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ABSTRACT  
Patient narratives reported in clinical study reports (CSRs) provide clinical evidence of 
adverse events that occurred to a patient and help scientif ic reviewers during 
pharmacovigilance activities. The manual review of these narratives is a daunting task for 
safety reviewers as it is time consuming and resource intensive. How can we improve the 
efficiency of identifying safety signals from patient narratives? Can deep learning technology 
help to overcome the review challenges in an automated way? 

This paper suggests an implementation to accurately categorize one adverse event term, 
"Serotonin Syndrome", as an example of what SAS® deep learning technology is capable of. 
We f irst generate sentence level embeddings from terms contained in patient narratives. 
Following this, we generate term embeddings within a SAS deep learning framework. 
Subsequently, we obtain a category decision on whether or not the narrative text relates to 
Serotonin syndrome as an output. Finally, we compare this method to other deep learning 
and machine learning methods, including the SAS supervised Boolean rule builder 
algorithm, which provide a layer of interpretability. We expect that use of a Deep Learning 
methodology in SAS shall improve the accuracy of the medical coding (example MedDRA 
coding) process for adverse events. It will also help in identifying drug-event pairs, drug 
interactions, and clinical evidence from narratives benefiting safety reviewers during the 
safety review process. 

INTRODUCTION  
The FDA Adverse Event Reporting System (FAERS) is a database that contains detailed free-
text   narratives regarding Adverse Events (AEs) occurring to a patient/subject. However, in 
order to identify these AEs and manually apply Medical Dictionary for Regulatory Activities 
(MedDRA) coded preferred terms on a signif icant volume of patient narratives, personnel 
experienced in medical codes are required. MedDRA Preferred Terms (PTs) are distinct 
descriptors (single medical concepts) for a symptom, sign, disease diagnosis, therapeutic 
indication, investigation, surgical or medical procedure, and medical social or family history 
characteristic1. As such, the automation of MedDRA PT coding from FAERS narrative texts to 
recognize Adverse Events, such as serotonin syndrome (SS), will improve Post Market 
safety reviews of FDA-regulated drugs.  
We hypothesize that Deep Learning could promote the automatic process to accurately 
extract standard MedDRA preferred terms from FAERS narratives and classify narratives as 
associated to dif ferent conditions. In this paper, we aim to develop an automatic MedDRA 
encoder – named “MedDRA-DeepCoder” - for accurate encoding of free-text documents to 
standard MedDRA terms. To test this approach, we will develop models to classify narratives 
as whether they should be f lagged with serotonin syndrome.  
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We will construct deep learning models in SAS based on the free-text description of FAERS 
adverse events. We will then f ine-tune the process by training models with dif ferent 
network architectures. Finally, comparative analysis will be carried out to investigate the 
performance of the deep learning approaches, alongside of a machine learning approach 
that provides a layer of interpretability.  

METHODS 
We leverage SAS Viya® as the solution to execute and develop all the work described in this 
paper. We use this environment to define term embeddings and topic weights, train 
dif ferent deep learning models against these embeddings, and validate the models by 
scoring a validation set of FAERS data. We run these using SAS Cloud Analytic Services 
(CAS) actions. CAS enables us to invoke SAS in a cloud-based, run-time environment for 
data management and analytics that Viya provides2. 

