded accordingly.

ROUND and ROUNDZ Functions

The ROUND and ROUNDZ functions will round the first argument to the closest multiple of the optional
second argument. If the second argument is not provided, then the functions round the only argument to
the nearest integer using basic rounding rules. As with CEILZ and FLOORZ, ROUNDZ rounds using
zero fuzzing.

Syntax: ROUND(argument <, rounding-unit>)

ROUNDZ(argument <, rounding-unit>)

Using the data in Data Display 1, we use the AGE values to illustrate the ROUND and ROUNDZ
function. SAS Program 28 and Data Display 30 illustrate the use of both functions without the second
argument. Therefore, for both ROUND and ROUNDZ, the functions will round to the nearest integer.
However, ROUNDZ rounds with zero fuzzing.

data fuzz_age;
set roster;
A_ROUND1 = round(AGE);

A_ROUNDZ1 = roundz(AGE);

run;

SAS Program 28: Illustration of ROUND and ROUNDZ functions without a second argument

2 0

FIRSTNAME LASTNAME GENDER AGE A_ROUND A_ROUNDZ

Jan Write F 44.9999999999990 45 45

Lucy Smyth F 53.9383983572895 54 54

Kris Johnson F 39.3566050650240 39 39

Chris Jones M 48.8268309377139 49 49

Tracey Smith F 46.4499999999991 46 46

Tracy Besley M 47.4999999999990 48 47

Tracie Smith-jones F 35.6659822039699 36 36

Chrys Jones-Wright F 34.1546885694730 34 34

Jon Wright M 46.8145106091718 47 47

John Hall M 42.9949999999900 43 43

Timothy Bones M 48.3504449007529 48 48

Jason Jaones M 48.7118412046543 49 49

Tyler ones M 42.9499999999990 43 43
Data Display 30: Illustration of ROUND and ROUNDZ functions without a second argument

The cells highlighted in pink demonstrate the use of the fuzzing for the ROUND function. The ROUND
function rounds the value to the nearest integer of 48 because using a fuzz factor SAS sees
47.4999999999990 as 47.5 as shown in Output 1 row 6. But ROUNDZ rounded to the nearest integer of
47 because zero fuzzing was used and therefore the entire value was used when rounding.

Output 1: SAS data set representation of data display

If you want to round to something other than the nearest integer, then ROUND and ROUNDZ functions can
also have a second argument that indicates to what degree the value should be rounded to, this is the
rounding unit. SAS Program 29 and Data Display 31 show the results of when the rounding unit is 10.

21

data fuzz_age;
set roster;
A_ROUND2 = round(AGE, 10);
A_ROUNDZ2 = roundz(AGE, 10);

run;

SAS Program 29: Illustration of ROUND and ROUNDZ functions with rounding unit = 10

FIRSTNAME LASTNAME GENDER AGE A_ROUND A_ROUNDZ

Jan Write F 44.9999999999990 50 40

Lucy Smyth F 53.9383983572895 50 50

Kris Johnson F 39.3566050650240 40 40

Chris Jones M 48.8268309377139 50 50

Tracey Smith F 46.4499999999991 50 50

Tracy Besley M 47.4999999999990 50 50

Tracie Smith-jones F 35.6659822039699 40 40

Chrys Jones-Wright F 34.1546885694730 30 30

Jon Wright M 46.8145106091718 50 50

John Hall M 42.9949999999900 40 40

Timothy Bones M 48.3504449007529 50 50

Jason Jaones M 48.7118412046543 50 50

Tyler ones M 42.9499999999990 40 40
Data Display 31: Illustration of ROUND and ROUNDZ functions with rounding unit = 10

With the rounding unit of 10, the AGE is rounded to the nearest multiple of 10. Recall that how SAS sees
the value will determine what result is returned when using ROUND. Row 1 in Output 1 indicates that
SAS sees the value as 45 therefore rounding to the nearest multiple of 10 would mean it rounds up to 50.
However, with ROUNDZ it is using the entire value as is and rounds down to 40.

