

1

Paper 1192-2021

Bridging the Gap between Legacy SAS® and SAS Viya in the
Cloud at the Centers for Medicare and Medicaid Services (CMS)

Rick Andrews, CMS; Manuel Figallo, SAS Institute Inc.;
Kevin Boone, SAS Institute Inc.; Prakash Subramanian, SAS Institute Inc.;

Logan Perry, SAS Institute Inc.;

ABSTRACT
SAS Viya has introduced many powerful capabilities to enrich the end user experience. From
scalable infrastructure resources to easy-to-use front-end features, SAS Viya can improve a
team or organization’s ability to turn data into insights. Having decided to evaluate or move
to SAS Viya, end-users are often left wondering how they can “bridge the gap” between
their legacy investment in SAS to the more Cloud-native SAS Viya version.

Based on the experiences of such users at CMS, this paper helps others facilitate a move to
SAS Viya. Of particular interest are those end-users who:

 Currently use client-server or mainframe applications --such as SAS Enterprise
Guide, SAS Stored Processes, and SAS for the IBM® mainframe-- for querying or
coding and want to bridge the gap with their SAS Viya equivalents, i.e., SAS Studio
and SAS Job Execution.

 Use Open Source (Python) and want to bridge the gap between their Python
notebook environment and SAS Viya CAS using Python SWAT (Scripting Wrapper for
Analytics Transfer).

INTRODUCTION
Like many government agencies, CMS is utilizing more Cloud-based services. SAS Viya is
built to be scalable for both private and public Clouds. Complex analytical, in-memory
calculations are optimized, because SAS Viya scales compute capacity to faster process
increased workloads using available infrastructure resources. This lets an analyst to quickly
experiment with different scenarios and apply more sophisticated approaches, such as
machine learning, to increasingly large volumes of incoming data.

Figure 1: "Bridging the Gap" at CMS Involves Migration and Integration.

2

As indicated by Figure 1, CMS has used SAS throughout its evolution from mainframe
technologies to client-server and web platforms. The next stage in this evolution is the
Cloud, an environment for which SAS Viya was built, to process massive amounts of CMS
data.

The Cloud’s benefits include the following:

 Scalability. As already mentioned, this is the ability to scale hardware and
infrastructure resources to accommodate ever changing workload requirements. For
the purposes of this paper, this results in outcomes such as improved performance
and improved cost containment. This capability in the Cloud also reduces the need
for extensive capacity planning.

 Extensibility. Once deployed in the Cloud, SAS Viya has access to several Cloud
managed services that can extend the capabilites already available in SAS Viya,
including data services (e.g., Snowflake), ETL/ELT services, and open source
environments for Python and even R.

 Integration. The Cloud makes it easier to integrate to these Cloud managed
services since it uses a standard set of standard protocols for integration utilizing
HTTP and APIs.

 Maintenance. Since the services are managed, infrastructure, for example, no
longer has to be maintained. Also, SAS Viya for the Cloud has been redesigned with
microservices for a lighter foot-print and faster deployment. The benefit to the users
is that they will experience less system downtime and automatically receive updates
for SAS Viya

 Reliability. The Cloud also provides access to several service areas for replication
and redudancy making SAS Viya highly available.

 Costs. Although many of the items in this bulleted list have a cost dimension, it’s
worth noting that Cloud-enabled platforms like SAS Viya can help CMS move their IT
expenses, such as hardware, from a capital expense to an operational one—the
equivalent of “renting” IT infrastructure and paying for what is needed.

These benefits provide some of the reasons why CMS is moving to the Cloud.

So what do we mean by “briding the gap”? As in previous SAS upgrade or “modernization”
efforts at CMS, we mean migrating code or a GUI to a newer version with as little
modification as possible. But, what if we need to integrate with new data stores or Cloud
services, such as open source programmatic environments in the Cloud-- i.e., Python?

The purpose of this paper is to tackle these questions with a set of best practices for
migrating to the new, Cloud-ready platform, SAS Viya, or integrating with Cloud services for
data or open source analytics. These best practices are based on interactions wth CMS as
they begin to consider moving to SAS Viya in the Cloud. They are meant to provide general
guidance, insights and knowledge during the move to the Cloud for any SAS Viya customer,
and they highlight the advantages of Infrastructure-as-a-Service (IaaS), Platform as a
Service (Paas), Software as a Service (SaaS), and even Functions as a Service (FaaS) in the
Cloud.

This paper will also help answer questions that normally come up when bridging the gap--
“will my SAS code still run?” and “how will SAS work with new services in the Cloud?” --
and, it is meant for SAS leaders, programmer analysts, and researchers who want and need
to understand what advantages SAS Viya in the Cloud can bring to their organizations. But,
first, a little bit of SAS history at CMS to give further background and context.

3

CURRENT STATE
CMS has been SAS customer for many years and has experienced various evolutions of the
software throughout its history. By coincidence, CMS and SAS share some similarities. For
instance, Medicare was signed into law in 1965 whereas the beginnings of what is now SAS
began in 1966 with funding provided by the United States Department of Agriculture
(USDA) and the National Institutes of Health (NIH). That said, SAS has been part of Health
and Human Services (HHS) since its inception. When CMS split from the Social Security
Administration (SSA) in 1976, the SAS system was already being used to analyze Medicare
data. That year also happens to be when the SAS Institute was incorporated.

