

1

Paper 1126-2021

Hello Graphics World: Basic Charts in SAS® , R and Python

Ted Conway, Chicago, IL

ABSTRACT

In this presentation, we'll take a look at what it takes to generate fundamental chart types

using SAS (ODS Graphics), R (ggplot2) and Python (Matplotlib). Attend this session to get a

feel for some of the pluses and minuses of each language's approach. You'll see that there's

often no need to leave the friendly confines of Base SAS to address your charting needs!

INTRODUCTION

Credit: Interview icon designed by visual language on the @NounProject

Some Data Science folks – even SAS users who may be aware that ODS Graphics is behind

much of the graphical procedure output they use – have the perception that SAS doesn’t do

custom chart output a la R and Python. Let’s dispel that notion and show why SAS ODS

Graphics should be in your analytical toolbox if it isn’t already!

HELLO GRAPHICS WORLD

You may be familiar with "Hello World" programs, small programs that simply display the

message "Hello World" in different programming languages (e.g., %put Hello World; in

the SAS macro language). With just a few lines of code, "Hello World" programs help

illustrate the basic syntax of various coding languages.

In the spirt of "Hello World" programs, we'll take a look at some "Hello Graphics World"

programs that illustrate the basic syntax used to create fundamental chart types in SAS, R,

and Python. Each of these languages has a number of graphics frameworks. Here we'll be

using core plotting libraries – ODS graphics for SAS, ggplot2 for R and Matplotlib for Python.

https://thenounproject.com/term/interview/2315139

2

HELLO GRAPHICS WORLD (CONT.)

SAS Scatter Plot

R Scatter Plot

Python Scatter Plot

Here’s a SAS ODS

Graphics code snippet

that produces a simple

scatter plot from a SAS

dataset with just a few

lines of code using PROC

SGPLOT. The syntax will

be very familiar to any

SAS programmer.

Finally, here's some

Python code to generate

a scatter plot from arrays

using Matplotlib. Here,

you’ll note the syntax is

a mix of functional and

object-oriented.

And here’s a simple

scatter plot in R created

from a dataframe using

ggplot2. The gridded

grey background is from

a default R style

template. You’ll note a

more functional syntax

than the above SAS

example. ggplot is a

separate R library, so

you have to specify a

library reference.

3

WHY CREATE CHARTS WITH CODING?

Credit: Harris & Ewing

There are other alternatives for producing graphics, such as Excel and interactive data

visualization software like Power BI, Tableau and SAS Visual Analytics. So why bother with

SAS ODS Graphics, ggplot2, or Matplotlib?

Well, the graphics coding frameworks associated with SAS, R, and Python share common

goals, offering features that enable the automated "hands-off" production of charts from

within a programming language. Among other things, the coding frameworks:

✓ Provide an easy-to-use, flexible, rich feature set for data visualization

✓ Make a wealth of single and multiple-panel chart types available

✓ Facilitate automated chart creation

✓ Promote reproducible, repeatable results

✓ Scale to produce dozens, hundreds, even thousands of precisely-sized and formatted

charts with a consistent “look and feel”

✓ Fully-integrate with the programming language, giving one access to powerful analytic

and data transformation features to make data chart-ready in no time

✓ Enable viewers to quickly gain an understanding of data

✓ Can be readily reviewed for walkthroughs, audits, compliance

HELLO GRAPHICS WORLD – BASIC CHART TYPES

Even though they’re all trying to achieve similar goals and results, there are some big

differences in how the three languages’ graphics frameworks accomplish their magic.

The devil is in the detail, as they say, so in the next few pages we’re going to take a quick

look at how to produce some fundamental chart types – 1. Bar Chart, 2. Scatter/Bubble

Plot, 3. Histogram, 4. Boxplot, 5. Series/Line Plot – using SAS, R and Python to illustrate

some differences in library requirements, data sources and prep, grammar/syntax, etc.

Because my R and Python knowledge stems largely from books and online courses, to be

fair to those languages I’ve tapped into R/Python practitioner Dario Radečić’s benchmark

code from Matplotlib vs. ggplot2: Which to Choose for 2020 and Beyond? for examples

comparing Matplotlib and ggplot2, making some changes to the code to get it running using

my datasources (the SASHELP CARS and AIR sample datasets – see Appendix for info) and

on my laptop. I then added my own SAS ODS graphics versions of the code for comparison.

