

1

Paper 1136-2021

Modernizing Scenario Analysis

with SAS® Viya and SAS® Visual Analytics

Arne Cordes, Volkswagen AG
Stu Sztukowski, SAS Institute Inc

ABSTRACT

Data scientists and statisticians spend months perfecting their models and presenting

results. Whether it’s running in SAS, Python, or R, model results need to go somewhere

where someone can consume them – even the best model has little value if a decision

maker can’t see them. Dashboards or daily emailed reports are usually the most natural

place for model results to go. To make greater use of models, decision makers need more

than just the daily numbers. They need to find out how the results will change under

varying conditions. This task is trivial for a data scientist: simply write a program to change

the numbers and run a scenario; however, not everyone has that skillset. To quickly allow

others to create scenarios, data scientists typically would place parameter estimates within

a carefully crafted spreadsheet and send it to decision-makers. This inevitably results in

multiple scattered versions of files that float around the company, forever to be lost in the

ethos of email and shared network drives.

With SAS® Viya and SAS® Visual Analytics, all visualizations and scenarios take place from

one consistent location. Not only does everyone have access to view current model results,

but they can produce scenarios, score data, and run models in both SAS and open-source

languages. This paper discusses methods in Viya and Visual Analytics that empower data

scientists, stakeholders, and executives to run their own What-If analyses and produce

better data-driven decisions.

INTRODUCTION

Visual Analytics is an easy way to display the results of statistical models in an interactive

dashboard for executives and stakeholders. Everyone has one place that they go to drill into

model results. Features built into Viya and Visual Analytics are available to give users the

ability to run their own scenarios or score their own data and view the results within a

Visual Analytics dashboard, all without needing to know any of the underlying code or model

specifications. Models from SAS, R, Python, and more can all be integrated within a single

underlying ecosystem, tightening version control, ensuring consistent scenario results, and

allowing cross-functional teams with multiple programming language skillsets collaborate in

their language of choice.

The examples shown in this paper use scoring code from a SAS model. The same basic

concept still applies for open-source models: modify the data, run it through the scoring

code, and output the results to the Cloud Analytics Services (CAS) server.

Score Modify Load

Fig. 1. Regardless of which language you choose, the steps are always the same:
modify the data, score it, and load the results to CAS

https://go.documentation.sas.com/?docsetId=mdlmgrug&docsetTarget=n04i7s6bdu7ilgn1e350am3byuxx.htm&docsetVersion=15.3&locale=en
https://go.documentation.sas.com/?docsetId=mdlmgrug&docsetTarget=n04i7s6bdu7ilgn1e350am3byuxx.htm&docsetVersion=15.3&locale=en

2

For information about registering and running open-source models in Viya, see SAS4402-

2020: Open Source Model Management with SAS® Model Manager and How to Execute

Python or R Modules using the Open Source Code Node in SAS® Viya. Additionally, SAS x or

systask commands can call Python or R interpreters directly if they are installed on the

same SAS Programming Runtime Environment (SPRE) server.

This paper will go over:

• What the Job Execution Service is

• Using the Job Execution Service (JES) to run scoring code for a SAS model

• Creating a scenario dashboard that runs in Visual Analytics

• Tips for handling high-volume scenario dashboards and configurations

• Advanced topics in scenario analysis with Visual Analytics

o The Missing Value Trick for scoring data within Visual Analytics

o Using Data Driven Content to create scenario data

o Modeling directly within Visual Analytics

o Linking model results to real world results

o Unmasking black box models

All code and examples used in this paper are available on the SAS Global Forum 2021

GitHub.

THE VIYA JOB EXECUTION SERVICE

WHAT IS THE JOB EXECUTION SERVICE?

The Viya Job Execution Service (JES) is a web-based code execution engine that runs SAS

code within the SAS Programming Runtime Environment (SPRE). Jobs are flexible: they

support custom HTML interfaces, prompt interfaces, applications, downloadable files, and

they even integrate directly into Visual Analytics.

One way to think of the Viya Job Execution Service is to

consider it a service in Viya that runs SAS code when a user

accesses a URL. This URL always follows the same format:

https://viyaserver.com/SASJobExecution/?_program=/Public/MyJob

viyaserver.com is the name of your Viya Server, and

/Public/MyJob is a Viya Job named MyJob saved within the

Public folder in the Viya File Service. MyJob contains SAS

code, forms, and other instructions that control how the job

runs. For the purposes of scenario analysis, this makes our

lives easy: if all we need to do is access a URL to execute SAS

code, we can make any process run. But what if we want to

control how the job runs when we access the URL? What if we

want to serve the user a form before running that code?

Job Parameters are the answer.

Fig. 2. Viya jobs are saved
within the Viya Files Service,
accessible from SAS Studio V.

https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2020/4402-2020.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2020/4402-2020.pdf
https://communities.sas.com/t5/SAS-Communities-Library/How-to-execute-Python-or-R-models-using-the-Open-Source-Code/ta-p/499463
https://communities.sas.com/t5/SAS-Communities-Library/How-to-execute-Python-or-R-models-using-the-Open-Source-Code/ta-p/499463
https://github.com/sascommunities/sas-global-forum-2021/tree/main/papers/1136-2021
https://github.com/sascommunities/sas-global-forum-2021/tree/main/papers/1136-2021

3

JOB PARAMETERS

The Job URL holds &-separated parameters to control program flow and execution. These

parameters are defined by the user within the job and are automatically translated into

macro variables when the job runs. For example, the job may have a parameter named

cost that is used to modify data in the job:

https://viyaserver.com/SASJobExecution/?_program=/Public/MyJob/&cost=2.00

The macro variable cost is accessible by the SAS program running the job:

Code Log

%put &cost; 2.00

Table 1. Macro variable output from a Job input parameter.