Mainframe
When CMS split from the SSA
and instituted its own data
center, SAS was one of the first
applications installed for data
analysis. At that time, most
data were being stored within
variable length flat files and
COBOL was the primary
language used by the
information technology (IT)
office to examine data.
However, SAS quickly became
the tool of choice.

SAS/Access

As CMS data sources have
evolved, so has the SAS
software. A product called SAS Access has been used against various databases to
summarize information from Relational Database Management Systems (RBDMS) like
Oracle®, DB2®, Sybase®, and Teradata®. These systems, known as Massively Parallel
Processing (MPP) systems vastly improve the speed at which data can be analyzed. The
example shown in Display 1: Mainframe SAS Example depicts the use of SAS Access to
Teradata to summarize information from the Integrated Data Repository (IDR).

The IDR was implemented under Section 101 of the Medicare Prescription Drug,
Improvement, and Modernization Act of 2003 (MMA) (Pub. L. 108-173), to house Part D
drug information. The system now includes Parts A, B, C and D, and DME claims, beneficiary
and provider data sources, along with ancillary data such as contract information, risk
scores, and many others. Access to this robust integrated data supports much needed
analytics across CMS.

It should be noted that other database systems are also utilized at CMS for various
purposes. For example, the Chronic Conditions Warehouse (CCW) was implemented under
Section 723 of the MMA to provide less complicated access to analysts at CMS and other
government agencies, as well as external researchers, such as those based in universities.
For reference, the underlying database used for this environment is Oracle. Thus, SAS
Access to Oracle is used to access those data.

In the future, CMS intends to utilize databases housed within the Cloud. This allows CMS to
rent space from entities like Amazon® Web Services (AWS), Microsoft® Azure (Azure) and
Google® Cloud Platform (GCP) in lieu of purchasing hardware to be housed within the
Baltimore Data Center (BDC.) The evolution to Cloud based systems is cheaper and allows
for easier expansion. Cloud-based systems such as Hadoop®, Postgres®, and Redshift® are

Display 1: Mainframe SAS Example

4

already being used at CMS with the possible expansion to others including Snowflake®. That
said, SAS Access engines for these databases are already available to summarize data.
Since CMS employees and contractors have been using SAS Access products for many
years, conversion to these new systems will be simpler to accomplish.

Client-server (SAS Enterprise Business Intelligence)
Another feature of the current state at CMS is the use of a client-server environment known
as the SAS Enterprise Business Intelligence (EBI) server. This setting allows users to
migrate existing mainframe queries against the IDR to a product called Enterprise Guide
(EG.) The program contained within Display 2: Client-server Example of the code shown in
Display 1.

SAS Enterprise Guide

There are two main
differences when converting
a mainframe process to EG:
1) the LIBNAME statement
and 2) the CONNECT
statement. The LIBNAME
statement points to the
location of the SAS output
on the EBI server and the
CONNECT statement points,
in this case, to the IDR - all
of the other programming
code is the same. It should
be noted that using the SQL
procedure in this manner is
known as an “explicit” pass-
through query. This means that any code after the “CONNECTION TO” statement is specific
to the database being used. The IDR happens to use Teradata now, but that could change in
the future. For example, if CMS migrates to a Cloud-based system such as Snowflake the
CONNECT statement will need to change to access the new database.

Query Builder

Another solution within the
current environment at CMS
allows users to create
queries without having to
know database specific
syntax. This is known as an
“implicit” query within SAS.
Instead of coding a
CONNECT statement; a
LIBNAME statement is coded
that points to the database.
Display 3: Query Builder
Example illustrates the use
of the Query Builder within
EG to perform the same
summary as in the previous
examples.

Display 3: Query Builder Example

Display 2: Client-server Example

5

Web Application (SAS Studio)
There is yet another
mechanism within the
current state at CMS to
summarize data from the
IDR known as SAS Studio.
This is a web-based
application that does not
require a user to run
dedicated client software,
as the client is a web
application. All that is
required is an appropriate
web browser such as
Microsoft Edge, Mozilla
Firefox, or Google Chrome.
Display 4: Web
Programming Example
depicts the exact same
code as shown above and
yields the same results.

Visual Query Tool

There is a visual query tool
within SAS Studio that is
very similar to the Query
Builder within EG. One of
the advantages of learning
SAS Studio is that it is the
programming arm of SAS
Viya. Almost all of the SAS
programming code that
users write today can be
copied into SAS Studio.
One current limitation is
that SAS Viya does not rely
on SAS Metadata services
and therefore process flows
developed in EG are not
easily copied into the new
environment. SAS is currently
working on a mechanism to allow for this Functionality.

Display 4: Web Programming Example

Display 5: Visual Query Tool Example

6

FUTURE STATE
The future state consists of a web browser, which allows end users to access SAS Viya
applications in the Cloud from a desktop computer. SAS Viya is SAS’ next generation high-
performance in-memory analytics platform designed to run in the Cloud.

SAS Viya includes applications, such as SAS Studio for programming and flows, SAS Visual
Analytics for dashboards and analytics, and Python Notebooks to run data or machine
learning pipelines that integrate with SAS Viya.