Now, let’s take a look at how things compare!

http://www.loc.gov/pictures/item/2016873162/
https://towardsdatascience.com/matplotlib-vs-ggplot2-which-to-choose-for-2020-and-beyond-ced5e294bfdc

4

HELLO GRAPHICS WORLD – BAR CHART

library(ggplot2, plyr)

options(repr.plot.width=7.5, repr.plot.height=4.375)

df <-
read.csv('https://raw.githubusercontent.com/tedconway/sasgf/master/cars.csv')

df$Cylinders <- factor(df$Cylinders)

ggplot(df, aes(x=Cylinders)) +

 geom_bar(fill='#087E8B', color='#02454d') +

 ggtitle('Bar chart of CYL') +

 xlab('Number of cylinders') + ylab('Count')

import pandas as pd, matplotlib.pyplot as plt, matplotlib.dates as mdates

df=pd.read_csv('https://raw.githubusercontent.com/tedconway/sasgf/master/car
s.csv')

bar_counts = df['Cylinders'].value_counts().sort_index()

bar_x = df['Cylinders'].value_counts().sort_index().index

bar_height = df['Cylinders'].value_counts().sort_index().values

plt.figure(figsize=(12, 7))

plt.bar(x=bar_x.astype(str), height=bar_height, color='#087E8B', ec='#02454d')

plt.title('Bar chart of CYL')

plt.xlabel('Number of cylinders')

plt.ylabel('Count');

`

ods graphics / height=4.375in width=7.5in noborder antialias;

proc sgplot data=sashelp.cars;

title justify=left 'Bar chart of CYL';

vbar cylinders / fillattrs=(color=cX087E8B) outlineattrs=(color=cx02454d)

datalabel;

label cylinders='Number of Cylinders'; yaxis label='Count’;

BAR CHART

• Plus signs (“+”) used to separate various chart components

• Custom colors specified as hex RGB constants with a # prefix

• Additional statements needed to summarize counts & resequence

values/labels to display the x-axis ticks in the desired order

• Bars labeled with the addition of a simple keyword (DATALABEL)

• Like R/Python examples, custom width/height specified

5

HELLO GRAPHICS WORLD – SCATTER/BUBBLE PLOT

library(ggplot2, plyr)

options(repr.plot.width=7.5, repr.plot.height=4.375)

df <-
read.csv('https://raw.githubusercontent.com/tedconway/sasgf/master/cars.csv')

ggplot(df, aes(x=Horsepower, y=MPG_City)) +

 geom_point(aes(size=Cylinders, color=Cylinders)) +

 ggtitle('Scatter plot of HP vs MPG') +

 xlab('Horse power') + ylab('Miles per gallon')

import pandas as pd, matplotlib.pyplot as plt, matplotlib.dates as mdates

df=pd.read_csv('https://raw.githubusercontent.com/tedconway/sasgf/master/car
s.csv')

colors = []

for val in df['Cylinders']:

 if val <= 4: colors.append('#17314c')

 elif val <= 6: colors.append('#326b99')

 else: colors.append('#54aef3')

plt.figure(figsize=(12, 7))

plt.scatter(x=df['Horsepower'], y=df['MPG_City'], s=df['Cylinders'] * 20,
c=colors)

plt.title('Scatter plot of HP vs MPG')

plt.xlabel('Horse power')

plt.ylabel('Miles per gallon');

`

ods graphics / height=4.375in width=7.5in noborder antialias;

proc sgplot data=sashelp.cars;

title justify=left 'Scatter plot of HP vs MPG';

bubble x=horsepower y=mpg_city size=horsepower /

 colorresponse=horsepower colormodel=(darkblue dodgerblue);

SCATTER/BUBBLE PLOT

• Marker size and color based on number of cylinders

• Automatically generates legends for both colors and bubble sizes

• Need to specify hex RGB values in a Python list to get color range

• No legends are automatically generated

• Generates range of colors automatically from beginning/end values

• Creates a legend for colors, but not for bubble sizes

6

HELLO GRAPHICS WORLD – HISTOGRAM

library(ggplot2, plyr)

options(repr.plot.width=7.5, repr.plot.height=4.375)

df <-
read.csv('https://raw.githubusercontent.com/tedconway/sasgf/master/cars.csv')

ggplot(df, aes(x=MPG_City)) +

 geom_histogram(bins=15, fill='#087E8B', color='#02454d') +

 ggtitle('Histogram of MPG') + xlab('MPG') + ylab('Count')

import pandas as pd, matplotlib.pyplot as plt, matplotlib.dates as mdates

df=pd.read_csv('https://raw.githubusercontent.com/tedconway/sasgf/master/car
s.csv')

plt.figure(figsize=(12, 7))

plt.hist(df['MPG_City'], bins=15, color='#087E8B', ec='#02454d')

plt.title('Histogram of MPG')

plt.xlabel('MPG')

plt.ylabel('Count');

