
1

Paper 1110-2021

Copying Data Between SAS ® and JSON Files
Bruce Gilsen, Federal Reserve Board, Washington, DC

ABSTRACT
JavaScript Object Notation (JSON) is an open standard file format and data interchange format used for
some of the same purposes as XML. More information about JSON is readily available on the internet.
Starting in SAS ® 9.4, you can copy SAS data sets to JSON files with PROC JSON. Starting in SAS
9.4TS1M4, you can copy JSON files to SAS data sets with the JSON engine.
This paper provides basic information and some relatively simple examples. It also discusses ongoing
research on how to copy JSON files into SAS in an automated way.

INTRODUCTION
JavaScript Object Notation (JSON) is an open standard file format and data interchange format used for
some of the same purposes as XML. More information about JSON is readily available on the internet.
Starting in SAS 9.4, you can copy SAS data sets to JSON files with PROC JSON. Starting in SAS
9.4TS1M4, you can copy JSON files to SAS data sets with the JSON engine.
Copying data from SAS to JSON with PROC JSON is relatively straightforward. Copying data from JSON
to SAS can be much more complicated in some cases. To the extent possible, the examples in this
paper copy JSON files to SAS in an automated way. Determining how to copy additional types of JSON
f iles into SAS in an automated way is an area of ongoing research.
Reading JSONL files into SAS and the JSONPP DATA step function, which converts a single record
JSON f ile to a “pretty” JSON file, are also discussed.
This paper provides basic information and some examples that use small amounts of data.

COPY A SAS DATA SET TO A JSON FILE: SIMPLE EXAMPLES
First, we’ll copy a SAS data set to a JSON file with a common set of options. Then, we’ll copy the same
data set to JSON with different option values to show how the JSON file changes.

Data set ONE has the following values.
 Obs country city income date

 1 usa chicago 100 20201001

 2 usa cleveland 200 20201101

 3 canada montreal 300 20201201

It was created with the following code. Note that DATE contains SAS date values.
 data one;

 length country $10 city $10;

 input country $ city $ income date yymmdd8.;

 format date yymmddn8.;

2

 datalines;

 usa chicago 100 20201001

 usa cleveland 200 20201101

 canada montreal 300 20201201

 ;run;

EXAMPLE 1. COPY SAS DATA SET TO A JSON FILE WITH PROC JSON

This code copies SAS data set ONE to JSON file /my/home/m1xxx00/test1.json.
 proc json out="/my/home/m1xxx00/test1.json" pretty nosastags;

 export one;

 run;

JSON f ile test1.json has the following contents.
 [

 {

 "country": "usa",

 "city": "chicago",

 "income": 100,

 "date": "20201001"

 },

 {

 "country": "usa",

 "city": "cleveland",

 "income": 200,

 "date": "20201101"

 },

 {

 "country": "canada",

 "city": "montreal",

 "income": 300,

 "date": "20201201"

 }

]

COMMON PROC JSON STATEMENT OPTIONS
PROC JSON statement options include the following. The f irst two options were used in the code above.

3

• PRETTY (versus NOPRETTY, the default) writes the JSON file in a human-readable format with
indentation and multiple lines. NOPRETTY writes the entire JSON file as one long record.

• NOSASTAGS (versus SASTAGS, the default) suppresses SAS metadata at the top of the JSON

f ile. For example, omitting NOSASTAGS from the above code adds the following text to the top
of the JSON file, along with a closing curly bracket (}) at the bottom.

 {
 "SASJSONExport": "1.0 PRETTY",

 "SASTableData+ONE":

• FMTCHARACTER/NOFMTCHARACTER, FMTDATETIME/NOFMTDATETIME, and

FMTNUMERIC/NOFMTNUMERIC specify whether to apply already-assigned character,
date/datetime/time, or numeric formats to variables written to the JSON file. Defaults are
NOFMTCHARACTER, FMTDATETIME, and NOFMTNUMERIC.

• TRIMBLANKS (the default) versus NOTRIMBLANKS specifies that trailing blanks are removed

f rom character data written to the JSON file.

To illustrate the options, here are examples that write data set ONE to a JSON file and the resulting
JSON f iles.