In addition to user-defined values, the Job Execution Service has special pre-defined

parameters that are used to control how the job looks and runs for the user.

Useful Pre-Defined Job Parameters

Several built-in parameters are helpful for controlling user interfaces, output types,

debugging, and how the job runs. Some of the ones you will use often for scenario analysis

are found below in Table 2.

Parameter Common Arguments Default

_action form, execute, wait, background form,execute

_output_type html, ods_html5, csv, pdf, none ods_html5

_debug log none

Table 2. Three of the most Common Pre-defined Job Parameters that Control Job Behavior

_Action

_Action tells the job exactly what to do when the job URL is accessed. Multiple actions can

be passed by separating each with a comma. Four of the most common actions are

described below: Form, Execute, Wait, and Background.

Form
The form action tells the job to display an input form to the user and is an excellent way to

create a scenario analysis control interface. For example, a user might select a date range

or modify model inputs. Viya Jobs can be associated with a form that uses either HTML or

the Viya Common Task Model. Form is ignored if the job does not have a form.

Fig. 3. The form action displays an interface for the user if one is associated with the job.
(Left) An HTML-based form. (Right) An XML-based Viya Common Task Model form.

https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=jobexecug&docsetTarget=p1epa2nnx2as0rn1be1inud44jmv.htm&locale=en#n1btm3vh8xe25en0zcnm3w1sfw2s
https://go.documentation.sas.com/doc/en/webeditorcdc/5.2/webeditordg/p0v8fkzgwjpfv5n11vvnpnvt6mec.htm

4

Execute
The execute action tells the job to run SAS code upon accessing the URL. If form is not

specified, the job will run immediately. Otherwise, form takes precedence over execute.

Wait
The wait action displays a wait screen while the job is running. This is

a convenient way to give users feedback that the job is running,

requiring no custom HTML coding by the developer.

Background
The background action executes a job to run in the background.

The user does not need to wait for the job to complete before exiting

the screen. This is helpful for complex scenarios that may take hours

to run, such as optimization simulations or scenarios that modify

multi-terabyte datasets. Tip: sending an email to the user through

SAS is an effective way to let them know their background task has

completed.

_Output_Type

_Output_Type tells the job where and how to output data at the end of a job. By default,

_output_type = ods_html5. Any procedures that produce ODS output are written to a file

reference named _webout and are displayed in the user’s browser at the end of a job.

_webout is a special filename statement generated by the Job Execution Service that

automatically delivers results to the user’s browser or application. When _output_type =

html, the job assumes anything that you write to _webout is HTML and will treat it as such.

You can write your own HTML via the data step and display it to the user. For example, a

data _null_ step could contain embedded HTML or reference an external HTML file.

data _null_;
 file _webout;
 infile datalines;
 input;
 put _INFILE_;
 datalines4;
<html>
 <body>
 Hello world!
 </body>
</html>
;;;;
run;

When _output_type=none, the user is in full control of all output being displayed. This is

most common when the results are downloaded directly to the user’s desktop, such as a

PDF or csv file.

_Debug

Setting _debug=log displays the SAS log on the screen after the job completes. This is a

convenient way to view the SAS log for debugging immediately after a job is run. Omitting

this parameter hides the log from the user and is desirable from a security perspective,

especially if sensitive data may be displayed in the log.

File containing HTML to display

Read each line of the HTML file

Write each line of the HTML file to _webout

Data to send to the user at the end of the job

HTML being written to _webout

Fig. 4. The wait action
displays an animated
waiting page while the
job runs.

Code 1. _output_type=html lets you display custom HTML pages within jobs.

https://go.documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/lestmtsglobal/n0ig2krarrz6vtn1aw9zzvtez4qo.htm#n1rxu4polvqoy3n13t1ado2vfcyd
https://go.documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/lestmtsglobal/n0ig2krarrz6vtn1aw9zzvtez4qo.htm#n1rxu4polvqoy3n13t1ado2vfcyd
https://communities.sas.com/t5/SAS-Visual-Analytics/I-have-a-SAS-VIYA-report-with-a-JOB-that-needs-to-export-an/m-p/611129#M13378

5

Fig. 6. The job editor is a fully self-contained IDE
that lets you edit and test SAS code, forms, and job parameters.

CREATING A JOB TO RUN SCORING CODE FROM AN INTERFACE

EXAMPLE: FORECASTING JUMBO PRETZELS WITH SASHELP.SNACKS

Let’s say we are a large grocery store chain and jumbo pretzels are one of our most popular

products. We have a forecasting model using sashelp.snacks that predicts the demand of

jumbo pretzels sold, and store managers would like to be able to run their own scenarios to

see how profit changes if the sales price or cost per bag changes. The code, dashboard, and

examples below are found in the pretzel-scenario-analysis folder on GitHub.

GETTING STARTED

SAS Studio V is the primary application we will use to create and

edit jobs. To work with jobs in SAS Studio V, make sure you are in

the “Standard” perspective (Options → Change Perspective →

Standard).

To create a new job, select New → Job → Definition. You will be

greeted with a new editor. First, give your job a name and save it

to a place in the Viya File Service. For this example, we will save it

to “Public” and name it “MyJob.” Fig. 6 below describes the basics

of the job editor.