The rounding unit does not have to be a multiple of 10 or even an integer. The next two examples
demonstrate the outcome when the rounding unit is 2 (SAS Program 30 and Data Display 32) and 0.1
(SAS Program 31 and Data Display 33).

data fuzz_age;
set roster;
A_ROUND2 = round(AGE, 2);

A_ROUNDZ2 = roundz(AGE, 2);
run;

SAS Program 30: Illustration of ROUND and ROUNDZ functions with rounding unit = 2

22

FIRSTNAME LASTNAME GENDER AGE A_ROUND A_ROUNDZ

Jan Write F 45 46 44

Lucy Smyth F 53.93839836 54 54

Kris Johnson F 39.35660507 40 40

Chris Jones M 48.82683094 48 48

Tracey Smith F 46.45 46 46

Tracy Besley M 47.5 48 48

Tracie Smith-jones F 35.6659822 36 36

Chrys Jones-Wright F 34.15468857 34 34

Jon Wright M 46.81451061 46 46

John Hall M 42.995 42 42

Timothy Bones M 48.3504449 48 48

Jason Jaones M 48.71184121 48 48

Tyler ones M 42.95 42 42
Data Display 32: Illustration of ROUND and ROUNDZ functions with rounding unit = 2

data fuzz_age;
set roster;

A_ROUND3 = round(AGE, .1);

A_ROUNDZ3 = roundz(AGE, .1);

run;

SAS Program 31: Illustration of ROUND and ROUNDZ functions with rounding unit = 0.1

FIRSTNAME LASTNAME GENDER AGE A_ROUND A_ROUNDZ

Jan Write F 44.9999999999990 45 45

Lucy Smyth F 53.9383983572895 53.9 53.9

Kris Johnson F 39.3566050650240 39.4 39.4

Chris Jones M 48.8268309377139 48.8 48.8

Tracey Smith F 46.4499999999991 46.5 46.4

Tracy Besley M 47.4999999999990 47.5 47.5

Tracie Smith-jones F 35.6659822039699 35.7 35.7

Chrys Jones-Wright F 34.1546885694730 34.2 34.2

Jon Wright M 46.8145106091718 46.8 46.8

John Hall M 42.9949999999900 43 43

Timothy Bones M 48.3504449007529 48.4 48.4

Jason Jaones M 48.7118412046543 48.7 48.7

Tyler ones M 42.9499999999990 43 42.9

Data Display 33: Illustration of ROUND and ROUNDZ functions with rounding unit = 0.1

2 3

COMPFUZZ Function

SAS provides a comparison function to compare numeric variables that accounts for differences in floating
point precision, COMPFUZZ. There may be differences in floating point precision between different
operating systems and versions of SAS – and, there can be slight differences in sums relating to the order
in which addends are introduced. In validation, for example, when there is difficulty achieving

the same results with different staff running independently, COMPFUZZ may be employed to assess
whether floating point imprecision is to blame and offers a path to resolving issues.

The COMPFUZZ function returns a value (-1, 0, 1) that categorizes the comparison of two floating-point
numbers. Optional arguments include FUZZ, which specifies the threshold for comparisons, expressed in
multiples of machine precision; and SCALE, which specifies the scale factor.

Syntax: COMPFUZZ(value-1, value-2 <, fuzz <, scale>>)

The calculation for the threshold is based on the value of the FUZZ argument. If FUZZ is greater than or
equal to 0 but less than 1, then the threshold is the FUZZ times the absolute value of the SCALE.
However, if the FUZZ is greater than 1, then the threshold is the FUZZ times the absolute value of the
SCALE times the machine precision constant [CONSTANT(‘MACEPS’)]. Note that the machine precision
constant will vary based on the specific precision associated with the machine being used.