So, if you’re comfortable with a web browser, then you’ll be able comfortable with a lot of
the capabilities in SAS Viya.

Understanding SAS Viya

There are several important things to understand about SAS Viya:

 Many SAS Viya clients (e.g., SAS Visual Analytics) do not submit SAS code but call
Cloud Analytic Services (CAS) directly. CAS is one of two in-memory processing
engines available in SAS Viya, and it is discussed in detail later on.

 SAS Viya clients all use a common HTML5 web interface. This common interface
allows for all functionality to be merged into a single user experience.

 There is no requirement to learn SAS code to use SAS Viya. The drag-and-drop
interface opens analytics to all types of personas (programmer analysts, researchers,
executives, etc.).

 SAS Viya contains the latest capabilities such as machine learning so that your
organization can get the most out of your analytics.

A web browser also enables you to integrate Python with SAS Viya using the SWAT
package. SWAT (SAS Scripting Wrapper for Analytics Transfer) enables open-source
software such as Python and R to integrate with the dashboard and model governance
capabilities in SAS Viya. SAS Viya is also more than just a User Interface (UI) and has an
architecture especially designed for the Cloud.

Building Blocks

SAS Viya requires a web browser to interact with its Cloud-based architecture. The
architecture is comprised of:

1. Microservices,

2. CAS (Cloud Analytic Services), and

3. SPRE (SAS Programming Runtime Environment).

For now, you can think of CAS as the new in-memory engine and SPRE as an instance of
SAS’ legacy workspace server (without a Metadata Server). This section describes all three
components in detail and provides a graphic, see Figure 2, that provides a good summary.

Pay particular note that SAS expects that it will take time for customers to realize the full
replacement value in SAS Viya, and adoption may take a while, so SAS has architected SAS
Viya to include two compute engines – SAS SPRE, the “legacy” engine, and SAS CAS. These
two compute engines are technologically bridged.

7

The three main components of SAS Viya are easy to remember:

 Microservices, CAS, and SPRE.

Figure 2: Major Components of SAS Viya

In SAS Viya and as shown in Figure 2, a web browser interacts with SAS VIYA using
microservices. They are a modular set of discrete services, such as Audit, Credentials, and
Identities. Each microservice runs in its own process and communicates using HTTP.

SAS Viya also includes Cloud Analytic Services or CAS which provides the run-time
environment in which data management and analytics take place. CAS is a server that is
suitable for both on-premises and Cloud deployments, and CAS can be deployed to a single
node or across multiple nodes.

As depicted by the three blue squares in Figure 2, the in-memory analytic features of CAS
can be achieved by distributing the CAS server across multiple nodes to enable massively
parallel processing (MPP). One
advantage or benefit of MPP is
that, because data is in-
memory and can be processed
in parallel, results can be
produced much more quickly.

In sum, the CAS server offers
dynamic scalability, a virtual
memory footprint, high
availability, parallel data
loading, shared library access,
and integration with open-
source languages (e.g., Python)
and REST APIs.

To use data in CAS
programmatically, you will need
to load it from the filesystem to
memory as shown in Display 6.

Note the following:

1. Use table.loadTable action to load a table from caslins’ data source.
2. Use table.tableInfo action to view information about the table.
3. Use table.tableDetails action to get details information.

Display 6: Using SAS Code to Load Data into CAS

8

The last box denoted by red in Display Figure 2 is the SPRE engine or SAS Programming
Runtime Environment (SPRE). It is also referred to as the compute server in SAS Viya, and
it is the equivalent of most everything CMS has today. SPRE, in other words, is the run-
time engine for the SAS language.

You can think of this engine as a SAS Workspace Server for legacy code. The primary
difference between SPRE and a workspace server (from “legacy” SAS), as already
mentioned, is that SPRE does not support the SAS® Metadata Server technology. SPRE
does not provide this support because SAS Metadata is part a monolithic design that
precedes the microservices Cloud design of SAS Viya.

In summary, it’s worth reiterating that SAS Viya has two compute engines as denoted by
the blue and red boxes. Remember this simple formula which is:

SAS Viya = Microservices + CAS + SPRE

Microservices deserve particular attention. Microservices are an architectural approach to
creating Cloud applications. Each application is built as a set of services, and each service
runs in its own processes and communicates through APIs. A microservices architecture is a
way of developing applications that has matured into a best practice over time and it
provides many of the benefits available in SAS Viya such as improved performance (because
of a lighter footprint), scalability, redudancy, and CI/CD or continuous delivery of software
—i.e., a change to a small part of the application only requires rebuilding and redeploying
only one or a small number of services. In the monolithic approach, an application
supported by three microservices, for example, would have to be scaled in its entirety even
if only one of these microservices had a resource constraint. Revisiting performance for a
moment, it is common for microservices architectures to be adopted for Cloud-native
applications because they are deployed in containers and are much better at scaling up to
handle increased workloads.

SAS Viya Ecosystem (Conceptual Architecture)

The Centers for Medicare and Medicaid Services (CMS) intends to use SAS Viya to generate
insights from large amounts of data since it leverages SAS high-performance analytic
technologies which includes several runtime environments and applications services. Several
that were discussed are in this paper including CAS, SPRE, and open source technologies
such as Python.