Add and edit parameters in the rightmost options pane
with the Parameters option selected. Default values

run the job with those values set automatically.

Jobs must be saved after editing
before they can be tested.

Toggle “Show Log” on/off to automatically
enable/disable the _debug=LOG parameter.

Add SAS code to run in the job to the “Code” tab.
Add HTML input forms to the “HTML Form” tab.

 Enable/disable input forms

 Add/edit parameters

Fig. 5. Creating a new
job in SAS Studio V is
as easy as two clicks.

https://github.com/sascommunities/sas-global-forum-2021/tree/main/papers/1136-2021/pretzel-scenario-analysis

6

data pretzel_scenario_data;
 set sashelp.snacks;
 where product = "Jumbo pretzel sticks"
 AND date BETWEEN '01JAN2003'd AND '14JAN2004'd
 ;

 /* Set future values to missing and change inputs */
 if(date > '01JAN2004'd) then do;
 call missing(QtySold);

 Price = &Price.;
 Cost = &Cost.;
 end;
run;

proc arima data=pretzel_scenario_data;
 identify var=QtySold crosscorr=(advertised price) noprint;
 estimate p=(1 3 7) input=(advertised price) method=ml noprint;
 forecast lead=14 id=date out=casuser.outfor(replace=yes) nooutall noprint;
run;

JOB PARAMETERS

First, let’s set up our job parameters. Click the Parameters option and click + to add

new parameters. By setting default values, we only need to add these parameters to our job

URL when we would like to modify them.

Parameter Field Type Default

Value

Description

_action Character form Show a form when accessing this job

_output_type Character html Display html when writing to _webout

Price Numeric 2.49 Sale Price of pretzels with a default value

Cost Numeric 0.25 Cost per bag of pretzels with a default value

Table 3. Our job’s parameters and their default values.

START WITH THE BASICS: MODIFY, SCORE, AND LOAD

Next, we need to create our process that modifies, scores, and loads data to CAS.

Step 1: Modify

The first step is to modify our data before scoring it. Simply replace your variables of

interest with your parameter values. In our case, we will set Price and Cost to the

parameter values that the user will enter.

Code 2. Modifying data with our parameters, Price and Cost, before it is scored.

Step 2: Score

The second step is to score our data. Scoring the data is exactly the same as running it in

SAS Studio V or in batch mode: pass the modified data to your scoring code and let it run.

In our case, we are running a forecast of jumbo pretzel demand over the next 14 days.

 Code 3. Scoring code runs on modified data and produces updated results.

7

<other data prep code not shown>

data casuser.pretzel_scenario(append=yes);
 set casuser.pretzel_scenario_append;
run;

Step 3: Load

The final step is to load the data to CAS. When it comes to scenario analysis, seamlessly

loading data is critical for a good user experience. We’ll add a few other pieces of

information to our data, such as a run timestamp, the original unmodified forecast, and

original unmodified input values. We then append the table directly to the final promoted

CAS table to eliminate any interruptions caused by unloading and loading the updated table.

Code 4. Appending to a promoted CAS table seamlessly adds results to Visual Analytics.

Our final dataset to be used in Visual Analytics, casuser.pretzel_scenario, is already

loaded as a promoted CAS table. You can check if the data exists by using either the

table.Exists CAS action or exists() SAS function to ensure that the table is loaded as a

promoted CAS table if it does not yet exist. If this is your initial scenario, manually load and

promote a base scenario first.

HTML FORM INTERFACE

An HTML interface for modifying values can be as simple or complex as you’d like. If you

have a strong web development background, you can create beautifully interactive

interfaces for the user. For this example, we’ll use a simple HTML interface to modify Price

and Cost. To begin, select the Associate a Form option and select HTML form to embed

an HTML form within the job. Start by adding <html> to your editor.

Fig. 7. Embedding an HTML form adds the “HTML form” tab where a web page can be built.

8

<head>
 <style type="text/css">
 @font-face {
 font-family: AvenirNext;
 src: url("/SASJobExecution/images/AvenirNextforSAS.woff") format("woff");
 }

 body {
 font-family: AvenirNext, Helvetica, Arial, sans-serif;
 text-rendering: optimizeLegibility;
 -webkit-tap-highlight-color: rgba(0, 0, 0, 0);
 text-align: center
 }

 .wrapper {
 padding-bottom: 10px;
 }
 </style>
</head>

Step 1: <Style>

Cascading Style Sheets (CSS) let us apply styles to HTML while keeping all of the settings in

one place. We want to add a few styles to help make our interface feel like it’s in Visual

Analytics and improve spacing in our input form.

Code 5. Some basic CSS style elements can spruce up your interface.

Step 2: <Body>

The body of the HTML is where all the work happens. This is where we are making our form

that creates parameters and calls our job to execute. Forms automatically build URLs for us,

adding &’s between each parameter we add. Our HTML form needs five total parameters:

Name Value Type Description

_action execute,wait Hidden Run the job and display a waiting page

_program $PROGRAM$ Hidden Key word to run this specific program we

are in

_csrf $CSRF$ Hidden Key word to add a Cross-Site Request

Forgery Token. This is a security feature

that prevents unauthorized access.

Additional information.

Price Text Sale Price of pretzels

Cost Text Cost per bag of pretzels

Table 4. HTML form parameters translate to job parameters and are added to the job URL.

Our example uses single text inputs, but these are not the only types of parameters that

can be passed to a job. Check out this example on how to use check boxes to pass multi-

valued parameters and use the PARAM_LIST macro to make them easier to work with.