DATA PREPARATION 
We collected the training dataset from FAERS by querying the FDA internal Empirica Signal 
tool and Molecular Health EFFECT systems. We used the Empirica Signal to generate two 
lists of mutually exclusive initial molecular targets for product active moieties associated 
with serotonin syndrome. With these lists, we queried the FDA EFFECT system, which 
returns drug safety narrative reports. The drugs associated with these results demonstrate 
a pharmacokinetic and/or pharmacodynamic relationship with CYP450 enzymes and 
historically reported “true” serotonin syndrome events. These were selected independent of 
age, sex, and ethnicity. 
To better understand the impact of concomitant serotonin-active drug pairs on serotonin 
syndrome diagnoses, we created 6 individual cohort datasets. We f irst augmented each 
dataset with 2 new binary f lag variables (List1 and List2), indicating which set of drug 
targets were involved in the adverse event. By defining the universe under consideration as 
those narratives involving drugs that fall either in List 1, List 2, or both, we made sure that 
the analysis of serotonin syndrome occurs on an appropriate dataset consisting of narratives 
that had some likelihood to lead to serotonin syndrome in the f irst place. Were we to have 
not followed this principle and considered the entire AE database, the heterogeneity of such 
a diverse database, and a reduced proportion of serotonin syndrome (our outcome of 
interest) would have signif icantly reduced our chances of identifying accurate indicators.  
Following the creation of these descriptive f lag variables, we appended all 6 cohorts into a 
single dataset, with 26,274 records, of which 28.5% were f lagged as ‘SS’, designating the 
presence of serotonin syndrome from the narrative. To balance the proportion of events 
containing serotonin syndrome with those not, we applied oversampling. This gave us a 
balanced dataset of 14,976 observations, where there were 7488 samples of SS = 1 and SS 
= 0 each. Finally, we designated 60% of the data to a model training set, and 40% to a 
validation set. Figure 1 shows the distribution of the training and validation data.  
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Figure 1: Graph indicating size by frequency percent of training and validation 
FAERS narrative data 

DEEP LEARNING AND MODELING 
After oversampling and partitioning the data as indicated above, we prepared for the 
exercise in modeling and deep learning. We selected several dif ferent approaches, to 
compare different algorithms with a sliding window approach alongside a document-level 
approach to deep learning. Simultaneously, we wanted to compare these results with a 
machine learning approach to determine if  the payoff in the efficacy of deep learning was 
worth the computational overhead and investment in the development of the deep learning 
models. The f ive different methods we applied are outlined in Table 1. 

Approach Type Description 
TmCooccur Deep 

Learning 
Sliding window approach based on tmCooccur 
algorithm. Custom developed using training 
FAERS data. This uses a sentence context rather 
than sliding windows. A Recurrent Neural 
Network was trained using these term 
embeddings.  

GloVe Deep 
Learning 

A Deep Learning approach using pre-trained 
embeddings generated using the GloVe 
algorithm. Standardized third-party embedding 
f ile. A Recurrent Neural Network was created 
using these embeddings. 

Deep Neural Network 
on Topic Weights 

Deep 
Learning 

Document level approach based on weights 
generated from topic model and run through a 
convolutional neural network. 

Rules-Based approach Machine 
Learning 

Document level approach which generated sets 
of Boolean rules combining terms and phrases 
which when present, designate an outcome. 

TmCooccur Averaging  Deep 
Learning 

Leveraged tables generated from the tmCooccur 
embeddings which contained co-occurring term 
pairs and averaged their 200 dimensions at a 
document level. Ran this through a deep 
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learning model, similar to the Deep Neural 
Network on Topic Weights. 

Table 2: Deep Learning and Machine Learning modeling approaches to serotonin 
syndrome classification  
We will begin by describing term embedding approaches to deep learning, before detailing 
methods and intermediate steps involved in generating the term embeddings for SAS 
tmCooccur and GloVe. Term embeddings are a mapping of each term into a multi-
dimensional space, which can place words and phrases that appear in a similar context near 
to each other3. This can be assessed at a document level, at a sentence level, or by using 
various sliding windows of 3 or more terms.  