EXAMPLE 2. INCLUDE SAS METADATA AT THE TOP OF THE JSON FILE
 proc json out="/my/home/m1xxx00/test2.json" pretty;

 export one;

 run;

 {

 "SASJSONExport": "1.0 PRETTY",

 "SASTableData+TWO": [

 {

 "country": "usa",

 "city": "chicago",

 "income": 100,

 "date": "20201001"

 },

 {

 "country": "usa",

 "city": "cleveland",

 "income": 200,

 "date": "20201101"

 },

 {

4

 "country": "canada",

 "city": "montreal",

 "income": 300,

 "date": "20201201"

 }

]

 }

EXAMPLE 3. WRITE THE JSON FILE AS ONE LONG RECORD
 proc json out="/my/home/m1xxx00/test3.json" nosastags;

 export one;

 run;

[{"country":"usa","city":"chicago","income":100,"date":"20201001"},{"country"
:"usa","city":"cleveland","income":200,"date":"20201101"},{"country":"canada"
,"city":"montreal","income":300,"date":"20201201"}]

EXAMPLE 4. DON’T USE ASSOCIATED SAS DATE FORMATS WHEN WRITING SAS DATE
VALUES AND DON’T REMOVE TRAILING BLANKS FROM CHARACTER VARIABLES
In this case, the values of DATE are not formatted and character variables have trailing blanks.
 proc json out="/my/home/m1xxx00/test4.json" pretty nosastags nofmtdt

 notrimblanks;

 export one;

 run;

 [

 {

 "country": "usa ",

 "city": "chicago ",

 "income": 100,

 "date": 22189

 },

 {

 "country": "usa ",

 "city": "cleveland ",

 "income": 200,

 "date": 22220

 },

 {

5

 "country": "canada ",

 "city": "montreal ",

 "income": 300,

 "date": 22250

 }

]

The simple examples above could suffice for basic usage. The PROC JSON documentation contains
much more detailed PROC JSON information, including how to control the containers in a JSON file and
organize data in a nested fashion, and includes examples of more complex output operations.

COPY A JSON FILE INTO SAS

NESTED VERSUS NON-NESTED JSON FILES
A simply organized JSON file like test1.json created in the previous section does not have nested levels.
The layout corresponds somewhat to the rectangular nature of a SAS data set.

Here is the f irst object of JSON file test2.json, used in Example 2 below. It is nested because the
INCOMETAX and SALESTAX keys are nested inside the TAX key. This layout does not directly
correspond to the rectangular nature of a SAS data set.
 [

 {

 "country": "usa",

 "city": "chicago",

 "income": 100,

 "tax": {

 "incometax": 10,

 "salestax": 5

 }

 },

Reading a non-nested JSON file into SAS is much simpler than reading a nested JSON file. When a
JSON f ile is read, ordinal variables (variables whose names start with ORDINAL_) provide a relationship
between the generated data sets. For non-nested JSON files, the ordinal variables can be dropped, but
for nested JSON files, they can sometimes be used to merge the generated data sets and get a
meaningful result.

READING JSON FILES INTO SAS: AUTOMATING THE PROCESS
One objective in writing this paper was to come up with ways to automate the process of reading JSON
f iles into SAS. At present, this is an area of ongoing research. The examples reflect the results to date
and may be updated in future versions of this paper. Suggestions for how to easily read JSON files by
readers of this paper would be greatly appreciated.

https://documentation.sas.com/?docsetId=proc&docsetTarget=p0ie4bw6967jg6n1iu629d40f0by.htm&docsetVersion=9.4&locale=en

6

• Examples 1-3 show JSON files that can be read in a relatively automated fashion.
• Example 4 shows a JSON file that requires one change to be read in a relatively automated way.
• Example 5 shows a JSON file that appears to be most easily read in a different manner but could

be somewhat automated.
• Example 6 shows a JSON file where it appears that having specific knowledge about the JSON

f ile is needed to get the desired result, making it hard to automate.

The examples all use a small amount of data, but much larger files with the same characteristics should
exhibit the same behavior as these small files.

EXAMPLE 1. READ A NON-NESTED JSON FILE INTO SAS
Read JSON f ile test1.json, created above, into SAS. It has the following contents.
 [

 {

 "country": "usa",

 "city": "chicago",

 "income": 100,

 "date": "20201001"

 },

 {

 "country": "usa",

 "city": "cleveland",

 "income": 200,

 "date": "20201101"

 },

 {

 "country": "canada",

 "city": "montreal",

 "income": 300,

 "date": "20201201"

 }

]

First, execute the following steps.