Required

for most

jobs

https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=jobexecug&docsetTarget=n0t91q5lsc2b8qn14fd0cgbmylr8.htm&locale=en#n0klt1e0ckdy0on1bbfnttsw2rot
https://en.wikipedia.org/wiki/Cross-site_request_forgery
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=jobexecug&docsetTarget=n1l0yij8rjbjqcn187q0tifuyab1.htm&locale=en#n1pfzjwmvqigsqn1qld2pt5mvmwf
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=jobexecug&docsetTarget=n1l0yij8rjbjqcn187q0tifuyab1.htm&locale=en#n1pfzjwmvqigsqn1qld2pt5mvmwf
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=jobexecug&docsetTarget=p1epa2nnx2as0rn1be1inud44jmv.htm&locale=en#n16jtyilbkval1n13hnohs6xyrmw

9

<body>
 <form action="/SASJobExecution/" enctype="multipart/form-data" method="post">
 <input type="hidden" name="_program" value="$PROGRAM$"/>
 <input type="hidden" name="_action" value="execute,wait"/>
 <input type="hidden" name="_csrf" value="$CSRF$"/>

 <p>Enter a Pretzel Scenario</p>

 <div class="wrapper">
 <label>Price (USD) <input type="text" name="price" placeholder="2.49"/></label>
 </div>

 <div class="wrapper">
 <label>Cost (USD) <input type="text" name="cost" placeholder="0.25"/></label>
 </div>

 <input type="submit" id="submit" value="Submit"/>

 </form>
</body>

Code 6. <form> is the main interface where users modify job parameters.

Let’s break down these chunks of code.

1. <form action="/SASJobExecution/" enctype="multipart/form-data" method="post">

• When the user submits the form, build a URL that starts as follows:
https://viyaserver.com/SASJobExecution/

2. <input type="hidden" name="…">

• Include these parameters in the URL, but hide them from the user in the form:
https://viyaserver.com/SASJobExecution/?_program=/Public/MyJob&_action=...

3. <label>Price (USD) <input type="text" name="price" placeholder="2.49"/></label>

• Add a text input box whose parameter name is “price,” and use 2.49 as a default.

4. <label>Cost (USD) <input type="text" name="cost" placeholder="0.25"/></label>

• Add a text input box whose parameter name is “cost,” and use 0.25 as a default.

5. <input type="submit" id="submit" value="Submit"/>

• Create a button that submits the form when users click it.

Note that all of our HTML parameter names, denoted by name=, are the same as our job

parameters. The name is passed as a parameter into the URL built by the form. Single

inputs are not the only way to pass parameters.

A Note on _program

You may be wondering why our form calls the job that we are already in. Recall that our

default action for the job is form. When we access this job, it brings up the HTML form

without executing any SAS code. We need to call it a second time with the execute action in

order to run the job with our modified parameters. Since SAS knows what job we are in, the

$PROGRAM$ keyword is used to automatically add this job’s location to the _program

parameter without having to retype the full job location. Instead of hosting a separate web

page and pointing it to a job, a single process controls both. This makes jobs more

generalizable so that they can be easily used across multiple projects and environments.

10

Fig. 8. Viya Jobs have dual functions: (1) serve the user a form, and (2) execute SAS code.

Step 3: Test

End your HTML with </html>, save your job, and click “Run” to review and test your form.

You can confirm if your process is successful by checking your output datasets. Click the

“Show Log” button for additional information on what is happening in the background.

Fig. 9. SAS Studio V has tools to test, edit, and run your job from one place.

JOB RESULTS AND FEEDBACK

When we run our job, the final output screen is blank. The user might not know if the job

was successful. Letting the user know that their action was successful or not successful will

reduce questions that may come your way.

Fig. 10. Did the job run successfully?
A result page (Left) makes a big difference in usability compared to none (Right).

We’d like to give the user feedback that the job is complete. Recall that we set our

_output_type parameter to html. Our job is expecting some HTML output for the user, but

we have yet to make it. Let’s add a small webpage that lets the user know the job was

successful. Click the “Code” tab and add the following code after your scoring code:

https://...

_action=form _action=execute

11

data _null_;
 length line $32767.;
 file _webout;
 input;
 line = resolve(_infile_);
 put line;
 datalines4;
<html>
 <body>
 <p>Pretzel modification successful.</p>

 Go back
 </body>
</html>
;;;;
run;

Code 7. Result web pages are written to the fileref _webout.

This code writes HTML to _webout. We have already told the job to expect HTML, so the job

will know what to do with it. While we do not need to write our HTML within a datalines4

statement, it is a convenient way of adding HTML without storing a separate file on the

server – especially for such a small amount of HTML.

SCENARIO ANALYSIS IN VISUAL ANALYTICS

Now that we have our job running successfully, the hard part is over: all we need to do is

add the job to a Visual Analytics dashboard and build a dashboard around the final output

dataset, casuser.pretzel_scenario. The Web Content Object lets you add websites as inline-

frames to your dashboard.

ADDING A JOB TO A DASHBOARD

To configure your web content object, do the following:

1. Drag the Web Content Object into the report

2. Select Options and scroll to “Web Content” option at the bottom

3. Enter the URL of your job. Replace “viyaserver.com” with your Viya server’s name.

https://viyaserver.com/SASJobExecution/?_program=/Public/MyJob

Read each line of the HTML file

Write each line of the HTML file to _webout

Data to send to the user at the end of the job

Treat &-prefixed text as macro variables

Job-generated macro variable for the location of this job

 Fig. 11. The Web Content object in Visual Analytics is used to display Viya Job Forms.