TmCooccur and GloVe Deep Learning Methods 
Our f irst deep learning method involved the SAS CAS tmCooccur action to enable term 
embeddings on a document corpus similar to what is available in Word2Vec4 and GloVe5. 
Word2Vec and GloVe train a model using sliding windows of words, such as 3-5 words 
immediately preceding and following terminology. First, we invoke a document parsing 
algorithm, the SAS CAS tmMine action, on the training dataset of narratives to compute an 
offset table. Next, we calculate term co-occurrence through the SAS CAS tmCooccur action 
as a pair-wise combination with every other term at the sentence level (rather than a 3-5 
word sliding window), which generates an association column to designate how strongly the 
terms are connected. In the third step in the process we generate the term embeddings by 
applying the SAS CAS tmSvd action to the term-by-term matrix of associations calculated in 
the previous step. This essentially compresses the matrix down into a lower dimensional 
space of numerical interval values, organized by term rows and term columns, which we can 
feed into a deep learning model.  
The second deep learning approach we applied involved GloVe term embeddings. This 
approach is very similar to the tmCooccur approach. The difference is that we leverage a 
third-party embeddings f ile – GloVe – instead of generating customized embeddings. As 
such, these embeddings are generated independent of the FAERS narratives. We 
downloaded pre-trained word embeddings for inclusion in network training6.  We applied 
both a GloVe 100-dimension f ile and a GloVe 300-dimension f ile for this purpose.  
For both the customized set of term embeddings from tmCooccur and the standardized set 
of embeddings from GloVe, the next step is to train a deep learning neural network model 
and subsequently validate the embeddings using the serotonin syndrome tagged data from 
FAERS, partitioned as indicated in the previous section. We used a Recurrent Neural 
Network for this exercise.  
Neural networks attempt to mimic key aspects of a brain, in particular its ability to learn 
from experience7. Viewing a Neural Network as a hierarchy of many hidden layers, RNNs are 
structured in such a way that they perform the same task for every element in a sequence 
of data. A layer within an RNN network, when processing an element in a sequence, retains 
some information (context) about the preceding element and may use the same within 
processing as well. Sequential data could refer to both data occurring in text (a sequence of 
words) or temporal (time series) data. These qualities render RNNs specifically attractive 
and suitable for problems involving unstructured textual data8.  
We applied Gated Recurrent Unit (GRU) RNN model layers of depth. GRU models are 
perceived as being, on an average, smaller in size (due to lesser training parameters 
involved) compared to LSTMs (Long short-term memory, another model based on RNN). We 
tuned the models by applying hyperparameter tuning. We trained the deep learning models 
using the reserved training dataset and assess for misclassification rate on the validation 
dataset. Table 2 illustrates the high-level architecture of the models we applied to the 
tmCooccur embeddings and the GloVe 300-dimension term embeddings. 
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 tmCooccur model GloVe 300-dimention model 
Model Type Recurrent Neural Network Recurrent Neural Network 
Number of Layers 4 7 
Number of Input Layers 1 1 
Number of Output Layers 1 1 
Number of Convolutional Layers 0 0 
Number of Pooling Layers 0 0 
Number of Fully Connected Layers 0 0 
Number of Recurrent Layers 2 5 
Number of Weight Parameters 101632 250496 
Number of Bias Parameters 386 962 
Total Number of Model Parameters 102018 251458 
Approximate Memory Cost for 
Training (MB) 

2469 5542 

Table 2: High level model architecture for tmCooccur and GloVe 300-dimension 
approach 

Deep Learning with Topic Weights 
Prior research suggests that document level approaches can outperform the combination of 
term embeddings and RNN approach, but not extensively3. Therefore, for our third method 
and as a point of comparison to the sliding window/sentence level approaches of the 
tmCooccur and GloVe methods, we chose to generate topics using SAS Visual Text 
Analytics® and provided the topic weights for each training narrative from FAERS as input to 
a convolutional neural network deep learning model.   

Machine Learning Boolean Rules Approach 
For our fourth method, there is much we can do to reverse engineer the categorization 
model through SAS rule-building capabilities, so we examine this application in concert with 
term embeddings, RNNs and categorization. Here, we are specifically discussing using 
machine learning methods to automatedly generate sets of Boolean rules which map to 
outcome variables. To generate a set of rules against a labeled dataset, we utilize the SAS 
CAS brTrain action. Against these results, we leveraged stop lists in f ive iterations to 
remove rules as reviewed by an FDA expert to designate the generated combinations of 
terms and phrases in the narratives, particularly symptoms, that likely designate serotonin 
syndrome. The goal was to define a model which could evaluate narratives that had not 
been classif ied as serotonin syndrome but looked very much like serotonin syndrome. This 
is similar to our deep learning approach, only that it also provides a layer of interpretability. 
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Display 1: Boolean rules generated from SAS Visual Text Analytics ML process on 
first pass to designate instances of serotonin syndrome in input data 