SAS Viya also empowers organizations to explore huge volumes of data quickly with several
web browser applications to identify patterns, trends, and opportunities for further analysis.
The highly visual, drag-and-drop data interface of SAS Visual Analytics, for example,
combined with the speed of SAS Cloud Analytic Services (CAS), accelerates analytic
computations and enables CMS to derive value from massive amounts of data quickly.
Figure 3 captures the web applications in the box on the far right. Data sources are in the
far left, and the underlying cloud infrastructure is depicted by the two bottom layers.
Several data connectors or access engines allow SAS Viya to bring in data to its
environment from Cloud sources such as Snowflake, Redshift and Databricks, as well as on-
prem data sources.

The top layer in Figure 3 includes some of the analytic capabilities that SAS Viya offers, and
at the center of the figure are the building blocks mentioned thus far. All of this is done in
the Cloud with a simple, scalable and secure platform architecture that includes
technologies such as containers and Kubernetes. Kubernetes or K8s are a portable,
extensible, open-source platform for managing containerized workloads and services, that
facilitates both scalabilty and high availability (HA).

9

Considerations

You can almost think of the components in the conceptual architecture as lego blocks. The
benefit to CMS is that it would be able to implement solutions that incorporate different
components or lego blocks depending on business needs for statistical analysis, data
modeling, data visualization, text analytics, forecasting and machine learning.

What’s more, CMS will be more easily able to
rapidly traverse the analytics lifecycle in an
iterative and incremental fashion, all in the spirit of
Agile’s continuous improvement. As shown in
Figure 4, this means moving from data
management, to discovery (data exploration and
modeling building), and deployment as effectively
and efficiently as possible. Figure 4 provides the
foundation for analytics prototyping, pipeline
development, and more mature ModelOps
processes.

When iterating through the analytics lifecycle, it is
important for organizations to quickly adjust and
change based on the risks encountered, which
can be linked to requirements, technology,
skills, and even getting buy-in from key
stakeholders.

These powerful capabilities in SAS Viya allow CMS to solve such pressing business
challenges such as fighting Medicare fraud, understanding patient and provider outcomes,
and making enormous amounts of text data, such as Medicare regulations, easily digestible.

Figure 3: A Conceptual Architecture for SAS Viya

Figure 4: The SAS Analytics Lifecycle

10

Cloud Data
Every analytics journey begins with data. Cloud data is a model of computer storage in
which the digital data is stored in logical pools in "the Cloud". With Cloud data, storage and
compute are often separated. The physical storage spans multiple servers (sometimes in
multiple locations), and the physical environment for compute is typically owned, managed,
and “rented” from a hosting company, such as AWS. Both storage and compute are highly
scalable and reliable in the Cloud, which are important attributes for end-users who demand
fast performance.

One additional advantage of Cloud data is that government agencies, such as CMS, need
only pay for the storage they actually use, typically an average of consumption during a
month. This does not mean that Cloud storage is less expensive, only that it incurs
operating expenses rather than capital expenses. And if managed appropriately, it can
result in cost savings. Please refer to Snowflake documentation for additional details on
Cloud data or read Jeff Bailey’s excellent paper, “An Insider’s Guide to SAS/ACCESS®
Interface to Snowflake.”

Snowflake Integration

SAS/ACCESS Interface to Snowflake enables you to connect SAS with your data in a
Snowflake data source. The Snowflake interface includes SAS Data Connector to Snowflake.
The data connector enables you to load large amounts of data into the CAS server for
parallel processing.

Here is an example to establish a connection between your Snowflake database and SAS
Cloud Analytic Services:

Display 7: A SAS Macro to Extract Snowflake Data Into SAS.

All users with SAS/ACCESS Interface to Snowflake can use SAS Data Connector to
Snowflake.

11

Python

One best practice is to augment Python capabilities with Viya applications in the Cloud for
discovery and deployment in a scalable and secure fashion as shown in Figure 5.

Figure 5: “Bridging the Gap” also involves integrating Python with SAS Viya

Here we are showing a Python pipeline integrated with SAS Viya to produce role-based and
secure dashboards and reports for widespread distribution within CMS. We have used this
approach at SAS to better understand hospital and nursing home care during the COVID-19
pandemic among Medicare beneficiaries.

A sample Python is available in our Github location:

https://github.com/ManuelFigallo/sasgovernment-/tree/main/tutorials/SGF/2021

To use Python with SAS Cloud Analytic Services, the client machine that runs Python must
meet the following requirements:

 Use 64-bit Linux or 64-bit Windows.
 Use a 64-bit version of Python, such as the Anaconda platform from Continuum

Analytics.
 Use Python version 2.7.x or 3.4+. The single Python package from SAS, SWAT, is

compatible with both versions.

The SAS Scripting Wrapper for Analytics Transfer (SWAT) package is available for download
from http://support.sas.com/downloads/package.htm?pid=1977. Information for installing
is available from a README that is included in the download. Let’s reiew SWAT in more
detail.