The example shown below demonstrates that in a relatively small data set, slight fuzz can be introduced
simply by changing the order of addends in a sum – and whether or not that fuzz matters given metrics of
scale. The differences, as demonstrated above with the numeric fuzzy functions, may not always be
visible without the use of the round or other functions, but SAS assesses and flags slight differences. In
this case, it is up to the user to make a decision regarding whether floating point precision is important in
their particular situation and make an effort to standardize data if needed.

data compfuzz_score;
set roster;

/* ensure that sufficient decimal places are available

*/ format SCOREP AGEP SUM1 SUM2 DIFF SCALE 22.16;

SCOREP = SCORE + .00000000000009;

AGEP = AGE +.00000000000009;

/* add the numbers in two different orders */

SUM1 = SCORE + SCOREP + AGE + AGEP;

SUM2 = AGEP + AGE + SCOREP + SCORE;

DIFF = abs(SUM1 - SUM2);

put SUM1 = ;

put SUM2 = ;

put DIFF = ;

/* use a fuzz factor and a scale value gives the correct result

*/ SCALE = abs(SCORE) + abs(SCOREP);

COMPFUZZ = compfuzz(SUM1, SUM2, 4, SCALE);
put 'fuzz and scale: ' COMPFUZZ = ;

run;

SAS Program 32: Illustration of the COMPFUZZ function

2 4

OBS SCOREP AGEP SUM1 SUM2

1 1.0000000000002100 44.9999999999990000 91.9999999999984000 91.9999999999984000

2 1.0000000000013000 53.9383983572896000 109.8767967145810000 109.8767967145810000

3 1.0032432566075500 39.3566050650240000 80.7196966432631000 80.7196966432631000

4 0.0000000000013000 48.8268309377140000 97.6536618754304000 97.6536618754304000

5 0.0000000000002100 46.4499999999991000 92.8999999999986000 92.8999999999986000

6 0.0032432566075500 47.4999999999990000 95.0064865132131000 95.0064865132131000

7 -2.0000000000091200 35.6659822039699000 67.3319644079215000 67.3319644079215000

8 -2.0000000000008300 34.1546885694731000 64.3093771389443000 64.3093771389443000

9 1.0000000000004700 46.8145106091718000 95.6290212183445000 95.6290212183445000

10 1.0000000000039300 42.9949999999900000 87.9899999999878000 87.9899999999878000

11 -12.0000000000091000 48.3504449007530000 72.7008898014875000 72.7008898014875000

12 -12.0000000000008000 48.7118412046544000 73.4236824093069000 73.4236824093069000

13 -5.9999999999999000 42.9499999999991000 73.8999999999982000 73.8999999999982000

OBS DIFF SCAL

E

COMPFUZZ

1 0.0000000000000142 2.0000000000003200 -1

2 0.0000000000000142 2.0000000000025100 1

3 0.0000000000000000 2.0064865132150100 0

4 0.0000000000000000 0.0000000000025100 0

5 0.0000000000000142 0.0000000000003300 -1

6 0.0000000000000000 0.0064865132150100 0

7 0.0000000000000000 4.0000000000183300 0

8 0.0000000000000142 4.0000000000017500 -1

9 0.0000000000000000 2.0000000000008500 0

10 0.0000000000000142 2.0000000000077700 1

11 0.0000000000000000 24.0000000000183000 0

12 0.0000000000000000 24.0000000000017000 0

13 0.0000000000000142 11.9999999999998000 -1
Data Display 34: Illustration of the COMPFUZZ function

Due to lack of space AGE and SCORE are not shown in Data Display 34. Refer to Data Display 1 for the
values of AGE and SCORE.