TmCooccur Averaging Approach 
The f ifth and last method we applied was an averaging approach that leveraged tables from 
the tmCooccur method. We joined one table from the SAS CAS tmCooccur action where 
each row represented a set of co-occurring terms (~5M observations) with the original 
FAERS dataset to label each document projection ID (14976 observations).  As each 
document was represented numerous times in the 5M observations, one for each set of co-
occurring terms, we could take an average of the 200 dimensions identif ied per case ID. 
This method is consistent with practices followed when creating embeddings for documents 
through a singular vector decomposition. In both cases, there is an aggregate measure 
carried out on the individual embeddings to get the overall document representation.  This 
gave us our original number of observations (14976) – one for each FAERS case. Again, 
each observation had 200 numerical dimensions. We subsequently ran a deep learning 
model against this dataset. Table 3 depicts the high-level architecture for this approach. 

 tmCooccur averaging model 
Model Type Convolutional Neural Network 
Number of Layers 14 
Number of Input Layers 1 
Number of Output Layers 1 
Number of Convolutional Layers 0 
Number of Pooling Layers 0 
Number of Fully Connected Layers 11 
Number of Concat Layers 1 
Number of Weight Parameters 18900404 
Number of Bias Parameters 11704 
Total Number of Model Parameters 18912108 
Approximate Memory Cost for Training (MB) 984 

Table 3: Hi-level model architecture for tmCooccur averaging approach 

RESULTS 
We generated and validated a model for each approach as designated above, using the 
same training and validation dataset. Table 4 presents the misclassification rates achieved 
for each approach. 
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Approach Type Misclassification Rate 
TmCooccur Deep Learning 2.8461 % 
GloVe on 300 
Dimensions 

Deep Learning 19.37% 

Deep Neural Network 
on Topic Weights 

Deep Learning 1.9%  

Rules-Based approach Hybrid (Machine 
Learning 
Suggested 
Linguistics) 

5.6%  

TmCooccur Averaging 
Approach 
 

Deep Learning 1.115385 % 

Table 4: Modeling results by type and misclassification rate 
Our misclassif ication rate for the tmCooccur approach is 2.8461%.  This low 
misclassification rate is attributed to a systematic round of iterations which adjusted both 
model def inition (adding new layers, adding specific GRU layers), model parameters 
(changing mini-batch sizes and learning rates) and utilizing the correct embeddings f iles 
(through the tmCooccur-tmSvd method). Our misclassification rate for the GloVe approach 
was 19.37% with the 300-dimension glove standard embedding f ile. We applied a learning 
rate of .001 and .0005 and found better results with the .001 learning rate.  Our 
misclassification rate for the deep learning approach with topic weights was 1.9%. 
Regarding the machine learning Boolean rules approach, our f irst iteration of a rules-based 
model after removing giveaway terms such as serotonin syndrome from consideration is 
5.6%. An example set of these rules can be referenced in Table 5. In this table, the 
character ‘&’ indicates a combination of terms, while ‘~’ indicates that the term should not 
be present. We also employed additional rulesets after removing additional terms on 
recommendation from FDA subject matter experts, which identif ied additional patterns, and 
resulted in a higher misclassification rate. 
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Table 5: Boolean rules generated from machine learning rules-based method after 
adding direct references to serotonin syndrome to a stop list 
Our misclassif ication rate for the deep learning approach with topic weights was 1.115385% 
using an averaging approach. The dataset we put into the deep learning algorithm was very 
similar to what we used for topic weights (also created through an SVD method but 
projecting onto the entire document). However, our results here were based on the 
averaging of the specif ic term pairs per document.   

