

1

Paper 1070-2021

Using the %SCAN Function

Jonas V. Bilenas

ABSTRACT

In this presentation, we will look at the MACRO function %SCAN. It is similar to the SCAN
function in the DATA step, but is useful in macro code. We will look at two examples that
use the %SCAN function. The first example will show you how to set up a macro that forces
all data set variables to be capitalized. The second example will show how to split
SGSCATTER plots into multiple plots.

INTRODUCTION

The %SCAN function pulls out parts of a macro variable that are delimited by special
characters and uses those parts in a data step or in new macro variables. The %SCAN
function comes in handy when you are running macro code that involves many variables,
processed one at time. You could run that macro many times for each variable that you
specify as a macro variable. But why not let the %SCAN function and some %DO loops
handle the solution.

DETAILS OF THE %SCAN FUNCTION

The %SCAN function processes a macro variable that has a number of elements that you
want to extract, one at a time. Each element needs to be extracted by specifying the
delimiter character. Most of the time a blank delimiter is used but if an element has spaces,
a comma is generally used. The default delimiters you can specify are generally dependent
on the platform you using. Using SAS 9.4/Viya 3.5 SAS, Support Documentation provides
these default delimiters:

• For ASCII computer characters:

• blank ! $ % & () * + , - . / ; < ^¦

• For EBCDIC:

• blank ! $ % & () * + , - . / ; < ¬ | ¢¦

The %SCAN function has 2-4 arguments

• First argument is the macro variable that you will parse.

• Second argument is the part number. 1=first part, 2= second, etc.

• The 3rd argument defines the delimiter that separates the parts of the macro variable.

The examples used in this presentation use the blank as the delimiter.

• The 4th argument is optional. It is a modifier that specifies special codes to handle
more specific needs. There are many specified in the SAS Support Documentation. There
is a special modifier that would pull from right to left as opposed form left to right.

2

EXAMPLE 1: USING %SCAN TO FORCE ALL VARIABLES TO BE

CAPITALIZED

A few years ago, I received an email from a colleague asking if there was an automatic way
or a MACRO that can capitalize all SAS Variable names without having to specify each

variable in the program code with a RENAME statement. When you run a PROC CONTENTS
the output will sort the output based on uppercases letter before lowercase letters. Let’s see
a test case application. First, create the test data and then run a PROC CONTENTS:

DATA test;

 AAA2 = 5; bbb4 = 6; CC4 = 7; ddd_2 = 8; xYz44 = 'BB';

 OUTPUT;

RUN;

PROC CONTENTS DATA = test;

RUN;

Display 1 shows a piece of the PROC CONTENTS. Notice that variable CC4 shows up before

bbb4. If you have many variables in the data set it may be difficult to find a specific
variable you are looking for unless all variable names are listed with capital letters.

Variable Type Len

1 AAA2 Num 8

3 CC4 Num 8

2 bbb4 Num 8

4 ddd_2 Num 8

5 xYz44 Char 2

Alphabetic List of Variables and

Attributes

Display 1. Results of the PROC CONTENTS on the Test Code above

THE %SCAN AND MACRO CODE CORRECTS THE ISSUE

%MACRO UPCASEV(LIB, DS);

PROC CONTENTS DATA=&LIB..&DS. OUT=CNTS NOPRINT; /* 1*/

RUN;

PROC SQL NOPRINT;

 SELECT NAME INTO: VARS SEPARATED BY ' ' /* 2*/

 FROM CNTS;

QUIT;

%PUT VARS=&VARS.; /* 3*/

%LET I = 1; /* 4*/

PROC DATASETS LIB=&LIB. NOLIST; MODIFY &DS.;

 %DO %UNTIL(%SCAN(&VARS,&I.,%STR()) = %STR()); /* 5*/

 %LET VAR=%SCAN(&VARS,&I.,%STR()); /* 6*/

 %LET REN=%UPCASE(&VAR.); /* 7*/

 %IF &VAR. NE &REN %THEN %DO; /* 8*/

 RENAME &VAR. = &REN.; /* 9*/

 %END;

 %LET I = %EVAL(&I. + 1); /*10*/

 %END; /* END FIRST LOOP */

RUN;QUIT;

PROC CONTENTS DATA=&DS.;

RUN;

%MEND UPCASEV;

3

Let’s look at some of the logic in the code. We will refer to each of the numbered comments
in the code above.

1. The NOPRINT option in PROC CONTENTS does not generate the PROC CONTENTS. The
OUT=CNTS creates a data set that contains metadata for the data selected by the

DATA= statement.

2. The SQL creates a macro variable, called VARS with all variable names separated by a
space.

3. If you include the line labeled /* 3*/, you can see in the log, the macro variable created.
For this example: VARS=AAA2 CC4 bbb4 ddd_2 xYz44

4. We will be doing some macro looping with the %LET, %DO, and %END statements. We
start with the &I set to 1.

5. Line 5 includes the %SCAN function with 3 arguments. The %DO %UNTIL specifies
when to stop the %DO %UNTIL loops. The 3 arguments we specify in lines 5 and 6 are:

a. which macro variable will be pulled out from the macro variable &VARS

b. the part number (starting with &I=1)

c. until a blank space is identified with %STR(). Note that a blank space, many blank

spaces and/or new lines will satisfy as %STR().