`

ods graphics / height=4.375in width=7.5in noborder antialias;

proc sgplot data=sashelp.cars;

title justify=left 'Histogram of MPG';

histogram mpg_city / nbins=15 scale=count fillattrs=(color=cX087E8B)

datalabel=count;

HISTOGRAM

• Code needed to generate a 15-bin histogram is straightforward
• Matplotlib also shines when it comes to histograms

• SAS ODS Graphics also handles histograms with aplomb

• DATALABEL option used to add counts to bars

7

HELLO GRAPHICS WORLD – BOXPLOT

library(ggplot2, plyr)

options(repr.plot.width=7.5, repr.plot.height=4.375)

df <-
read.csv('https://raw.githubusercontent.com/tedconway/sasgf/master/cars.csv')

ggplot(df, aes(x=as.factor(Cylinders), y=MPG_City)) +

 geom_boxplot(fill='#087E8B', alpha=0.6) +

 ggtitle('Boxplot of CYL vs MPG') +

 xlab('Number of cylinders') + ylab('Miles per gallon')

import pandas as pd, matplotlib.pyplot as plt, matplotlib.dates as mdates

df=pd.read_csv('https://raw.githubusercontent.com/tedconway/sasgf/master/car
s.csv')

dfCylMPG = []

unqCyl=df[df.Cylinders.notnull()]['Cylinders'].unique().tolist()

unqCyl.sort()

for x in unqCyl:

 dfCylMPG.append(df[df['Cylinders'] == x]['MPG_City'].tolist())

fig = plt.figure(1, figsize=(12, 7))

ax = fig.add_subplot(111)

bp = ax.boxplot(dfCylMPG, patch_artist=True)

for box in bp['boxes']:

 box.set(facecolor='#087E8B', alpha=0.6, linewidth=2)

for whisker in bp['whiskers']:

 whisker.set(linewidth=2)

for median in bp['medians']:

 median.set(color='black', linewidth=3)

ax.set_title('Boxplot of CYL vs MPG')

ax.set_xlabel('Number of cylinders')

ax.set_ylabel('Miles per galon')

ax.set_xticklabels(unqCyl)

`

ods graphics / height=4.375in width=7.5in noborder antialias;

proc sgplot data=sashelp.cars;

title justify=left 'Boxplot of CYL vs MPG';

vbox mpg_city / category=cylinders fillattrs=(color=cX33b3a6)

 outlierattrs=(color=cX33b3a6 symbol=circlefilled);

BOXPLOT

• Alpha parameter makes more transparent turquoise, so lines won’t

be as obscured

• PROC SGPLOT doesn’t support an alpha value for boxplot fill color,

so an RGB value for a lighter shade of turquoise was specified

instead

• Trying to make Matplotlib match R styling is surprising involved

8

HELLO GRAPHICS WORLD – SERIES/LINE PLOT

library(ggplot2, plyr)

options(repr.plot.width=7.5, repr.plot.height=4.375)

df <-
read.csv('https://raw.githubusercontent.com/tedconway/sasgf/master/air.csv')

df$MONTH <- as.Date(df$DATE)

ggplot(df, aes(x=MONTH, y=AIR)) +

 geom_line(size=1.5, color='#087E8B') +

 scale_x_date(date_breaks='1 year', date_labels='%Y') +

 ggtitle('Line chart of Airline passengers') +

 xlab('Year') + ylab('Count')

import pandas as pd, matplotlib.pyplot as plt, matplotlib.dates as mdates

df=pd.read_csv('https://raw.githubusercontent.com/tedconway/sasgf/master/air.
csv')

df['DATE'] = df['DATE'].apply(lambda x: pd.to_datetime(x))

fig = plt.figure(1, figsize=(12, 7))

ax = fig.add_subplot(111)

line = ax.plot(df['DATE'], df['AIR'], lw=2.5, color='#087E8B')

formatter = mdates.DateFormatter('%Y')

ax.xaxis.set_major_formatter(formatter)

locator = mdates.YearLocator()

ax.xaxis.set_major_locator(locator)

ax.set_title('Line chart of Airline passengers')

ax.set_xlabel('Year')

ax.set_ylabel('Count');