CONCLUSION 
We explored how deep learning models built upon term embeddings can be leveraged to 
assist classif ication tasks, namely, determining if  a narrative is likely associated with 
serotonin syndrome. We explored these approaches alongside document-level deep learning 
approaches and a rules-based machine learning approach.  
The high misclassification rate of the GloVe approach shows us that the general embeddings 
do not outperform term embeddings trained on FAERS narratives. This implies that more 
information and embedding data can enhance this process. A medically oriented dataset of 
standardized embeddings could improve results. Our document level approaches yielded the 
best misclassification rates. This suggests that there could either be a loss of information, or 
additional noise present in the term embeddings approaches that are not present in an 
approach that leverages topic weights, drawing this information from the document level. 
Our best misclassification rate was achieved from the f ifth approach, which leveraged 
document level averaging. This gives us alternative methods in deep learning for refinement 
versus a typical machine learning single vector decomposition approach, where the 
embeddings are represented in another way as a term by document matrix.   
Regarding the machine learning approach, these rules provide a layer of interpretability 
around the decision-making process of when to label an adverse event as serotonin 
syndrome. Example generated rules highlight key symptom terminology such as “anxiety” 
and “hyperthermia” or “depression” present with “tremors” and “tachycardia”. When these 
terms are present in narratives associated to the drug lists given earlier, they are highly 
indicative of serotonin syndrome.  
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There are several other verification tasks we can leverage in future work. We can explore 
how the term embeddings from FAERS data could be extended to other public health use 
cases, such as assessing the vaccine adverse event reporting system (VAERS) which 
contains information on unverified reports of adverse events following immunization with 
US-licensed vaccines.  
Term embedding which drew from a wider variety of sources could be applied to a wider 
variety of tasks. Furthermore, the classification of documents is only one way to leverage 
deep learning. These embeddings could leverage to perform entity extraction tasks as well. 
One area we could contribute to is essentially creating a set of standardized embeddings for 
medical diseases and, in particular, adverse event assessment. This would require an 
extensive set of labeled data. As such, an area of continued interest is semi-automating the 
process of generating training data for the purposes of deep learning. Further work could 
explore capabilities of label spreading for expanding known instances of a target. We could 
also use SAS capabilities for autogenerating concept definitions given a set of known, 
related terms, such as symptoms or drugs, to identify and characterize the context in which 
these entities appear. 
Once we create an embeddings file, as done in the above tasks, visualizing it in a way non-
technical users can understand may be very important to more tightly embed this into the 
process. Developing easily accessible interfaces can be used to interpret the FAERS data 
and the connections embedded within it. Furthermore, such exercises will enable us to 
select parameters that should be more heavily weighted in deep learning efforts, which 
would enable model ref inement. We would be interested in this and other exercises that can 
assist with fusing subject matter experts with deep learning in ways other than simply 
pushing more data at a model. 
In this effort, we did not leverage the MedDRA dictionary directly for adverse events for a 
couple of reasons 

1. We are dealing with Postmarket data, which was not standardized. Therefore, 
utilizing MedDRA would not be efficient.  

2. We wanted to explore public sources of deep learning, or custom generated term 
embeddings in this exercise.  

Leveraging MedDRA directly is an area that can be explored in future work. Leveraging the 
structure and defined terms from MedDRA would be powerful in Premarket data as it is 
more tightly tied with their submissions. Therefore, we could develop custom weighting 
algorithms for MedDRA terms in Premarket data or explore how the term embeddings 
generated from Premarket data map over to the MedDRA dictionaries to better classify 
adverse events. As such, we would use MedDRA to weight terms in addition to our proposed 
deep learning and rules-based ensemble approach discussed in this paper. 
In future work, we will consider the application of other deep learning approaches, namely, 
BERT9. BERT combines the benefits of a pre-trained model on a standardized and very-wide 
corpus of data, such as we attempted with GloVe, with the tunability available from a 
smaller document corpus, such as what we have available for serotonin syndrome from 
FAERS. Furthermore, BERT has developed to account for polysemy, that is, assessing 
multiple meanings and multiple embeddings for word depending on the context. While there 
are generalized embeddings available for BERT, there are also BERT models developed, 
specif ically for biomedical applications. BioBERT10 is one such model that has been pre-
trained on a large-scale biomedical corpus. Leveraging this as a starting point, tuned with 
data from the FAERS corpus on serotonin syndrome or some other adverse event 
classif ication could yield great results. A follow-on study could compare leveraging BERT and 
a BioBERT, then subsequently applying a rule-based machine learning model for a layer of 
interpretation. This transparency would enhance the utility of BERT in classif ication-based 
approaches to deep learning. 
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In conclusion, we envision an accurate, interpretable model based on machine learning and 
deep learning, with results surfaced via dashboards for analysis to interpret and interact. 
The application of these methods can shorten response cycles and improve assessments in 
determining adverse drug events, ultimately improving quality of life.   
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