6. This line will create the macro variable called VAR which extracted from VARS with the
%SCAN function again.

7. We create a new macro variable called REN as containing all uppercase letters fron the
macro variable VAR.

8. If &VAR not equal to &REN then %DO

9. In PROC DATASETS rename, RENAME &VAR as &REN. See Raithel. Michael A. (2010) for
more information on PROC DATASETS.

10. In line 10 we increment &I by 1. Make sure you do this somewhere in your code so that
the %DO %UNTIL in line /* 5*/ will stop when all macro parts are extracted. Otherwise
your code will keep running and running.

Run the macro code as shown:

%UPCASEV(LIB=WORK, DS=TEST);

Display 2 shows the results of the project.

Variable Type Len

1 AAA2 Num 8

2 BBB4 Num 8

3 CC4 Num 8

4 DDD_2 Num 8

5 XYZ44 Char 2

Alphabetic List of Variables and

Attributes

Display 2. All variable names are now all uppercase.

4

EXAMPLE 2: USING %SCAN AND SGSCATTER TO SPECIFY HOW

MANY PLOTS ARE SHOWN SHOULD BE GENERATED FOR EACH

CALL OF SGSCATTER

For this example, we will use the SASHELP.BASEBALL data that is available on most SAS
platforms. Let’s say we want to build a multiple linear regression model that would predict
the Dependent Variable (DV), CRATBAT (Career Times at Bat). The data contains 17
Independet Variables (IVs). You want to do some exploratory work looking at the
relationship between each IV and the DV to check out if the variables make sense on a

bivariate level (DV and each IVi) and also check for nonlinearity that would suggest
transformations. We can try to use PROC SGSCATTER but if we include all 17 variables in a
single PLOT statement the output will not look that good since all 17 plots would be included
in a single output. Here is the program we tried and the resulting output:

%LET LIB=SASHELP; %LET DS=BASEBALL;

%LET DV=CRATBAT; /* CAREER TIMES AT BAT */

PROC CONTENTS DATA=&LIB..&DS. NOPRINT OUT=CNTS; RUN;

PROC SQL NOPRINT;

 SELECT NAME

 INTO: VARS SEPARATED BY ' '

 FROM CNTS

 WHERE TYPE=1 AND NAME NOT EQ "&DV."

 ;

QUIT;

PROC SGSCATTER DATA=&LIB..&DS.;

 PLOT &DV.*(&VARS.)

 / MARKERATTRS=(SIZE=2 COLOR=BLACK) GRID

 LOESS=(SMOOTH=0.5)

 ROWS=2 COLUMNS =3;

RUN;

Results from the code is shown in Figure 1. Hard to see what is going on. We need to break
out the many variables we will SCAN and generate a number of PROC SGSCATTER calls.
The problem can probably be resolved using PROC TEMPLATE but can using the %SCAN

function and a number of %DO loops solve the issue?

5

Figure 1. Results the code above using PROC SGSCATTER.

We have a modified code that will generate 5 SGSCATTER plots by using the %SCAN
function along with %DO loops. The output of the graphs can be saved using various ODS

(Output Delivery System) selections. The code will have a number of macro variables. The
first part of the code will generate the macro variable we will %SCAN. The first section will
include 5 macro variables:

1. NPLOTS: How many plots to include in each SGSCATTER output.
2. ROWS: How many rows for each output.
3. LIB: LIBNAME.

4. DS: Data Set Name.
5. DV: The Dependent Variable that you are interested in predicting.

%LET NPLOTS=4; %LET ROWS=2;

%LET LIB=SASHELP; %LET DS=BASEBALL;

%LET DV=CRATBAT;

PROC CONTENTS DATA=&LIB..&DS. NOPRINT OUT=CNTS; RUN;

PROC SQL NOPRINT;

 SELECT NAME

 INTO: VARS SEPARATED BY ' '

 FROM CNTS

 WHERE TYPE=1 AND NAME NOT EQ "&DV."

 ;

QUIT;

6

Notice that in the SQL code that we have 2 constraints to create the macro

variable, &VARS:

1. TYPE=1: We want only numeric variables selected.

2. AND NAME NOT EQ "&DV.": The &DV in this example is a single
variable, CRATBAT, we would like to predict. We will generate bivariate

plots with the Y-axis being CRATBAT and each individual numeric

independent variable on the X-axis. Having the Y-axis = X-axis is ok

but we don't need it since we know CRATBAT=CRATBAT.

The next code will create a user MACRO called PLOTIT that, for this example, generate 5
SGSCATTER plots based on the NPLOTS macro variable. Rounding up to integer (17/5) = 5.
Code can be a bit tricky. If your code is running too long it may indicate that you are not
incrementing the second argument of the %SCAN function correctly and may need to abort
the SAS code.

