

1

Paper 1134-2021

Harnessing Raw Data from Submission Forms to Gauge Food

Insecurity Among College Students

Zoraya Cruz-Bonilla, Binghamton University

ABSTRACT

Submission forms are a common practice for collecting student information quickly and

directly. The pandemic outbreak has spurred this practice even further in order to pivot in-

person campus operations to a safer environment or platform. However, not all submission

forms are created equal. Some lack adequate validation rules to impose data integrity;

while others fall short on their promise to provide greater meaning due to their flat

architecture. Thus, valuable insights easily get lost among the hundreds of records

generated. Through the integration of SAS Enterprise Guide and SAS Visual Analytics,

participants will learn a handful of functions to consolidate raw data from a series of weekly

CSV files; they will learn how to create a handful of custom fields to underscore service

usage trends; and how to create on-demand reporting. The outcome is a transformative

process that renders raw data to information that is actionable and supports public service

efforts.

INTRODUCTION

Since the onset of the COVID-19 pandemic, efforts to mitigate infection rates such as social

distancing have limited traditional mechanisms of data collection. In lieu of in-person

interactions, there has been a push towards using online submission forms to collect data

directly from primary sources. For the Binghamton University Food Pantry, this alternate

format not only allowed it to continually track service usage. With the assistance of Student

Affairs Assessment, the data was transformed to meaning metrics that stakeholders can

respond to.

The purpose of this paper is to provide some supplementary background information and

outline a few of the analytic operations that Student Affairs Assessment performed to glean

meaningful metrics from submission form data. Which, as you may already know, can be

messy, might require a fair amount of cleaning, or must be manipulated in some way to

make it more useable for analysis. Specifically speaking, the paper will:

• Showcase the aggregation of raw data from several *.csv files;

• Demonstrate functions for parsing time-series data;

• Introduce options for embedding program code in a point-and-click interface; and

• Briefly highlight the integration of SAS Visual Analytics for data exploration and

reporting

As you read through this paper, you’ll notice that I use a combination of point-and-click

methods and program code. As a relatively notice SAS® Enterprise Guide® user, I find that

starting with the former has expanded my understanding of what the analytic tool can do.

Yet, I recognize that the point-and-click environment is only scratching the surface. There

are hundreds of online community pages that have inspired me to incorporate program code

within the same process flow. It has been quite a journey in understanding and applying

2

what I have learned through these resources, but the gains have taken my skills to the next

level. Therefore, I encourage you to take the leap as well.

Now, let’s get down to business.

TECHNIQUES FOR WRANGLING WITH DATA FROM MULTIPLE

SUBMISSION FORMS

A submission form is a data-gathering tool that allows you to collect different pieces of

information from respondents. While choosing the best submission form may depend on

available institutional resources, there are several key features that should be considered.

Ideally, the tool of choice should have data validation controls because the raw data will be

in better shape for analysis. But if it is not possible to acquire a tool with data validation

controls, then the question or data input prompts must account for differences in the way

that people enter values (e.g., 05/17/2021 versus March 17, 2021).

Towards the end of Spring 2020, the Binghamton University Food Pantry began to collect

service user data via a platform that is well integrated into the campus; several offices have

successfully utilized the platform for their workflow management processes. And unlike

other options that were previously utilized, the platform authenticates user access, auto-

populates key identifiers, and prevents more than one submission form per student per

week. The following techniques were used to analyze submission form data collected during

the Fall 2020 academic semester (August 14, 2020 - December 17, 2020).

As illustrated in Display 1, the online submission form contained several sections. While

some sections were purely instructive in nature, others were intended to gather basic

information about service impact, needs, and eligibility. Such as, “Will this order provide

assistance to a child in your household?” or, “I agree that the Food Pantry is only for

enrolled Binghamton University students facing hard times.” Particularly important for

gauging food insecurity among college students, however, was the last section – where the

student must specify food categories.

Each week the form opened for new submissions on Friday at 5 PM and closed the following

Friday at 10:00 AM. Every time the form was closed, a new comma-delimited (*.csv) file

was generated and saved to a shared drive for the next step in SAS® Enterprise Guide®

(version 7.15).

Display 1. Submission Forms are Exported on a Weekly Basis

3

Overall, 21 *.csv files were imported to a SAS® Enterprise Guide® process flow. Importing

*.csv files only takes a few steps due to the easy point-and-click graphical interface:

1. Select File

2. Select Import Data

3. Select the file location (e.g., My Computer)

4. Navigate to the file folder

5. Select the *.csv file

6. Click Open

Depending on how many *.csv files you are working with, however, consider whether using

the IMPORT procedure is more time-efficient. Check out the online SAS® community pages

to explore how to import multiple *.csv files using only a few lines of code.