Note that for observations 1, 2, 5, 8, 10 and 13, there are differences between SUM1 and SUM2.
Although the difference is not evident in the variables themselves, if you took the difference of the two
values you will see that there is a difference. Since FUZZ = 4 then we use FUZZ * SCALE *
CONSTANT(‘MACEPS’). For the machine that was used for these examples, the precision constant is
0.0000000000000002. Therefore, looking at observation 1, we get threshold = 4 * 2.0000000000003200
* 0.0000000000000002 = 0.0000000000000018. So, the SUM1 < SUM2 – threshold which has a
COMPFUZZ value of -1. For row 2, SUM1 > SUM2 + threshold which yields a COMPFUZZ value of 1.
Due to how SAS displays the data, we can only see up to so many decimals and therefore it is difficult to
see that SUM1 is less than SUM2 – threshold for row 1 and SUM1 is greater than SUM2 + threshold for
row 2. Floating point precision can and does vary between machines, systems and even versions of
SAS. As noted above, it can explain the inability to reproduce the same results in verification. Please
consult the SAS documentation for more detail on the COMPFUZZ function and floating-point precision.

NAME TYPE GROUP

AV AVE 12

AVE AVE 12

AVEN AVE 12

AVENIDA AVE 12

AVENU AVE 12

AVENUE AVE 12

AVN AVE 12

AVNUE AVE 12

BELT BELT 16

BELTWAY BELT 16

BL BLVD 34

BLVD BLVD 34

BOUL BLVD 34

BOULEVARD BLVD 34

BOULV BLVD 34

BTWY BELT 16

CIR CIR 64

CIRC CIR 64

CIRCL CIR 64

CIRCLE CIR 64

CIRCULO CIR 64

CRCL CIR 64

CRCLE CIR 64

CÍR CIR 64

CÍRCLE CIR 64
Data Display 35: SASHELP.GCTYPE

NAME TYPE GROUP

HIGHWAY HWY 250

HIGHWY HWY 250

HIWAY HWY 250

HIWY HWY 250

HWAY HWY 250

HWY HWY 250

LA LN 296

LANE LN 296

LANES LN 296

LN LN 296

ST ST 464

STR ST 464

STREET ST 464

STRT ST 464

TER TER 490

TERR TER 490

TERRACE TER 490

THOR THOR 492

THOROUGHFARE THOR 492

TLWY TOLL 494

TOLL TOLL 494

TOLLWAY TOLL 494

2 5

FUZZY ADDRESS CHECKING WITH SAS

Address matching is a task for which fuzzy matching techniques are frequently used. It is an example of
“phrase matching”, where there are multiple words in a phrase that need to match in order for two phrases
to be considered equal. Consider the Data Display 35 below, a printout of selected street types from
SASHELP.GCTYPE, in which there are a number of variations in street types from across the world.

As you can see, Avenue can be spelled a number of ways. SAS supplies this look-up table for PROC
GEOCODE, discussed below. In a file or files of addresses, such variations in the street type spelling are
just the tip of the iceberg in terms of the vast panoply of “dirty data”. SAS uses this look-up table, and
others, in performing fuzzy matches for street addresses (and other geographic entities such as county,
congressional districts, etc.) and produces standardized addresses. In addition, we’ll discuss another
SAS tool for fuzzy address matching, creating our own fuzzy function to perform the normalizing of street
types below.

2 6

As of SAS version 9.4 M5, PROC GEOCODE is available in BASE SAS to perform address matching,
utilizing fuzzy matching techniques and normalizing geographic variables such as state, county, zip, and
street address, as well as custom levels. It has been available in SAS/GRAPH since Version 8.2. The
procedure produces X and Y coordinates for matches.

SAS provides city, zip and a very limited street level data set in the SASHELP folder and provides links to
files required for full street level geocoding and more in SAS MAPSONLINE. Full street level matching
data for the United States for this example was obtained through a link on SAS MAPS ONLINE, a SAS
provided website dedicated to mapping with SAS, and used to replace the limited street level data set.
This is referred to in the code in the LOOKUPSTREET statement as street.usm. This match data set is
too large to show, but it is used just as a control file, format file, or fuzzy match with a file would be. Just
as the comparison functions discussed above evaluate and score the results of fuzzy matching, PROC
GEOCODE provides the match level and score for the fuzzy address matching performed.