Integrating Python with SAS Viya (SWAT)

Python users gain access to the SAS Cloud Analytic Services (CAS) engine through SAS
SWAT. The SAS Scripting Wrapper for Analytics Transfer (SWAT) package is a Python
interface that lets the user leverage the power of CAS while working in a Python
environment. The user can access in-memory tables and utilize the CAS engine for
accelerated large data processing and modeling, all while using a familiar syntax. Data
manipulation and processing is made easy in SWAT by mimicking much of the Pandas API.

12

Handling data with SWAT will feel familiar to Pandas users with methods like head, tail,
summary, and functionality of both loc and iloc available.

SWAT allows for uploading data into CAS, meaning the user can take data local to their
machine, upload it to into memory, and then combine with other in-memory tables.
Alternatively, summary data can be brought down to the local level to be worked with on
the client side and combined with local tables for further processing. Bringing down
summary data or subsets of data out of CAS and into the Python environment is a best
practice when working with large data, because moving the data out of CAS means it will be
written to disk and could cause performance issues.

Python is versatile and has a vast user base, especially in the data science community. In
particular, it is an excellent tool to use in traversing the entire analytics lifecycle beginning
with data management, then data exploration, model building and finally model
deployment—as discussed above.

Many Python packages are specifically made for parts of the machine learning pipeline.
Pandas and NumPy are great for cleaning data and data transformations.

 Display 8: Data Management Tasks (Such As Type Conversion in Python) Are easy

and efficient.

Seaborn and Matplotlib offer visualizations to aid in understanding the data and validating
model assumptions.

Display 9: Python can be for highly customizable multilayer visuals for data

discovery and exploration.

13

Keras and Scikit-learn offer a multitude of models and assessment tools. These packages
are only a drop in the bucket of all that python has to offer to any data pipeline.

Display 10: Building and Fitting Models is easy in Python.

For the purposes of this paper and as demonstrated above, Python is used for data
management and data discovery tasks. One best practice is to augment these Python
capabilities with SAS Viya capabilities for deployment, such as model management and
governed reports. Not only will this close the loop in an analytics lifecycle iteration but it will
better position any organization, including CMS, to adopt more mature analytical capabilities
to solve pressing business and policy challenges.

SAS SWAT is the bridge between Python and Viya. Where and when to place the bridge is
up to the user and circumstance. Data preprocessing such as cleaning the data, feature
engineering, data transformations, and data validation might be easier to code in Python.
Then, the resulting table could be brought into CAS through SAS SWAT to be used in model
studio for model tracking and comparison. Results can then be easily passed to SAS Visual
Analytics for a dashboard report.

Display 11: Uploading Pandas data frames into memory and promoting the tables

to CAS using SWAT

The opposite approach can also be taken. SAS Viya Data Explorer and Data Studio offers a
point and click interface for loading data into CAS and cleaning it up for analysis. The clean
table can then be loaded into a Python environment through SWAT and brought in as a
Pandas DataFrame. Any Python modeling package can be used on the data, and then
imported into SAS. From there the model can be put into production or into Model Studio for
further comparison with other built-in models. After a champion model is crowned, it's a few
clicks to transfer that information to a SAS Visual Analytics Dashboard for reporting.

Display 12: Registering the XGBoost Python model to Model Manager in SAS Viya

SAS Viya and Python are two powerful tools. However, there are some best practices to
keep in mind. One is to avoid sending the data back and forth between disk and memory,
especially if the dataset is large. In-memory CAS tables can be accessed in a Python
environment and be processed in CAS through the Pandas API and CAS Action Sets. This is
preferred due to the processing prowess of SAS CAS using in-memory tables.

The advantage of in-memory tables is taken away when the in-memory table is written to
disk and saved as a Pandas DataFrame. Bringing the table down into disk permits more

14

flexibility in Python since it can be used with packages, but at a processing and storage
cost. As such, sending data back and forth between CAS and the Python environment
should be minimal.

Options for a Python Environment

SAS Viya is the Cloud-native analytics platform on which the latest software offerings from
SAS are built and run. SAS Viya offerings are delivered as a set of container images that are
deployed into a Kubernetes (K8) cluster as mentioned earlier.

In this section, we explore key considerations when deploying SAS Viya in K8.

The recommended topology that includes a Jupyterhub instance deployed outside the SAS
Viya Kubernetes cluster is shown in Figure 6.

Figure 6: The SAS Architecture is a two layer “data cake” consisting of a highly-
scalable Kubernetes layer at the bottom, and the SAS Viya Platform that integrates

with Python on top.

As shown in Figure 6, SAS Viya implements strategies using Docker containers and Kubernetes
orchestration to provide more composable, scalable, and maintainable deployments that can
include additional Cloud services such as Python.

Once deployed there are several methods to connect a Python environment with the CAS Server:

1. Binary Connection method. If a server is listening on the host name and port that are
specified, and you authenticate, then the SWAT CAS class makes a connection to the
server, starts a session on the same hosts as the server, and returns the connection object.
For example:

import swat
s = swat.CAS("cloud.example.com", 5570)

15

2. REST Connection Directly to CAS. The best practice in this case is to connect to CAS
through the HTTP server. The cas-shared-default-http portion of the URL applies to a
typical SAS Viya deployment. If the deployment instance did not use the default
deployment name, then that portion of the URL is different.

s = swat.CAS("http://cloud.example.com:8777", protocol='http')

In some network topologies, you might have network connectivity with the CAS controller. The
CAS controller listens on port 8777 for REST connections. The port number is configurable and
can be different. Specify HTTPS in the URI and for the protocol argument if the CAS controller
is configured to use TLS.