12

SCENARIO ANALYSIS DASHBOARD TIPS

There are numerous interfaces and styles to consider when making a Visual Analytics interface that all depend on the type of

analysis being done and who your audience is. Below are some general guidelines.

• Set the dashboard to check for new data every 5 seconds. Users will be able to select their scenario once it completes.

• Include your original, unmodified values. Users should be able to compare their scenario to a baseline.

• Add multiple views: graphs, tables, etc. Try to accommodate multiple ways people like to read and interpret data.

• Consider adding a comparison tab that allows users to compare all scenarios with each other.

Fig. 12. An example of a scenario analysis dashboard. Focus on the user experience and keep your audience in mind.

Placing the job in

a pop-up window

keeps users on

the main tab

At-a-glance

scenario settings

keep users

oriented

Text summaries

provide copy-and-

pasteable results

Multiple views of the results cater to a wider audience

Drop-down lists let users select different scenarios

https://go.documentation.sas.com/?cdcId=vacdc&cdcVersion=8.5&docsetId=vaobj&docsetTarget=p0ff4c84fzvgifn1beckp7yubg0u.htm&locale=en#n16v6t0r171dyzn1la3mx0vapjbp

13

%macro runJob(maxtries=10, wait=10);
 %let flag_timeout = 0;
 %let tries = 0;

 %if(%sysfunc(exist(lib.job_lockfile)) = 0) %then %do;
 data lib.job_lockfile;
 run;
 %end;

 /* Keep trying to lock the lockfile until max attempts are reached */
 %do %until(&syslckrc. LE 0 OR &tries. GE &maxTries.);

 /* Count total number of tries */
 %let tries = %eval(&tries. + 1);

 /* Try to lock the lockfile */
 lock lib.job_lockfile nomsg;

 /* If it's locked and we're under our max tries, wait, then try again */
 %if(&syslckrc. > 0 AND &tries. < &maxTries) %then %let rc = %sysfunc(sleep(&wait., 1));
 %else %if(&syslckrc. > 0) %then %let flag_timeout = 1;
 %end;

 %if(&flag_timeout. = 0) %then %do;
 /* Continue and run the job */
 %end;
 %else %do;
 /* Display timeout page */
 %end;
%mend;

HIGH-VOLUME DASHBOARDS

When a few users have access to run scenario analyses, it is unlikely that they will both try

to simultaneously run a scenario at the same time and lock one another from writing to the

same table in CAS. The odds of this increases with a higher user base, making for a

frustrating experience that results in a dashboard filled full of many users’ scenarios. Using

a few simple tricks to check if someone is running a scenario and a built-in Viya tool to

control row-level access, you can prevent accidental collisions and ensure scenarios are

seen only by specific users.

PREVENTING COLLISIONS

One solution to prevent collisions between multiple users is to add a blank dataset to a

common location that all users can access. The job attempts to lock this file when it runs. If

it’s successful, the job continues and unlocks the file when it completes. If the lock isn’t

successful, the job waits a number of seconds and attempts to lock this file again. Too many

failed attempts will display a result page to the user that another user is currently running a

scenario, and that they will need to wait and try again another time.

Code 8. Checking if a file is locked keeps users from colliding with each other.

RESTRICTING RESULTS

In our example, multiple grocery stores are using a single scenario dashboard. We may

want to restrict our dashboard to only show results by store. Row-level security in Viya

automatically applies filters to a table so that only users that match certain criteria can view

rows in a dataset. Check out David Stern’s SAS Communities Article and video for a detailed

explanation and examples of how to apply row-level security on CAS tables based on user

attributes.

https://communities.sas.com/t5/SAS-Communities-Library/Examples-of-row-level-security-in-SAS-Viya/ta-p/578700
https://www.youtube.com/watch?list=PLVBcK_IpFVi80HeTBtFZ7pubwoBBATBHE&v=s7Ogy75InVE&feature=youtu.be

14

Fig. 13. Row-level security filters rows of a table based on user attributes.

JOB EXECUTION SERVICE CONFIGURATION TIPS

By default, Viya Jobs run under your user ID and a compute process is created each time

the job is invoked. Permissions issues may occur when many different users are running

jobs. This can be resolved by running all jobs under a shared user ID. Additionally, jobs can

run faster by reusing previous compute sessions. These are configured by your

administrator in minutes and take effect immediately. For information on how to configure

this, see Server Contexts: How To.

Fig. 14. Configuring the SAS Job Execution Compute Context to run under a shared user and to
reuse previous job compute processes reduces permissions issues and improves performance.

Note that when running under a shared user ID, the macro variable &sysuserid will resolve

to the shared user ID. To get the user ID that invoked the job, use the macro variable

&sys_compute_session_owner instead.

ADVANCED SCENARIO TOPICS IN VISUAL ANALYTICS

After setting the conceptual groundwork for job execution and seeing how the pieces fit

together in a Visual Analytics Report, let us look at some advanced scenario analysis topics

using a real world example with Volkswagen Financial Services and Residual Car Value.

Decision makers rarely share the data analysts’ enthusiasm for how they solved a given

problem analytically. They are more practical and they want the analytical model to create

benefit for the business. This reads often as scoring a model. However, they need to build

trust in the model and assess its response to changing business scenarios managers can

control and understand. The sweet spot for this challenge is Visual Analytics, which grants

Data scientists and decision makers a rich experience in a collaborative manner.