Note that the LOESS option in the code is a local weighted regression smoothed function to
detect non-linearity in (OLS) ordinary least squares models. See Cleveland, W. S., Devlin,
S. J., and Grosse, E. (1988) and Cleveland, W. S. and Grosse, E. (1991).

Here is the MACRO code, MACRO call:

%MACRO PLOTIT;

%LET I = 1; /* INITIALIZE &I. */

%DO %UNTIL(%SCAN(&VARS,&I.,%STR()) = %STR());

 %LET VAR=%SCAN(&VARS,&I.,%STR());

 %DO PLT_STREAM= 1 %TO &NPLOTS;

 %LET PLT_&PLT_STREAM. = %SCAN(&VARS,&I.,%STR());

 %LET I = %EVAL(&I. + 1);

 %END;

PROC SGSCATTER DATA=&LIB..&DS.;

 PLOT &DV. * (

 %DO PLT_STREAM= 1 %TO &NPLOTS;

 &&PLT_&PLT_STREAM.

 %END;)

 / MARKERATTRS=(SIZE=2 COLOR=BLACK) GRID

 LOESS=(SMOOTH=0.5

 LINEATTRS=(COLOR=RED THICKNESS=.5))

 ROWS=&ROWS.

 ;

 TITLE BOLD BOX=1 "SGSCATER PLOTS";

 RUN;

%END;

%MEND; /* END MACRO */

%PLOTIT;

The results using the above 2 codes will be shown in Figures 2-4. Of course, you can put the
first code as part of the PLOTIT macro. Include all 5 macro variable names and include the
PROC CONTENTS and PROC SQL before the first %LET I statement.

7

Figure 2. 2 SGSCATTER PLOTS of 4 PLOTS

Figure 3. Additional PLOTS

8

Figure 4. Final Plot

9

Figure 6. The final output of all explorations of 17 Independent Variables
predictive influence on the Dependent Variable.

CONCLUSION

With SAS, there are many ways to tackle and solve the problem you are dealing with. Some
solutions may not be that efficient but at least you get the problem solved.

REFERENCES

Cleveland, W. S., Devlin, S. J., and Grosse, E. (1988), “Regression by Local Fitting,” Journal
of Econometrics, 37, 87–114.

Cleveland, W. S. and Grosse, E. (1991), “Computational Methods for Local Regression,”
Statistics and Computing, 1, 47–62.

Raithel. Michael A. (2010). PROC DATASETS; The Swiss Army Knife of SAS® Procedures.

SAS Global Forum 2010. https://support.sas.com/resources/papers/proceedings10/138-
2010.pdf

ACKNOWLEDGMENTS

Thanks to all the SAS users, SAS statisticians, SAS gurus, and colleagues whom I have
learned the “Power of SAS” over the many years I have been using SAS.

https://support.sas.com/resources/papers/proceedings10/138-2010.pdf
https://support.sas.com/resources/papers/proceedings10/138-2010.pdf
https://support.sas.com/resources/papers/proceedings10/138-2010.pdf

10

RECOMMENDED READING

Carpenter, Arthur L. (2005). Storing and Using a List of Values in a Macro Variable. SAS
USERS GROUP INTERNATIONAL (SUGI) 30.
https://support.sas.com/resources/papers/proceedings/proceedings/sugi30/028-30.pdf

Carpenter, Arthur L. (2016). Carpenter's Complete Guide to the SAS® Macro Language,
Third Edition, SAS Institute.

Carpenter, Arthur L. (2017). Building Intelligent Macros: Using Metadata Functions with the
SAS® Macro Language. https://support.sas.com/resources/papers/proceedings17/0835-
2017.pdf

Delwiche, Lora D. and Slaughter, Susan J. (2012). Graphing Made Easy with SG Procedures.
SAS Global Forum 2012. https://support.sas.com/resources/papers/proceedings12/259-
2012.pdf

Lafler, Kirk Paul (2019). PROC SQL: Beyond the Basic Using SAS, Third Edition, SAS
Institute

CONTACT INFORMATION <HEADING 1>

Your comments and questions are valued and encouraged. Contact the author at:

Jonas V. Bilenas
jonas@jonasbilenas.com
https://jonasbilenascom.wpcomstaging.com/

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

Other brand and product names are trademarks of their respective companies.

The contents of this paper are the work of the author and do not necessarily represent the
opinions, recommendations, or practices of any company that I have worked for or are
currently working for.

There is no warranty on the code illustrated in this presentation.

https://support.sas.com/resources/papers/proceedings/proceedings/sugi30/028-30.pdf
https://support.sas.com/resources/papers/proceedings17/0835-2017.pdf
https://support.sas.com/resources/papers/proceedings17/0835-2017.pdf
https://support.sas.com/resources/papers/proceedings12/259-2012.pdf
https://support.sas.com/resources/papers/proceedings12/259-2012.pdf
mailto:jonas@jonasbilenas.com
https://jonasbilenascom.wpcomstaging.com/