Scalability is the property of a system to handle a growing amount of work by adding resources
to the system, and it’s one of the main attractions of SAS Viya in the Cloud.

To decide whether SAS Viya should be scaled it is helpful to determine if it takes "too long" to
run. This may mean that the time required to run a job exceeds the batch window of time that
you have available. Or it may mean that it takes "too long" for you to get the information from
your application in order to make timely decisions. Next it is important to identify the pieces of
the application that seem to consume the most time. Then you can determine if these portions of
your task are compute intensive or if they are I/O bound. This will help you to understand how
scalable a particular task may be.

The primary drivers / reasons for customers wanting to scale their SAS Viya environment are:

1. To improve performance
2. Improve availability and implement High Availability or HA
3. Cost optimization

Scalability can be addressed from two directions: scale up and scale out. It is important to realize
that these are not mutually exclusive choices. Scaling up, from a hardware perspective, means
increasing the number of processors, disk drives, I/O channels, etc. on a single server machine or
VM (virtual machine). Scaling out, on the other hand, means adding more hardware, not bigger
hardware. In the case of SAS Viya, that may mean, for example, adding additional K8 nodes to
increase the number of worker nodes in a CAS cluster.

It is not true that a computation that runs in parallel will always run faster than a serial (single-
threaded) version of the same computation. When you distribute a computation, the performance
benefit depends on several factors, including the size of the problem, the number of threads, the
work done in each thread, and the cost of transmitting data between the controller node and
worker nodes.

The following statements are often generally true:

 Small computations run faster in a single thread. For small problems, the overhead costs
of communicating with multiple threads are often greater than the cost of the
computation.

 Using more nodes is more expensive than using more threads.

16

 Sending large amounts of data between nodes is expensive.

Finally, larger numbers of elements increases management complexity, more sophisticated
programming to allocate tasks among resources and handle issues such as throughput and latency
across nodes.

High availability or HA occurs when servers support server applications that can be reliably
utilized with a minimum amount of down-time. They operate by using high availability software
to harness redundant computers in groups or clusters that provide continued service when system
components fail. Without clustering, if a server running a particular application crashes, the
application will be unavailable until the crashed server is fixed. HA clustering remedies this
situation by detecting hardware/software faults, and immediately restarting the application on
another system without requiring administrative intervention, a process known as failover. As
part of this process, clustering software may configure the node before starting the application on
it.

Distributed CAS servers are fault tolerant. If communication with a worker node is lost, a
surviving worker node uses a redundant copy of the data to complete the data analysis.

In summary, with SAS Viya, HA exists at multiple levels: Infrastructure (Cloud provider);
Kubernetes cluster; and the SAS Viya deployment.

ModelOps: Looking Further Ahead

ModelOps is how analytical models are cycled from the data science team to the IT
production team in a regular cadence of deployment and updates.

It is a set of techniques and technical capabilities to help operationalize machine learning
models and pipelines in the Cloud. Without ModelOps, it is difficult to achieve the kind of
impact intended by operationalizing machine learning, for example.

Three goals define the purpose of ModelOps:

1. Faster time to value
a. from development to deployment

2. Scale Analytics
a. scale model and data

3. Analytics driven, justifiable and better decisions
a. monitor business impact of models
b. toward real-time models

More and more, organizations such as CMS are relying on machine learning (ML) models to
turn massive volumes of data into fresh insights and information. These ML models are not
limited by the number of data dimensions they can effectively access and use vast amounts
of unstructured data to identify patterns for predictive purposes. Figure 7 offers a simplified
view of Models, which includes inputs (A Question), outputs (Decisions) and a description of
how the end-user will interact with the system as denoted by the three circles in-between
for data management, model development, and deployment.

17

Figure 7: A Simplified View of ModelOps

ModelOps lies at the heart of any enterprise machine learning strategy. It orchestrates the
model life cycles of all models in production across the entire enterprise, from putting a
model into production, then evaluating and updating the resulting application according to a
set of governance rules, including both technical and business KPI's. It grants business
domain experts the capability to evaluate models in production, independent of data
scientists.

It's worth noting that SAS Viya includes an HTML5-based interface for ModelOps called
Model Manager, which runs on its open, modern, microservices architecture. SAS Viya’s
centralized model repository not only supports the ability to import models from a SAS 9.4
environment, but also offers model registration from a broader set of modeling applications
that run on SAS Viya, including SAS Model Studio (available with SAS Visual Data Mining
and Machine Learning [VDMML] and SAS Visual Text Analytics), SAS Studio, SAS Visual
Analytics, and SAS Visual Statistics.

SAS Viya’s version also supports Python and R models for more open modeling support,
including publishing to run-time containers. Once registered in the common model
repository, you can proactively monitor both SAS and open-source classification and
prediction model performance in order to identify deviations in model output or model input
data. And like the other microservice-based products in SAS Viya, SAS Model Manager
supports open REST APIs for ease of access by clients such as SAS Intelligent Decisioning,
which can be used to develop workflows.