Opening the *.csv file will invoke the import wizard which allows you to specify text

qualifiers (e.g., commas), the row number containing field names, and the option to limit

the number of records for SAS® to read. This is helpful for files that do not follow a

conventional or expected layout. Fortunately, Step 3 of the wizard [Define Field Attributes]

determines how the data fields should be formatted in the output – or if they even need to

be in the output at all! Also, string fields should have a length value that is as many

characters as that of the longest string in the corresponding column. Otherwise, a value for

Frozen Meals will display as “Chicken patties, Chicken meatballs” instead of, “Chicken

patties, Chicken meatballs (gluten-free soy-free).” If qualitative data analysis is not

applicable, length is irrelevant.

Display 2. Select Columns and Define Attributes Through the Import Wizard

AGGREGATING RAW DATA

After importing each *.csv file, individual tables are created in the process flow. Ideally,

submission forms should be in one comprehensive data set. This makes it easier to apply

data manipulation techniques. The online SAS® community pages contain several methods

for aggregating data. In this paper, I will show two methods and the rationale for using

them at specific stages of the data analysis.

4

METHOD 1: Using the APPEND TABLE Task is as Easy as Pie!

The APPEND TABLE task is perhaps the most user-friendly and straightforward method for

novice SAS® users to aggregate data. The following shows how to invoke the APPEND

TABLE task directly from the process flow:

1. Select Tasks

2. Select Data

3. Select Append Table…

4. Select Add Table…

5. Select the tables to append (e.g., Data Imported from 20200814 FP Week of August

17.csv)

6. Ensure all applicable tables are listed in the dialogue box

7. Click Run

The steps will render join lines between the input and output tables. Also, right-clicking on

the new node in between the tables brings up the option to modify the APPEND TABLE task

(see Display 3).

Display 3. The APPEND TABLE task creates joins between input and output tables

Gotcha!

One of the learned lessons from using the APPEND TABLE task is that the column header

names determine how the data is displayed in the output table. To illustrate, let’s consider

what happens when using column header names shown on Display 4.

The data is for weeks 1, 2, and 3. Throughout multiple weeks, the column header names

pertaining to the user’s ID number, full name, submission date, and the food category for

frozen meat remain unchanged. The food category for fresh fruit and vegetables, however,

did change due to product availability.

5

Display 4. Food Categories with Different Column Header Names on Subsequent

Weeks

The APPEND TABLE task successfully reads all these column header names but will interpret

these differences as distinct variables. Display 5 is an exemplary rendition of how SAS® will

display the data in the output table. Notice the arrangement of the raw data which expands

both vertically (to account for each submission form), and horizontally (to account for any

possible food category name changes). This is convenient if you need to analyze the food

categories separately but leads to additional data manipulation procedures if you need to,

for example, compare the selection of vegetable versus fruit throughout the entire academic

semester. In that case, the CATX function will be your new (non-furry) best friend! More

about functions in the next section.

Display 5. Food Categories with Different Column Header Names Displayed

Horizontally

METHOD 2: Using the MATCH-MERGE Program Code to Mix Things Up

Another important takeaway about the APPEND TABLE task output is that the rows are

independent of each other. In other words, the output is an accumulation of observations –

as opposed to a condensed version joined by a common identifier. While this is not

problematic for an initial data exploration, carrying out additional types of tasks in the same

process flow results in several data subsets that must then get merged to form a complete

picture. For example, transposing variables to capture a list of unique food pantry users

(see Display 6) and importing secondary sources are two output tables from two distinct

tasks.

6

Display 6. Transposing Variables Creates One Row per Student BUT is a Separate

Data Subset from Secondary Sources in the SAS® Process Flow

Using program code is a good choice for matching and merging disparate data sets. This is

the program code used to match-merge records:

DATA FPUSERMETRICS_AY2020;

 MERGE WORK.RES_YTD_VISITS WORK.TOT_WEEKS;

 BY ID_NUMBER;

RUN;

Let’s dissect this to understand the fundamental components. The first part is to assign a

name for the output table in the DATA step. Next, the MERGE statement must be called

upon to instruct the program what to do with the two input tables. The BY statement

controls the operation of the MERGE statement and sets up special grouping variables. The

BY statement also specifies the column that will have row values sorted. By default, SAS

sorts in ascending order. Finally, all DATA steps must end with a RUN statement and a

semicolon. As illustrated in Display 7, the lines of code must be entered onto the program

editor. Once processed successfully, the output table will be rendered in the process flow.

7

Display 7. Program Code in the DATA Step to MATCH-MERGE Records

FUNCTIONS IN A COMPUTED COLUMN

Computed columns offer the flexibility of performing calculations or change values for the

purposes of broadening the analytic power of existing data. The imported field,

‘SUBMISSION_DATE,’ has an icon next to the name which denotes that it is comprised of

character values (see Display 8). For the purposes of using this field to determine the day of

the week for each submission form, a computed column must be created to transform the

field to a DATETIME value.