The code, examples, and data used in this example are found in the residual-car-analysis

folder on GitHub.

grocery_store scenario price …

A 1 2.20 …

B 2 1.49 …

C 3 3.50 …

Grocery Store A

✓

https://go.documentation.sas.com/?cdcId=sasadmincdc&cdcVersion=v_001LTS&docsetId=calcontexts&docsetTarget=n1hjn8eobk5pyhn1wg3ja0drdl6h.htm&locale=en#p1t5ysle4s46yln1nkt5mvqgcpka
https://github.com/sascommunities/sas-global-forum-2021/tree/main/papers/1136-2021/residual-car-analysis
https://github.com/sascommunities/sas-global-forum-2021/tree/main/papers/1136-2021/residual-car-analysis

15

EXAMPLE: RESIDUAL CAR VALUE

Volkswagen Financial Services offers long-term car rentals with many different optional

services that cost a monthly fee, such as insurance and maintenance plans. The main cost

driver for the monthly fee is the decrease in value for the car. In this context, residual value

is the price the market is willing to pay for a used car having a specific set of features like

miles driven, age, optional equipment, and more. The better a car can retain its residual

value the lower the monthly installment will be.

It is crucial to accurately estimate the residual value. If we overestimate a car’s prospects of

remarketing it as a used vehicle, we will have to write off losses when the customer returns

the car and the sales price is below its accounted residual value. The losses inflate as many

customers chose this car because of its falsely calculated “competitive” monthly rate, a clear

example of negative selection. On the other hand, a residual value, which is too

conservative, will fail to attract customers, as the monthly rate is out-of-market.

THE MISSING VALUE TRICK: SCORING DIRECTLY IN VISUAL ANALYTICS

Most algorithms available in Visual Analytics, Visual Statistics, and Visual Data Mining and

Machine Learning can derive a score once the objective function has given a solution. It is

as easy as right clicking the model pane menu and selecting the option “Derive predicted…”.

The procedure creates estimates (and residuals) alongside the target variable’s value in

those observations we used for training the model, and it even calculates a score for those

observations where the target value is missing.

The missing value trick uses this behavior. When applied correctly it prevents you from

writing dedicated scoring code thus offering an elegant way to do the scoring directly in

Visual Analytics. Managers are much more familiar with translating a score to a

representative car instead of scrolling through the real world messy data set.

The idea is to append a data grid with relevant combinations of the model variables to the

original data set. For more information on this, check out Rick Wicklin’s blog post on scoring

a regression model using the Missing Value Trick.

Fig. 15. Missing values of the target variable receive a score when deriving predicted values.

https://blogs.sas.com/content/iml/2014/02/17/the-missing-value-trick-for-scoring-a-regression-model.html
https://blogs.sas.com/content/iml/2014/02/17/the-missing-value-trick-for-scoring-a-regression-model.html

16

USING DATA DRIVEN CONTENT TO CREATE SCENARIO DATA IN VISUAL ANALYTICS

Instead of users creating scenario data within Excel and

uploading it to Visual Analytics, we can leverage Data

Driven Content and the Job Execution Service to create

new scenario data using controls within Visual Analytics.

The URL for your Data Driven

Content is your server address

followed by the specific path to

where your JES code resides.

The Data Driven Content object

passes all the required variables

and parameters to the Job

Execution Service where a JSON

object is written to a data set.

Custom SAS code then appends

the new scenario data with

missing values to the original

data. The Data Driven Content

Data Viewer is a great resource

to understand how variables and

parameters are propagated.

For more information about using Data Driven Content, check out Renato Lupi’s SAS

Communities post on Using parameters with Data-Driven Content in SAS Visual Analytics.

Creating Scenario Data

Decision makers often require filtering the training data. With some instructions added to

the report, decision-makers are empowered to select the variables that they believe should

enter the model. Letting the subject matter expert pre-select variables based on their

expertise helps buy-in their support for the model at an early stage.

Although the guideline and the how-to are best covered by Renato Lupi’s blog, use the

following basic steps:

1. Drag the Data Driven Content into the report

2. Select Options and scroll to “Web Content” option at the bottom

3. Enter the URL of your job containing your code (here). Replace “viyaserver.com”

with your Viya server’s name.

https://viyaserver.com/SASJobExecution/?_program=/Public/MyDDCJob

4. Create the required parameters that the underlying job execution expects

5. Make sure the Data Driven Content includes the parameters by adding a fake

advanced filter that references to these parameters

6. Load the output table once to the report, after it runs successfully for the first time it

updates automatically

Fig. 17. Data Driven Content can
pass Visual Analytics variable
values to the Job Execution
Service.

Fig. 16. The Data
Driven Content Viewer
shows how your data
is being propagated

https://communities.sas.com/t5/SAS-Communities-Library/Using-parameters-with-Data-Driven-Content-in-SAS-Visual/ta-p/609557
https://communities.sas.com/t5/SAS-Communities-Library/Using-parameters-with-Data-Driven-Content-in-SAS-Visual/ta-p/609557
https://github.com/sascommunities/sas-global-forum-2021/tree/main/papers/1136-2021/residual-car-analysis/code/MyDDCJob.sas

17

MODELING AND RUNNING SCENARIOS DIRECTLY WITHIN VISUAL ANALYTICS

The output table from the previous step feeds the analytical model. Note that that not only

the real observations receive a score but also the new scenario data with missing values for

the target variable.