USE CASES

Example Migration Use Cases
SAS users at CMS have been preparing for the SAS Viya migration with help from SAS
system administrators, trainers, and coaches. The use cases presented here were developed
to assist with migration and have yielded some best practices to prepare for migration.

Practice Using SAS in a Web Browser

SAS Studio 3.8 Enterprise Edition is available in the SAS EBI system at CMS. SAS Studio
offers many of the same capabilities as Enterprise Guide (“EG”), and it can also use data
and programs that were created in EG. Since SAS Viya applications run in a web browser,
SAS Studio 3.8 is useful for establishing familiarity and comfort with a browser-based SAS
editing environment. Some CMS users have recreated EG process flows using the tasks
available in SAS Studio 3, as illustrated in Figure 8, while others have opened and modified
existing Enterprise Guide Project (“.EGP”) files in the Visual Programmer perspective. Other
users who prefer writing and working with code have utilized their existing programs and

18

created new ones in SAS Studio 3.8. Practice with SAS Studio has prepared these users for
the user interface changes to come in SAS Viya.

Figure 8 - Existing Process Flow Recreated in SAS Studio

Know Your Content

The existing SAS EBI system has thousands of metadata objects, mostly stored processes
and tables registered in metadata. There are also many thousands of SAS programs,
datasets, and Enterprise Guide Project (“.EGP”) files saved on the file server. There are
many project teams utilizing the system and each team is responsible for its own content.
The SAS administrators have little insight into each project team’s work, let alone each item
to migrate. Therefore, teams and individual users are being encouraged to assess their
content on the file server and within metadata. Teams have started to examine EGP process
flows and SAS programs to determine the purpose of each item and whether it should be
retained and migrated to SAS Viya. They’ve also begun inventory of stored processes to
determine the same information along with the purpose/results of each stored process.
Some stored processes will be better served as reports in Visual Analytics on Viya while
others will function best as Viya jobs. Part of the inventory includes disposition of what to do
with each stored process so that only required content is migrated to SAS Viya. An informed
migration that transfers only needed items will be more efficient than simply migrating
everything and will likely result in a more successful migration.

Example Integration Use Cases
As discussed, “bridging the gap” also means integrating new Cloud services and capabilities
that did not exist before model management of both SAS and Python models. Although this
section is primarily focused on integrating with Model Manager, there are many other
services in the Cloud that SAS Viya can integrate with,including databases, machine
learning and AI capabilities, as well as just about any modern computing capability
imaginable.

19

Integrating Open Source in a ModelOps Process using Model Manager

As new data comes in, old models phase out. Model Manager allows for both the scoring of
current models against new data for more static situations, and model comparison for when
input data has been updated and a new model has been created for comparison against the
previous iteration. Model comparison can also be accomplished using SAS Model Studio. The
Covid-19 Nursing Home data set is an example of needing to create a model to compare to
the existing model in production. It is available in the following GitHub location:

https://github.com/ManuelFigallo/sasgovernment-/tree/main/tutorials/SGF/2021

Remember that new data means a different type of model might also be best, so putting the
data through the Python pipeline for ETL processing and initial model determination is best
in this case. Next, SASCTL can be used to import the new python champion model into
model manager to be scored against the existing model.

ROADMAP
“Bridging the gap” involves a set of best practices covered in this paper to either 1)
migrate your current or legacy environment with future state capabilities using SAS Viya;
or, 2) integrate with future state capabilities in the Cloud such as Data Warehouses –
Snowflake or Databricks—and even Python, technologies that enrich and enhance the SAS
experience.

Any roadmap that’s part of a move from a legacy environment to a future state one should
benefit from the best practices described in this paper.

Other practices and consideration for any migration or integration efforts include:

 Creating a “Sandbox”. At CMS, we call the “sandbox” environment for SAS Viya
the “Innovation Lab”. A sandbox environment can be used for the following reasons:

o Collecting Use Cases. Many end-users may be curious about SAS Viya
capabilities and a sandbox provides them with an opportunity to solve their
use case with these new capabilities. It’s important to provide user coaching
and support to facilitate this evaluation.

o Building Community. Anyone who has done analytics in the past knows the
importance of having a good network. A sandbox is one way to build that
community or network to share and support new users as they embark on an
analytics journey.

 Change Management. As organization iterate through the analytics lifecycle, it will
be clear that new skills will be required. Identifying those skills gaps and addressing
them with training, coaching, or mentoring is important. It can be done in a
grassroots way using a sandbox environment, or through formal training offered by
SAS. More broadly, organizational buy-in is also important and so a sandbox can also
be used to showcase capabilities.

 Content Assessment. SAS provides a tool for content assessment to examine the
characteristics of your current state environment. Each application examines your
SAS 9 system for relevant information, gathers key details, and produces results
from each part of the assessment. More information is available at:

https://go.documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/whatsdiff/n1w49eit6y
fog6n1w6t81ue288b5.htm

20

CONCLUSION
The Cloud is arguably a revolutionary technology and this paper has shown that the
transition to the Cloud for organizations such as CMS can be evolutionary. The addition of
SAS Viya to the list of applications available to employees, contractors, researchers, and
policy makers promises to bring a new breadth of tools to analyze Medicare and Medicaid
data.