• Specify the SAS library where SAS files will be copied (library XXX).
• Remove any existing SAS files with PROC DATASETS (not necessary if the library is empty).
• Access the JSON file test1.json with a LIBNAME statement.
• Use PROC COPY to copy the JSON file contents to multiple SAS data sets in library XXX.
• List the data sets in XXX with PROC DATASETS (output not shown to conserve space). Data

sets ALLDATA and ROOT are created.
• ALLDATA is always created and contains all the JSON data in one data set. One or more other

SAS data sets containing components of the JSON data are also created.

 libname xxx '/my/home/m1xxx00/example31'; /* SAS library */

7

 proc datasets library=xxx kill; /* Remove prior SAS files */

 run;quit;

 libname ex31 json '/my/home/m1xxx00/test1.json'; /* JSON file */

 proc copy in=ex31 out=xxx;

 run;

 proc datasets lib=xxx;

 run;quit;

Data sets ALLDATA and ROOT have the following values.

 ALLDATA

 Obs P P1 V Value

 1 1 country 1 usa

 2 1 city 1 chicago

 3 1 income 1 100

 4 1 date 1 20201001

 5 1 country 1 usa

 6 1 city 1 cleveland

 7 1 income 1 200

 8 1 date 1 20201101

 9 1 country 1 canada

 10 1 city 1 montreal

 11 1 income 1 300

 12 1 date 1 20201201

 ROOT

 Obs ordinal_root country city income date

 1 1 usa chicago 100 20201001

 2 2 usa cleveland 200 20201101

 3 3 canada montreal 300 20201201

The JSON f ile is not nested, so we can just drop the ORDINAL_ variables from data set ROOT to create
a f inal data set.
 data xxx.root;

 set xxx.root (drop=ordinal_:);

 run;

Data set ROOT now has the following values.

8

 Obs country city income date

 1 usa chicago 100 20201001

 2 usa cleveland 200 20201101

 3 canada montreal 300 20201201

EXAMPLE 2. READ A NESTED JSON FILE WITH TWO LEVELS INTO SAS
JSON f ile test2.json is nested; the INCOMETAX and SALESTAX keys are nested inside the TAX key.
 [

 {

 "country": "usa",

 "city": "chicago",

 "income": 100,

 "tax": {

 "incometax": 10,

 "salestax": 5

 }

 },

 {

 "country": "usa",

 "city": "cleveland",

 "income": 200,

 "tax": {

 "incometax": 20,

 "salestax": 10

 }

 },

 {

 "country": "canada",

 "city": "montreal",

 "income": 300,

 "tax": {

 "incometax": 30,

 "salestax": 15

 }

 }

]

9

To copy test2.json into a SAS data set, first execute the following steps.
• Specify the SAS library where SAS files will be copied (library XXX).
• Remove any existing SAS files with PROC DATASETS. This ensures that the list of data set

names is generated correctly by PROC SQL below.
• Access the JSON file test2.json with a LIBNAME statement.

o AUTOMAP=CREATE generates a JSON map and writes it to the location specified by
the MAP= option.

o MAP= specifies the location of the JSON map file.
o ORDINALCOUNT=ALL specifies that all possible ordinal variables, which provide a

relationship between the generated data sets, are generated. ORDINALCOUNT’s default
value is 2, but we need all possible variables to merge the generated data sets.

• Use PROC COPY to copy the JSON file contents to multiple SAS data sets in library XXX.
• List the data sets in XXX with PROC DATASETS (output not shown to conserve space). Data

sets ALLDATA, ROOT, and TAX are created

 libname xxx '/my/home/m1xxx00/example32'; /* SAS library */

 proc datasets library=xxx kill; /* Remove prior SAS files */

 run;quit;

 libname ex32 json '/my/home/m1xxx00/test2.json'

 map='user32.map' automap=create ordinalcount=all; /* JSON file */

 proc copy in=ex32 out=xxx;

 run;

 proc datasets lib=xxx;

 run;quit;

Data sets ALLDATA, ROOT, and TAX have the following values.