The sample data set in Data Display 36 will be used to illustrate the use of PROC GEOCODE (SAS
Program 33).

PROVNUM ADDRESS CITY STATE ZIP

105205 2121 E COMMERCIAL BLVD FORT LAUDERDALE FL 33308

106088 4650 STATE RD 16 SAINT AUGUSTINE FL 32092

146035 2259 EAST 1100TH STREET MENDON IL 62351

175446 915 MCNAIR STREET HALSTEAD KS 67056

175549 12340 QUIVIRA ROAD OVERLAND PARK KS 66213

245395 965 MCMILLAN STREET WORTHINGTON MN 56187

385263 970 W JUNIPER AVENUE HERMISTON OR 97838

525362 719 E CATHERINE ST BOX 167 DARLINGTON WI 53530

525462 245 SYCAMORE ST SAUK CITY WI 53583

676397 23450 PINE SHADOW LN PORTER TX 77365
Data Display 36: Sample list of addresses

PROC GEOCODE /*

method=STREET /*

data=prov /*

out=dd.GEOCODED /*

lookupstreet=street.usm /*

type=SASHELP.GCTYPE;

run;
/*

Invoke geocoding procedure */

Specify geocoding method */

Input data set of addresses */

Output data set with X/Y values */

Primary street lookup data set */

Lookup data set-added street type */

SAS Program 33: Illustration of PROC GEOCODE

The results from running the data through PROC GEOCODE are found in Data Display 37. Notice that
for the rows highlighted in pink that the variations for ‘street’ were all converted to ‘St’ and the rows
highlighted in blue converted the variations for ‘road’ to ‘Rd’. For some addresses, there may be
situations where there are two addresses tied to a particular location. This can occur when you have a
physical location address and a mailing address as shown by the rows in green. GEOCODE will
“normalize” the addresses to the actual physical addresses for that location found in the look up file
which are used by the USPS.

2 7

OBS ADDRESS CITY STATE ZIP

1 2121 E COMMERCIAL BLVD FORT LAUDERDALE FL 33308

2 4650 STATE RD 16 SAINT AUGUSTINE FL 32092

3 2259 EAST 1100TH STREET MENDON IL 62351

4 915 MCNAIR STREET HALSTEAD KS 67056

5 12340 QUIVIRA ROAD OVERLAND PARK KS 66213

6 965 MCMILLAN STREET WORTHINGTON MN 56187

7 970 W JUNIPER AVENUE HERMISTON OR 97838

8 719 E CATHERINE ST BOX 167 DARLINGTON WI 53530

9 245 SYCAMORE ST SAUK CITY WI 53583

10 23450 PINE SHADOW LN PORTER TX 77365

OBS M_ADDR M_CITY M_STATE M_ZIP

1 2121 E Commercial Blvd Fort Lauderdale FL 33308

2 4650 State Rd 16 Green Cove Springs FL 32092

3 2237 E 1100th St Mendon IL 62351

4 915 McNair St Halstead KS 67056

5 12340 Quivira Rd Overland Park KS 66213

6 965 McMillan St Worthington MN 56187

7 970 W Juniper Ave Hermiston OR 97838

8 8374 Co Rd E Darlington WI 53530

9 245 Sycamore St Sauk City WI 53583

10 24200 Pine Cir Porter TX 77365

Data Display 37: Result of sample address list run through PROC GEOCODE to normalize street
address

CREATE YOUR OWN FUZZ FUNCTION

Many of the fuzzy matching techniques discussed above are case sensitive – so that frequently variables
representing patterns need to be standardized with regard to case and punctuation. A full discussion of
PROC FCMP is beyond the scope of this paper, but we will briefly discuss a user-defined function that
can be helpful when performing fuzzy matching (and elsewhere). Use of a format library entry to identify
non-standard street name terminology is a helpful tool – and the format can “learn” by including new
variations as they are found. One method of using the results of the learned translations is to write a
function incorporating the translations, as well as standardizing case, etc. A simplistic example follows
below, in which street types are standardized prior to going into a fuzzy matching routine. As with the
format, the function can be informed by new variations uncovered. In addition, the function performs such
tasks as standardizing case, left justifying, and trimming.