Through report controls, we let the user choose specific models at dedicated mileage

combinations and make commercial changes. Users visually assess how the commercial

changes affect the resulting residual values and how they compare against the current

tariffs. Normally decision makers meet several times until they close the final residual

values. We use a time stamp to create a history of how the residual values change between

these meetings.

Verifying Model Results with Real World Data

The sales data is restricted to the car models of the Volkswagen group brands sold in the

regime of renting & leasing. That means that it is only a subset of the entire used car

market. Internet platforms act as matchmaker between offer and demand of used cars and

serve a reality check for the residual values that our analytical model estimates. Linking the

report to a popular car sales website adds a reality check to the validity of a model, adding

an easy way to improve model buy-in.

A Crosstab in Visual Analytics can pass character values as parameters to a URL. To link a

URL and pass parameters, perform the following:

1. Determine how the URL resolves the filters you enter at the website by investigating

the URL link. Any URL parameters prefixed by ? or &.

2. Drag the Crosstab into the report and add all variables of interest

3. Convert any numerical values to character values

4. Add a URL link to the Crosstab

5. Add parameters according to the structure identified in (1) and click “OK”

6. Click on the crosstab will open a new browser window with the internet platform

having filtered for the row of the Crosstab

7. Review the price the market calls for comparable car

Fig. 18. Decision makers select car models and terms that receive a commercial adjustment.

18

Fig. 19. Set target URL parameters in Visual Analytics to the way the URL expects them.

Fig. 20. Double-clicking a row in the Crosstab automatically searches a website with the
selected parameters. Users can compare predicted results with real-world data.

19

UNMASKING BLACK-BOX ALGORITHMS

Colleagues outside the analytical field may feel uncomfortable when dealing with advanced

algorithms. They need to understand what the model does, but they also demand the best-

performing model. Top-performing models often lead to black-box algorithms like gradient

boosting. Variable importance charts, ROC curves, or misclassification rates improve user

confidence, but they do not answer all questions about model behavior. Instead, we can

create our own interpretability charts and show them in Visual Analytics.

In order to have a representative and relatable grid of points, we limit the scope to the top

80 as of Pareto combinations of the class variables that from the model. Then we create 20

(adjustable) evenly spaced values for each of the numerical variables, starting at its min

and ending at its max, and calling a mean value for all other numeric values.

This technique guarantees that the derived score happens at “close-to-reality”

combinations. We also apply a ceteris paribus approach as only the variable of interest

changes and affects the score. After creating the grid, we derive a score via code (here) and

use the scored table for our report.

This way we isolate the effect of the numerical variable and visualize how the algorithms

changes its prediction as values increase. It helps to identify critical points where the score

function jumps suddenly. For example, we can identify when there is “too-much” optional

equipment that hamper the prospect of the residual value.

CONCLUSION

Key decision makers have a tough job – they may need to make multi-million dollar

decisions based on a number of factors, and your model may be at the forefront of that of

that decision. SAS Viya has built-in tools to runs SAS models, open source models, and

modern interfaces with little to no HTML coding experience needed. By combining the SAS

Job Execution Service with Viya and Visual Analytics, you empower everyone to make data-

driven decisions from sophisticated models at the click of a button all from one location.

Fig. 22. Visualize “how” the algorithm scores along the data range.

Fig. 21. Evenly spaced numeric variables at relevant combinations of categorical variables.

https://github.com/sascommunities/sas-global-forum-2021/tree/main/papers/1136-2021/residual-car-analysis/code/blackbox_explanation.sas

20

REFERENCES

Bizoux, Xavier. “Data Entry in SAS Visual Analytics 8.3: Part 1, The Basics.” SAS

Communities, SAS Institute, 20 Aug. 2019, https://communities.sas.com/t5/SAS-

Communities-Library/Data-Entry-in-SAS-Visual-Analytics-8-3-Part-1-The-basics/ta-

p/579076?nobounce.

Duling, David. “The Aftermath What Happens After You Deploy Your Models and Decisions.”

SAS Institute, 1 May 2019, https://www.sas.com/content/dam/SAS/support/en/sas-global-

forum-proceedings/2019/3496-2019.pdf.

Lupi, Renato. “Pareto Example of Integration of SAS Visual Analytics with SAS Jobs via

Data-Driven Content-Part 4.” SAS Communities, SAS Institute, 22 Sept. 2020,

https://communities.sas.com/t5/SAS-Communities-Library/Pareto-Example-of-Integration-

of-SAS-Visual-Analytics-with-SAS/ta-p/681149.

SAS Institute. “Concepts: Open-Source Models.” SAS® Model Manager 15.3: User’s Guide,

SAS Institute, 1 July 2020,

https://go.documentation.sas.com/?docsetId=mdlmgrug&docsetTarget=n04i7s6bdu7ilgn1e

350am3byuxx.htm&docsetVersion=15.3&locale=en.

Stern, David. “Examples of Row-Level Security in SAS Viya.” SAS Support Communities,

SAS Institute, 2 Aug. 2019, https://communities.sas.com/t5/SAS-Communities-

Library/Examples-of-row-level-security-in-SAS-Viya/ta-p/578700?nobounce.

Wicklin, Rick. “The Missing Value Trick for Scoring a Regression Model.” The DO Loop, SAS

Institute, 17 Feb. 2014, https://blogs.sas.com/content/iml/2014/02/17/the-missing-value-

trick-for-scoring-a-regression-model.html.

ACKNOWLEDGMENTS

Arne’s Acknowledgements

I would like to thank the SAS communities for the valuable support they always dispense

even if the question is very innocent.