 ALLDATA

 Obs P P1 P2 V Value

 1 1 country 1 usa

 2 1 city 1 chicago

 3 1 income 1 100

 4 1 tax 0

 5 2 tax incometax 1 10

 6 2 tax salestax 1 5

 7 1 country 1 usa

 8 1 city 1 cleveland

 9 1 income 1 200

 10 1 tax 0

 11 2 tax incometax 1 20

 12 2 tax salestax 1 10

 13 1 country 1 canada

 14 1 city 1 montreal

10

 15 1 income 1 300

 16 1 tax 0

 17 2 tax incometax 1 30

 18 2 tax salestax 1 15

 ROOT

 Obs ordinal_root country city income

 1 1 usa chicago 100

 2 2 usa cleveland 200

 3 3 canada montreal 300

 TAX

 Obs ordinal_root ordinal_tax incometax salestax

 1 1 1 10 5

 2 2 2 20 10

 3 3 3 30 15

Now execute the following steps.
• Read a DICTIONARY table to create macro variable ALL_BUT_ALLDATA containing a space-

separated list of all SAS data sets in library XXX except ALLDATA, with each data set name
preceded by xxx. In this example, ALL_BUT_ALLDATA’s value is as follows:
 xxx.ROOT xxx.TAX

• Merge all data sets in library XXX except ALLDATA by ORDINAL_ROOT.

 proc sql noprint ;

 select cats("xxx.", memname) into :all_but_alldata separated by " "

 from dictionary.tables

 where libname = "XXX" and memname ne "ALLDATA"

 ;

 quit ;

 data xxx.finaldata2;

 merge &all_but_alldata;

 by ordinal_root;

 drop ordinal_:;

 run;

Data set FINALDATA2 has the following values.
 Obs country city income incometax salestax

 1 usa chicago 100 10 5

 2 usa cleveland 200 20 10

11

 3 canada montreal 300 30 15

EXAMPLE 3. READ A NESTED JSON FILE WITH THREE LEVELS INTO SAS
JSON f ile test3.json is nested with three levels. It’s not required that all possible values be present.
MONTREAL doesn’t have estimated income tax or a second car tax payment (perhaps the car was sold
mid-year).
 [

 {

 "country": "usa",

 "city": "chicago",

 "income": 100,

 "tax": {

 "incometax": {

 "incometax_estimated": 3,

 "incometax_withheld": 7

 },

 "salestax": 5,

 "cartax": {

 "cartax_h1": 2,

 "cartax_h2": 2

 }

 }

 },

 {

 "country": "usa",

 "city": "cleveland",

 "income": 200,

 "tax": {

 "incometax": {

 "incometax_estimated": 6,

 "incometax_withheld": 14

 },

 "salestax": 10,

 "cartax": {

 "cartax_h1": 3,

 "cartax_h2": 3

 }

 }

12

 },

 {

 "country": "canada",

 "city": "montreal",

 "income": 300,

 "tax": {

 "incometax": {

 "incometax_withheld": 30

 },

 "salestax": 15,

 "cartax": {

 "cartax_h1": 2

 }

 }

 }

]

To copy test3json into a SAS data set, first repeat the previous example’s steps that specify the SAS
library and JSON file, copy the JSON file contents to multiple SAS data sets, and list the data sets. See
the previous example for an explanation of the code.
 libname xxx '/my/home/m1xxx00/example33'; /* SAS library */

 proc datasets library=xxx kill; /* Remove prior SAS files */

 run;quit;

 libname ex33 json '/my/home/m1xxx00/test3.json'

 map='user33.map' automap=create ordinalcount=all; /* JSON file */

 proc copy in=ex33 out=xxx;

 run;

 proc datasets lib=xxx;

 run;quit;

The SAS library contains data sets ALLDATA, ROOT, TAX, TAX_CARTAX, and TAX_INCOMETAX; all
but ALLDATA are displayed below. Missing values for INCOMETAX_ESTIMATED and CARTAX_H2 in
the third observation of the respective data sets reflect values not present in the JSON file.
 ROOT

 Obs ordinal_root country city income

 1 1 usa chicago 100

 2 2 usa cleveland 200

 3 3 canada montreal 300

 TAX

13

 Obs ordinal_root ordinal_tax salestax

 1 1 1 5

 2 2 2 10

 3 3 3 15

 TAX_INCOMETAX

 ordinal_ ordinal_ ordinal_ incometax_ incometax_

 Obs root tax incometax estimated withheld

 1 1 1 1 3 7

 2 2 2 2 6 14

 3 3 3 3 . 30

 TAX_CARTAX

 ordinal_ ordinal_ ordinal_ cartax_ cartax_

 Obs root tax cartax h1 h2

 1 1 1 1 2 2

 2 2 2 2 3 3

 3 3 3 3 2 .