2 8

proc fcmp outlib=work.funcs.address;
function streets(addr $) $;

length clean_address standardized_address $100;
clean_address=upcase(addr);

clean_address=left(trim(clean_address));

clean_address=tranwrd(clean_address,' STREET ',' ST ');

clean_address=tranwrd(clean_address,'ROAD','RD');

clean_address=tranwrd(clean_address,'BOULEVARD','BLVD');

clean_address=tranwrd(clean_address,'AVENUE','AVE');

clean_address=tranwrd(clean_address,' DRIVE ',' DR ');

clean_address=tranwrd(clean_address,'PLACE','PL');

clean_address=tranwrd(clean_address,'LANE','LN');

clean_address=tranwrd(clean_address,'CIRCLE','CIR');

clean_address=tranwrd(clean_address,'COURT ','CT ');

clean_address=tranwrd(clean_address,'PARKWAY','PKWY');

standardized_address=clean_address;

return(standardized_address);

endsub;

quit;

SAS Program 34: Illustration of PROC FCMP

Data Display 38 represents the original roster used in previous examples, with addresses added
to illustrate the use of the user-built function, streets.

FIRSTNAME LASTNAME ADDRESS

Jan Write 1234 Any Place, Anywhere, NC 12345

Lucy Smyth 5673 MyBlock Drive, Myhome, TX 79732

Kris Johnson 19752 Home Blvd, Home, MA 03321

Chris Jones 98 NewTown Circle, Newtown, OK 31313

Tracey Smith 1294-13 Johnson Lane, Nowhere, MN 23213
Data Display 38: Roster with addresses

Once a user-built function is created the options CMPLIB needs to point to the location of where the user-
built function resides. SAS Program 35 illustrates the use of the option as well as implementing the
function. After the execution of the program the addresses are cleaned so that there is consistency as
shown in Data Display 39.

options cmplib=(work.funcs);

data roster3;
set roster2;

cleaned_address = streets(address);

run;

SAS Program 35: Illustration of usage of user-built function

2 9

FIRSTNAME LASTNAME CLEANED_ADDRESS

Jan Write 1234 ANY PL, ANYWHERE, NC 12345

Lucy Smyth 5673 MYBLOCK DRIVE, MYHOME, TX 79732

Kris Johnson 19752 HOME BLVD, HOME, MA 03321

Chris Jones 98 NEWTOWN CIR, NEWTOWN, OK 31313

Tracey Smith 1294-13 JOHNSON LN, NOWHERE, MN 23213

Data Display 39: Illustration of usage of user-built function

CONCLUSION

SAS has provided a myriad of tools to utilize for “fuzzy” matching. Selection of records with where
statements (conditions and special operators) and if statements (:_ operator and functions); standardizing
of records using fuzzy matching techniques including user defined formats, functions, and PROC
GEOCODE (address information); and PROC FCMP (a user-defined function to clean addresses) have
all been discussed. We hope you’ve gained some appreciation for the “fuzz” and you’ll get “fuzzy” along
with us!

REFERENCES

Alabaster, Amy and Mary Anne Armstrong. 2018. “Interpreting electronic health data using SAS PRX
functions.” Proceedings of WUSS 2018. https://www.lexjansen.com/wuss/2018/92 Final Paper PDF.pdf

Warner, Christine. 2016. "Using Proc FCMP To Improve Fuzzy Matching." Proceedings of the South East
SAS Users Group 2016. Bethesda, MD. https://analytics.ncsu.edu/sesug/2016/DM-126 Final PDF.pdf