SAS Viya also leverages all the powerful analytical techniques SAS is known for, as well as
the latest developments in technology of the last few years, such as Python. As importantly,
SAS Viya’s architecture enables you to run your jobs faster.

In addition to tools like SAS Studio that provide a user with all of the historical capabilities
of the SAS software, it also allows individuals to run processes from a web browser, which
removes the need for additional interfaces. In addition, SAS Viya enables new technologies
such as SAS Visual Analytics, SAS Scripting Wrapper for Analytics Transfer, and SAS Visual
Data Mining and Machine Learning that allows users to create analytic results easier than
ever.

REFERENCES
Andrews, Richard. 2020. “Accessing Medicare Data at the Centers for Medicare and Medicaid
Services using SAS®.” Proceedings of the SAS Global Forum 2020 Conference. Available at:
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/
2020/4285-2020.pdf

Bailey, Jeff. 2020. "An Insider’s Guide to SAS/ACCESS® Interface to Snowflake."
Proceedings of the SAS Global Forum 2020 Conference. Available at:
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/
2020/4103-2020.pdf

Crevar, Margaret. 2020. "Important Performance Considerations When Moving SAS® to a
Public Cloud." Proceedings of the SAS Global Forum 2020 Conference. Available at:
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/
2020/4312-2020.pdf

Figallo-Monge, Manuel. 2016. “Pedal-to-the-Metal Analytics with SAS® Studio, SAS® Visual
Analytics, SAS® Visual Statistics, and SAS® Contextual Analysis.” Proceedings of the SAS
Global Forum 2016 Conference. Available at:
http://support.sas.com/resources/papers/proceedings16/SAS6560-2016.pdf

Figallo-Monge, Manuel. 2018. “Location Matters: Evidence from Spatial Econometric
Analysis of Opioid Prescribing Rates.” Proceedings of the SAS Global Forum 2018
Conference. Available at: https://www.sas.com/content/dam/SAS/support/en/sas-global-
forum-proceedings/2018/2141-2018.pdf

Grance, Timothy and Peter Mell. "The NIST Definition of Cloud Computing." Available at:
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf

Kumar, Deva. "restAF – A JavaScript Library for Rapidly Developing SAS® Viya®
Applications Based on SAS® REST APIs." Available at:
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/
2018/1882-2018.pdf

SAS Institute, Incorporated. "Introduction to SAS Viya." Available at:
https://go.documentation.sas.com/doc/en/sasadmincdc/v_011/viyaov/n00000sasviya000ar
chitecture.htm

SAS Institute, Incorporated. "Scaling Up and Scaling Down a SAS Viya Deployment."
Available at:

21

https://go.documentation.sas.com/doc/en/sasadmincdc/v_011/calchkadm/p17xfmmjjkma1
dn1b5dcx3e5ejxq.htm

SAS Institute, Incorporated. "Getting Started with SAS® Viya® for Python." Available
at:https://go.documentation.sas.com/doc/en/pgmcdc/8.11/caspg3/titlepage.htm

SAS Institute, Incorporated. "Using the SAS®System Evaluation Tool in SAS 9 Content
Assessment." Available at:
https://go.documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/whatsdiff/
p0steczr2ay418n1stwuxpykrc8j.htm

SAS Institute, Incorporated. “SAS® 9.4 and SAS® Viya® Functional Comparison.” Accessed
February 3, 2021. Available at:
https://www.sas.com/content/dam/SAS/support/en/technical-papers/sas9-4-sas-viya-
functional-comparison.pdf

Sober, Steven and Brian Kinnebrew. "Best Practices for Converting SAS® Code to Leverage
SAS® Cloud Analytic Services." Available at:
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-
proceedings/2020/4147-2020.pdf

ACKNOWLEDGMENTS
The authors would like to thank our colleagues for their support and assistance while writing
this paper. There are too many to mention but the following individuals, in particular,
contributed a lot of their technical and analytic insights while writing this paper: Gene
Grabowski, Timo Kettunen, Deva Kumar, John Stultz, and Jonathan Walker. Our partners at
Carnegie Mellon University’s Heinz College (Rema Padman, Alexandra Allen, Anzhi Mou,
Zhaoyu Qiao, Harvir Singh Virk, Xiaoyu Zhu) showed us innovative, influential and inspiring
work with Python and SAS Viya that served as the foundation for some of the topics in this
paper. In addition, as always, Kim Andrews for her tireless efforts with all things SAS!

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Richard Andrews
Office of the Actuary
Centers for Medicare and Medicaid Services
Richard.Andrews@cms.hhs.gov

Manuel Figallo
Principal Systems Engineer
SAS Institute, Incorporated
Manuel.Figallo@sas.com

Kevin Boone
SAS User Coach
SAS Institute, Incorporated
Kevin.Boone@sas.com

Prakash Subramanian
Senior Technical Architect
SAS Institute, Incorporated
Prakash.Subramanian@sas.com

Logan Perry
Technical Consultant
SAS Institute, Incorporated
Logan.Perry@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

Other brand and product names are trademarks of their respective companies.