Display 8. Transforming Character Values to DATETIME Values via a Function in a

Computed Column

8

Here are the steps to create a computed column:

1. Computed Columns

2. New

3. Advanced Expression

4. Next

The expression used to evaluate the day of the week is,

COMPRESS((PUT(((DATEPART(t1.DATETIME))), WEEKDATE9.)),, ‘s’).

Essentially, the expression is extracting the date part from DATETIME values, changing it a

character format, and uses a modifier to remove spaces from the string. The output are

values such as Monday, Tuesday, Wednesday, etc.

Knowing the best function to use in a computed column is paramount for making the most

use out of the SAS® environment. And with well over 100 pre-defined functions to choose

from, it is bound to supercharge complex processes. It is certainly worth the time to explore

documentation pages for additional functions or to “Frankenstein” new applications.

WRITING PROGRAM CODE TO CALCULATE FREQUENCY OF VISITS

Earlier in this paper, writing program code was demonstrated through a simple MATCH-

MERGE data step. In the current section, program code will be used to quantify the total

number of weeks that each student visited the Binghamton University Food Pantry during

the Fall 2020 academic semester. Therefore, rather than using the SUM function in a

computed column, a few lines of code will be written. But before diving into the statement

components, let’s examine why it is a more favorable approach.

A careful review of the TRANSPOSE function previously shown on Display 6 reveals that

weeks are spread across multiple columns – a necessary step to collate the data as one row

per student. Also, column header names are a concatenation of WKBRKDWN values and the

‘WEEKOF_’ prefix to make the name more descriptive. If the student visited the Food

Pantry, then it is coded as ‘1’ for the corresponding column. Using the SUM function in a

computed column to add up all the values of ‘1’ across the row requires manual entries of

every column header name onto the expression. This is not convenient for two reasons.

Foremost, it is a bit time-consuming to enter every column header name. Most importantly,

however, manual entries are error prone. As data analysts, we want to automate as much

as possible. Writing a few lines of code eliminates the need to revise the expression week

after week.

Display 9. Tabulation of Week Columns

9

This is the program code used to quantify the total food pantry visits per student:

DATA TOT_WEEKS;

 SET WORK.WEEK_COLUMNS;

 TOT_WEEKS=SUM(of WEEKOF_:);

 PUT_ALL_;

RUN;

Line 3 of the code instructs the program to sum up all the values that have a variable

beginning with the prefix, ‘WEEKOF_’ (collectively referred to as a variable-list). Clearly, it

is a much shorter alternative.

WRITING PROGRAM CODE TO EXTRAPOLATE STUDENTS’ FIRST FOOD

PANTRY SERVICE REQUEST

Numerous news outlets made it clear that the onset of the COVID-19 pandemic exacerbated

food insecurity. This was certainly also the case among college students. According to

survey data from a large multi-institutional sample (n = 38,602 students in 26 states), food

insecurity affected 38% of students enrolled in a four-year institution and 44% of students

enrolled in a two-year institution (Goldrick-Rab et al., 2020). While the survey was

administered in the early days of the pandemic, it is very likely that those percentages went

up due to worsening economic conditions coupled with unprecedented challenges faced by

students that did not need food pantry services prior to March 2020. Therefore, tracking

service usage patterns became an important piece of the puzzle towards gauging unmet

needs among college students. The implementation of an online submission form – which

was initially intended to swap in-person visits with a safer alternative to food access for

Binghamton University students – allowed the means to analyze the data from the

standpoint of how usage patterns have changed in response to the pandemic and

contributed to our expanding understanding of students in crisis.

The program code to extrapolate students’ first Food Pantry service request is:

PROC SORT DATA=WORK.RES_CURR_ENROLL;

 BY ID_NUMBER SAS_DATEVALUE;

RUN;

DATA FirstVisit;

 SET WORK.RES_CURR_ENROLL;

 BY ID_NUMBER;

 RETAIN FirstVisitDate;

 IF FIRST.ID_NUMBER THEN DO;

 FirstVisitDate = SAS_DATEVALUE;

 FORMAT FirstVisitDate MMDDYY8.;

 END;

 IF FRIST.ID_NUMBER THEN FREQ_of_BNUM=1;

 ELSE FREQ_of_BNUM+1;

 OUTPUT;

RUN;

It is slightly more complex than the lines of code we have encountered in earlier sections of

this paper. Breaking down the statement components should help.