SAS 9.4 Functions and Call Routines: Reference, Fifth Edition. SAS Institute, Inc.
https://documentation.sas.com/?docsetId=lefunctionsref&docsetTarget=n1b7dkf9vhuqczn16qfd41j6dd54.
htm&docsetVersion=9.4&locale=en

RECOMMENDED READING

Cadieux, Richard and Daniel R. Bretheim. 2014. “Matching Rules: Too Loose, Too Tight or Just Right?”
Proceedings SAS Global Forum 2014. Washington, DC: SAS Institute, Inc.
http://support.sas.com/resources/papers/proceedings14/1674-2014.pdf

Carpenter, Art. 2018. "Using Arrays to Quickly Perform Fuzzy Merge Look-Ups: Case Studies in
Efficiency." Proceedings of the SAS Global Forum 2018. Denver, CO: SAS Institute, Inc.
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2396-2018.pdf

Carpenter, Art. 2018. "Using the FCMP Procedure to the Fullest: Getting Started and Doing More".
Proceedings of the SAS Global Forum 2018, Denver, CO: SAS Institute, Inc.
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2403-2018.pdf

Cody, Ron. 2017. “Cody’s Data Cleaning Techniques Using SAS®, Third Edition”, SAS Press, SAS
Institute, Cary, NC, USA.

Dunham, Alan. 2016. "Fuzzy Name-Matching Applications." Proceedings of the South East SAS Users
Group 2016. Bethesda, MD. https://analytics.ncsu.edu/sesug/2016/DM-109 Final PDF.pdf

Dunn, Toby. 2014. "Getting the Warm and Fuzzy Feeling with Inexact Matching." Proceedings of the SAS
Global Forum 2014. Washington, DC: SAS Institute, Inc.
https://support.sas.com/resources/papers/proceedings14/1316-2014.pdf

Graebner, Robert W. 2011. "Fuzzy Merges - A Guide to Joining Data sets with Non-Exact Keys Using the
SAS SQL Procedure." Proceedings of the Midwest SAS Users Group 2011. Kansas City, KS.
https://www.lexjansen.com/mwsug/2011/sas101/MWSUG-2011-S110.pdf

Gupta, Sunil. 2018. "Fuzzy Joins with Proc SQL for Better Data Utilization." Proceedings of the PhUSE-
US 2018. Raleigh, NC. https://www.lexjansen.com/phuse-us/2018/ct/CT01.pdf

https://www.lexjansen.com/wuss/2018/92
https://analytics.ncsu.edu/sesug/2016/DM-126
https://documentation.sas.com/?docsetId=lefunctionsref&docsetTarget=n1b7dkf9vhuqczn16qfd41j6dd54
http://support.sas.com/resources/papers/proceedings14/1674-2014.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2396-2018.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2403-2018.pdf
https://analytics.ncsu.edu/sesug/2016/DM-109
https://support.sas.com/resources/papers/proceedings14/1316-2014.pdf
https://www.lexjansen.com/mwsug/2011/sas101/MWSUG-2011-S110.pdf
https://www.lexjansen.com/phuse-us/2018/ct/CT01.pdf

3 0

Hadden, Louise. 2019. “Like, Learn to Love SAS® Like.” Proceedings of WUSS 2019. Renton, WA.
https://proceedings.wuss.org/2019/163 Final Paper PDF.pdf

Horwitz, Lisa. 2017. “A Long-Time SAS® Programmer Learns New Tricks.” Proceedings of SAS Global
Forum 2017. Orlando, FL: SAS Institute, Inc.
https://support.sas.com/resources/papers/proceedings17/SAS0637-2017.pdf

Marinescu, Daniel. 2017. "Fuzzy Matching and Predictive Models for Acquisition of New Customers."
Proceedings of the SAS Global Forum 2017. Orlando, FL: SAS Institute, Inc.
https://support.sas.com/resources/papers/proceedings17/0881-2017.pdf