`

ods graphics / height=4.375in width=7.5in noborder antialias;

proc sgplot data=sashelp.air;

title justify=left 'Line chart of Airline passengers';

series x=date y=air / lineattrs=(thickness=3pt color=cX087E8B);

label date='Year' air='Count';

SERIES/LINE PLOT

• Line thickness increased from default using SIZE parameter

• Formatting features used to display 4-digit year values for x-axis

ticks

• Matplotlib also has to jump through a few hoops to produce x-axis

ticks with each year

• SAS ODS Graphics generates desired x-ticks by default

9

TRADEOFFS

Even Edward Tufte – the "Father of Data Visualization" – is intrigued by the time-savings

possible with SAS/R/Python data visualization frameworks, while cautioning that some

tradeoffs are involved.

Indeed, there are a number of factors to balance when considering which programming

language and graphics framework to use for data visualization, as well as which features to

use within a given framework. This includes:

✓ Time, effort and cost

✓ Presentation quality and “Wow!” factor

✓ Complexity, maintenance, and auditability

✓ Interactivity

✓ Target audience and medium

While custom charts produced using the latest-and-greatest graphics libraries may indeed

dazzle, the additional complexity may result in errors and increased maintenance costs

later.

Similarly, while some may delight in exploring interactive visualizations all day in search of

“aha!” moments, such is not always going to be the case for the recipients of FDA, FIDC,

and academic paper submissions, who are likely to also want you to get straight to your

points with a set of nicely-prepared static charts that pre-anticipate questions and save

them time.

Not to stifle anyone’s creativity, but sometimes you have to consider your audience – and

your budget!

10

CONCLUSION

So, what should you use for graphics?

Well, the answer to that depends on the situation of course, but hopefully we’ve at least

dispelled the notion that SAS can’t create graphics as easily as R and Python.

Indeed, with SAS ODS Graphics and Graph Template Language (GTL), you’ll find that

there’s often no need to leave the friendly confines of Base SAS for your charting needs!

REFERENCES AND RECOMMENDED READING

Matplotlib. “Matplotlib: Visualization with Python.” Available at https://matplotlib.org/

SAS. “SAS ODS Graphics: Procedures Guide.” Available at

http://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/grstatproc/titlepage.htm

SAS. “SAS Graph Template Language: Reference.” Available at

http://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/grstatgraph/titlepage.htm

Tidyverse. “ggplot2.” Available at https://ggplot2.tidyverse.org/

ACKNOWLEDGMENTS

Thanks to Dario Radečić, whose benchmark code in Matplotlib vs. ggplot2: Which to Choose

for 2020 and Beyond? (Medium) was tapped to provide the Matplotlib and ggplot2

fundamental chart examples for comparison to SAS ODS Graphics. Any errors made in

translation are mine!

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Ted Conway

ted.j.conway@gmail.com

@vivasasvegas (Twitter)

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies.

EASY IS EASY • HARD IS • •
 • RICH FEATURE SET • WEALTH OF SINGLE AND MULTIPLE-PANEL CHART TYPES •
AUTOMATION • REPRODUCIBLE, REPEATABLE RESULTS • PRECISE POSITIONING, SIZING, AND
FORMATTING • Q • • SCALES • MINIMAL
DEPENDENCY WORRIES • CONSISTENT LOOK-AND-FEEL • FULL •
 • OUGH, AUDIT, MAINTAIN, ENHANCE

https://matplotlib.org/
http://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/grstatproc/titlepage.htm
http://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/grstatgraph/titlepage.htm
https://ggplot2.tidyverse.org/
https://medium.com/@radecicdario
https://towardsdatascience.com/matplotlib-vs-ggplot2-which-to-choose-for-2020-and-beyond-ced5e294bfdc
https://towardsdatascience.com/matplotlib-vs-ggplot2-which-to-choose-for-2020-and-beyond-ced5e294bfdc

11

APPENDIX – DATA USED IN PROGRAMS

The SAS code used the CARS and AIR sample SAS datasets provided with SAS in the

SASHELP library.

The R and Python code used ,csv versions of the same data, created using PROC EXPORT.

data air;

set sashelp.air;

format date yymmddd10.;

proc export data=air dbms=csv outfile=“…/air.csv" replace;

proc export data=sashelp.cars dbms=csv outfile=“…/cars.csv" replace;