The program begins with a PROC step to sort the input table – first by ID number and then

by submission date. Next, the DATA step assigns the output table as ‘FirstVisit.’ The BY

statement automatically creates two temporary indicator variables, FIRST.variable and

LAST.variable. A new column is created, ‘FirstVisitDate,’ to capture the information of

interest in the output table. If the observation is one of the temporary indicator variables

10

corresponding to the First.variable (i.e., ‘First.ID_Number’), then it will be equal to the

submission date and formatted to display as a two-digit month, two-digit day, and two-digit

year. It will also sequentially number each observation stemming from the same BY group

in another column, ‘FREQ_of_BNUM.’ If the observation is not one of the temporary

indicator variables, then it will display the same date value until it encounters a new BY

group (i.e., different ID number).

To learn more about how SAS® determines the FIRST.variable and LAST.variable, go to

relevant documentation pages.

Display 10. Program Code to Identify Students’ First Food Pantry Service Request

A rendition of the results for the program code is shown on Display 11.

Display 11. Tabulation of ‘FirstVisitDate’

INTEGRATING DATA VISUALIZATION

Data is great. Visualizations are even better. To be more specific, a good visualization is

better. One of the features of SAS Visual Analytics is that it is intuitive enough to

automatically make chart suggestions. Therefore, expediting reporting capabilities. But, of

course, it’s also possible to create charts or graphs from scratch and to customize pages

according to specific data needs, and comply with intuitional branding.

With the use of SAS Visual Analytics, Food Pantry report metrics contained:

11

• The total service requests per month;

• The number of new users for each subsequent month of the semester;

• A comparison of students living on-campus versus off-campus;

• A breakdown of graduate versus undergraduate students;

• A comparison between the proportion of users based on residency versus the proportion

observed in the entire student population for the given semester;

• Food pantry users who are first-generation students or participate in the Educational

Opportunity Program (EOP);

• And more

It is worth noting that SAS Visual Analytics has interactive capabilities; it can be used to

share the information dynamically by adding control buttons. These buttons enable

administrators to drill down on the data and offer the flexibility for on-demand reporting.

CONCLUSION

The data collected through online submission forms had broader uses. With the assistance

of Student Affairs Assessment, the Binghamton University Food Pantry was able to launch a

survey in late December to determine how the onset of the pandemic affected users and an

infographic was created to compare usage between Fall 2019 and Fall 2020. In addition, the

data has provided the necessary information for grant proposals.

REFERENCES

Cody, R. (2010). SAS® Functions by Example, Second Edition. Cary, NC: SAS Institute Inc.

Foley, M.J. (2009). MERGING vs. JOINING: Comparing the DATA Step in SQL, Chapel Hill,

NC. Available at support.sas.com/resources/papers/proceedings09/036-2009.pdf.

Goldrick-Rab, S., Coca, V., Kienzl, G., Welton, C.R., Dahl, S., & Magnelia, S. (2020).

#RealCollege During the Pandemic: New Evidence on Basic Needs Insecurity and Student

Well-being. Available at https://hope4college.com/wp-

content/uploads/2020/10/Hopecenter_RealCollegeDuringthePandemic_Reupload.pdf

Wicklin, R. (2018). “How to use FIRST.variable and LAST.variable in a BY-group analysis in

SAS.” Accessed February 26, 2021. blogs.sas.com/content/iml/2018/02/26/how-to-use-

first-variable-and-last-variable-in-a-by-group-analysis-in-sas.html.

ACKNOWLEDGMENTS

The author would like to thank Chris Battiston for this mentorship and support.

RECOMMENDED READING

• Stebleton, M. (2020). “Food Insecurity, COVID-19, and Role of Student Affairs Educators.” Journal of
College and Character Connexions, Vol.6, No.3. Available at naspa.org/blog/food-insecurity-covid-19-
and-role-of-student-affairs-educators.

• Center for Disease Control. (n.d.). Food and Food System Resources During COVID-19

Pandemic. Accessed April 9, 2021. cdc.gov/nutrition/resources-publications/food-and-

food-system-resources-during-covid-19-pandemic.html.

CONTACT INFORMATION

12

Your comments and questions are valued and encouraged. Contact the author at:

Zoraya Cruz-Bonilla

Binghamton University

zcruzbon@binghamton.edu

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies.

	Abstract
	Introduction
	Techniques for Wrangling with Data from Multiple Submission Forms
	Aggregating raw data
	METHOD 1: Using the APPEND TABLE Task is as Easy as Pie!
	Gotcha!

	METHOD 2: Using the MATCH-MERGE Program Code to Mix Things Up

	functionS in a computed column
	writing PROGRAM code to calculate frequency of visitS
	writing PROGRAM code to extrapolate students’ first Food pantry Service REquest

	Integrating Data Visualization
	Conclusion
	References
	Acknowledgments
	Recommended Reading
	Contact Information