Martin, Kathryn. 2012. "Making Fuzzy Merges More Precise using the COMPARE Function in SAS®."
Proceedings of the Western Users of SAS Software 2019. Long Beach, CA.
https://www.lexjansen.com/wuss/2012/92.pdf

McCarthy, Michael. 2016. "Using Fuzzy Logic to Match a Street Address." Proceedings of the South
Central SAS Users Group 2016. San Antonio, TX. https://www.lexjansen.com/scsug/2016/Using-
Fuzzy-Logic.pdf

McNeill, Bill. 2018. "PROC FCMP: A Powerful SAS® Procedure You Should Be Using." Proceedings of
the SAS Global Forum 2018. Denver, CO: SAS Institute, Inc.
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2125-2018.pdf

Rineer, Brian. 2016. “Get Out of DATA Step Code and into Quality Knowledge Bases.” Proceedings of
SAS Global Forum 2016. Las Vegas, NV: SAS Institute, Inc.
https://support.sas.com/resources/papers/proceedings16/SAS5644-2016.pdf

Salas, S. Bianca, et. al. 2018. ”Fun with Address Matching: Use of the COMPGED Function and the SQL
Procedure.” Proceedings of SAS Global Forum 2018. Denver, CO: SAS Institute, Inc.
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2487-2018.pdf

Sloan, Stephen; and Dan Hoicowitz. 2016. "Fuzzy Matching: Where Is It Appropriate and How Is It Done?
SAS® Can Help." Proceedings of the South East SAS Users Group 2016. Bethesda, MD.
https://www.lexjansen.com/sesug/2016/BB-141 Final PDF.pdf

Sloan, Stephen and Kirk Paul Lafler. 2018. “Fuzzy Matching Programming Techniques Using SAS®
Software.” Proceedings of SAS Global Forum 2018. Denver, CO: SAS Institute, Inc.
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2886-2018.pdf

Teres, Jedediah J. 2011. "Using SQL joins to Perform Fuzzy Matches on Multiple Identifiers."
Proceedings of the Northeast SAS Users Group 2011. Portland, ME.
https://www.lexjansen.com/nesug/nesug11/ps/ps07.pdf

Virkud, Arti. April 2015. "Fuzzy Matching." Proceedings of the SAS Global Forum 2015. Dallas, TX: SAS
Institute, Inc. https://support.sas.com/resources/papers/proceedings15/3142-2015.pdf

Wood, Jefferson L and Grace Reynolds. 2011. "Macros for Managing Messy Data: Handling Duplicate
Study Participants and Making Fuzzy Matches across Multiple Data Sets." Proceedings of the SAS
Global Forum 2011. Las Vegas, NV: SAS Institute, Inc.
https://support.sas.com/resources/papers/proceedings11/227-2011.pdf

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Richann Watson Louise Hadden

DataRich Consulting Abt Associates, Inc.
richann.watson@datarichconsulting.com louise hadden@abtassoc.com

Any brand and product names are trademarks of their respective companies.

https://proceedings.wuss.org/2019/163
https://support.sas.com/resources/papers/proceedings17/SAS0637-2017.pdf
https://support.sas.com/resources/papers/proceedings17/0881-2017.pdf
https://www.lexjansen.com/wuss/2012/92.pdf
https://www.lexjansen.com/scsug/2016/Using-Fuzzy-Logic.pdf
https://www.lexjansen.com/scsug/2016/Using-Fuzzy-Logic.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2125-2018.pdf
https://support.sas.com/resources/papers/proceedings16/SAS5644-2016.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2487-2018.pdf
https://www.lexjansen.com/sesug/2016/BB-141
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2886-2018.pdf
https://www.lexjansen.com/nesug/nesug11/ps/ps07.pdf
https://support.sas.com/resources/papers/proceedings15/3142-2015.pdf
https://support.sas.com/resources/papers/proceedings11/227-2011.pdf
mailto:richann.watson@datarichconsulting.com
mailto:louise_hadden@abtassoc.com