The seed for everything I know in SAS is Rick Wicklin’s Do Loop blog

https://blogs.sas.com/content/iml/ . It is my primary source for learning SAS whilst building

the foundation for the mathematical reasoning behind.

Stu’s Acknowledgements

My wonderful wife Annie, for your love and support. I am proud to be your husband.

My manager Ned Maran, for your continued support and encouragement to write.

My mentor Jared Peterson, for helping me challenge myself and go further.

Johnny Stover, our local Job Execution Service guru. I don’t think there’s a problem we

can’t solve together with a 30-minute screen sharing session. Let’s try world peace.

Vincent Delgobbo, the Job Execution Genius. Thank you for the detailed one-on-one help!

RECOMMENDED READING

SAS Job Execution Web Application 2.2: User’s Guide

JSON Libname Engine Documentation

Reading data with the SAS JSON libname engine

Using Parameters with Data-Driven Content in SAS Visual Analytics by SAS’s Renato Luppi

SAS Data Driven Content SDK Documentation

https://communities.sas.com/t5/SAS-Communities-Library/Data-Entry-in-SAS-Visual-Analytics-8-3-Part-1-The-basics/ta-p/579076?nobounce
https://communities.sas.com/t5/SAS-Communities-Library/Data-Entry-in-SAS-Visual-Analytics-8-3-Part-1-The-basics/ta-p/579076?nobounce
https://communities.sas.com/t5/SAS-Communities-Library/Data-Entry-in-SAS-Visual-Analytics-8-3-Part-1-The-basics/ta-p/579076?nobounce
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2019/3496-2019.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2019/3496-2019.pdf
https://communities.sas.com/t5/SAS-Communities-Library/Pareto-Example-of-Integration-of-SAS-Visual-Analytics-with-SAS/ta-p/681149
https://communities.sas.com/t5/SAS-Communities-Library/Pareto-Example-of-Integration-of-SAS-Visual-Analytics-with-SAS/ta-p/681149
https://go.documentation.sas.com/?docsetId=mdlmgrug&docsetTarget=n04i7s6bdu7ilgn1e350am3byuxx.htm&docsetVersion=15.3&locale=en
https://go.documentation.sas.com/?docsetId=mdlmgrug&docsetTarget=n04i7s6bdu7ilgn1e350am3byuxx.htm&docsetVersion=15.3&locale=en
https://communities.sas.com/t5/SAS-Communities-Library/Examples-of-row-level-security-in-SAS-Viya/ta-p/578700?nobounce
https://communities.sas.com/t5/SAS-Communities-Library/Examples-of-row-level-security-in-SAS-Viya/ta-p/578700?nobounce
https://blogs.sas.com/content/iml/2014/02/17/the-missing-value-trick-for-scoring-a-regression-model.html
https://blogs.sas.com/content/iml/2014/02/17/the-missing-value-trick-for-scoring-a-regression-model.html
https://blogs.sas.com/content/iml/
https://go.documentation.sas.com/?docsetId=jobexecug&docsetTarget=n055josnxfatfwn1pyr7p1ah7225.htm&docsetVersion=2.2&locale=en
https://go.documentation.sas.com/?docsetId=lestmtsglobal&docsetTarget=n1jfdetszx99ban1rl4zll6tej7j.htm&docsetVersion=9.4&locale=en
https://blogs.sas.com/content/sasdummy/2016/12/02/json-libname-engine-sas/
https://communities.sas.com/t5/SAS-Communities-Library/Using-parameters-with-Data-Driven-Content-in-SAS-Visual/ta-p/609557
https://communities.sas.com/t5/user/viewprofilepage/user-id/1484
https://developer.sas.com/sdk/va/docs/guides/data-driven-content/

21

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Arne Cordes

arne@campus.eae.es

https://www.linkedin.com/in/arnecordesbcn/

Stu Sztukowski

stu.sztukowski@sas.com

https://linkedin.com/in/StatsGuy

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies.

mailto:arne@campus.eae.es
https://www.linkedin.com/in/arnecordesbcn/
mailto:stu.sztukowski@sas.com
https://linkedin.com/in/StatsGuy

	Abstract
	Introduction
	The Viya Job Execution Service
	What is the Job Execution Service?
	Job Parameters
	Useful Pre-Defined Job Parameters
	_Action
	Form
	Execute
	Wait
	Background

	_Output_Type
	_Debug

	Creating a Job to Run Scoring Code from an Interface
	Example: Forecasting Jumbo Pretzels with SASHELP.SNACKS
	Getting Started
	Job Parameters
	Start with the Basics: Modify, Score, and Load
	Step 1: Modify
	Step 2: Score
	Step 3: Load

	HTML Form Interface
	Step 1: <Style>
	Step 2: <Body>
	A Note on _program

	Step 3: Test

	Job Results and Feedback

	Scenario Analysis in Visual Analytics
	Adding a Job to a Dashboard
	Scenario Analysis Dashboard Tips

	High-volume dashboards
	Preventing Collisions
	Restricting Results
	Job Execution Service Configuration Tips

	Advanced Scenario Topics in Visual Analytics
	Example: Residual Car Value
	The Missing Value Trick: Scoring Directly in Visual Analytics
	Using Data Driven Content to Create Scenario Data in Visual Analytics
	Creating Scenario Data

	Modeling and Running Scenarios Directly within Visual Analytics
	Verifying Model Results with Real World Data

	Unmasking Black-Box Algorithms

	Conclusion
	References
	Acknowledgments
	Recommended Reading
	Contact Information