Now repeat the previous example’s steps that create a macro variable containing a space-separated list
of all SAS data sets in library XXX except ALLDATA with each data set name preceded by xxx, and
merge those data sets by ORDINAL_ROOT. The macro variable’s value is as follows:

xxx.ROOT xxx.TAX xxx.TAX_CARTAX xxx.TAX_INCOMETAX

 proc sql noprint ;

 select cats("xxx.", memname) into :all_but_alldata separated by " "

 from dictionary.tables

 where libname = "XXX" and memname ne "ALLDATA"

 ;

 quit ;

 data xxx.finaldata3;

 merge &all_but_alldata;

 by ordinal_root;

 drop ordinal_:;

 run;

14

Data set FINALDATA3 has the following values.
 cartax_ cartax_ incometax_ incometax_

 Obs country city income salestax h1 h2 estimated withheld

 1 usa chicago 100 5 2 2 3 7

 2 usa cleveland 200 10 3 3 6 14

 3 canada montreal 300 15 2 . . 30

EXAMPLE 4. READ A JSON FILE WITH NAME COLLISIONS AND RETAINED VALUES
The SAS® 9.4 Global Statements: Reference (LIBNAME Statement: JSON Engine chapter, Creating and
Editing a JSON MAP Data section) contains the following JSON file, which we’ll call test4.json.
 [

 {

 "type": "Full",

 "info" : [

 { "name" : "Eric" , "age" : 21, "phone" : [

 { "type" : "cell", "number" : "540-555-2377" },

 { "type" : "home", "number" : "540-555-0120" }

]

 },

 { "name" : "John", "age" : 22, "phone" : [

 { "type" : "cell", "number" : "919-555-6665" },

 { "type" : "home", "number" : "336-555-0140" }

]

 }

]

 },

 {

 "type": "Part",

 "info" : [

 { "name" : "Bjorn" , "age" : 27, "phone" : [

 { "type" : "cell", "number" : "720-555-8377" },

 { "type" : "burner", "number" : "720-555-2877" },

 { "type" : "home", "number" : "720-555-0194" }

]

 }

]

 }

]

15

Let’s repeat the previous example’s steps that specify the SAS library and JSON file, copy the JSON file
contents to multiple SAS data sets, and list the data sets.
 libname xxx '/my/home/m1xxx00/example34'; /* SAS library */

 proc datasets library=xxx kill; /* Remove prior SAS files */

 run;quit;

 libname ex34 json '/my/home/m1xxx00/test4.json'

 map='user34.map' automap=create ordinalcount=all; /* JSON file */

 proc copy in=ex34 out=xxx;

 run;

 proc datasets lib=xxx;

 run;quit;

Data sets ALLDATA, ROOT, INFO, and INFO_PHONE are created, as follows.
 ALLDATA

 Obs P P1 P2 P3 V Value

 1 1 type 1 Full

 2 1 info 0

 3 2 info name 1 Eric

 4 2 info age 1 21

 5 2 info phone 0

 6 3 info phone type 1 cell

 7 3 info phone number 1 540-555-2377

 8 2 info phone 0

 9 3 info phone type 1 home

 10 3 info phone number 1 540-555-0120

 11 1 info 0

 12 2 info name 1 John

 13 2 info age 1 22

 14 2 info phone 0

 15 3 info phone type 1 cell

 16 3 info phone number 1 919-555-6665

 17 2 info phone 0

 18 3 info phone type 1 home

 19 3 info phone number 1 336-555-0140

 20 1 type 1 Part

 21 1 info 0

 22 2 info name 1 Bjorn

 23 2 info age 1 27

16

 24 2 info phone 0

 25 3 info phone type 1 cell

 26 3 info phone number 1 720-555-8377

 27 2 info phone 0

 28 3 info phone type 1 burner

 29 3 info phone number 1 720-555-2877

 30 2 info phone 0

 31 3 info phone type 1 home

 32 3 info phone number 1 720-555-0194

 ROOT

 Obs ordinal_root type

 1 1 Full

 2 2 Part

 INFO

 Obs ordinal_root ordinal_info name age

 1 1 1 Eric 21

 2 1 2 John 22

 3 2 3 Bjorn 27

 INFO_PHONE

 Obs ordinal_root ordinal_info ordinal_phone type number

 1 1 1 1 cell 540-555-2377

 2 1 1 2 home 540-555-0120

 3 1 2 3 cell 919-555-6665

 4 1 2 4 home 336-555-0140

 5 2 3 5 cell 720-555-8377

 6 2 3 6 burner 720-555-2877

 7 2 3 7 home 720-555-0194

Two things distinguish this JSON file from the previous examples.

• There are two different TYPE properties: TYPE of employee (Full or Part) and TYPE of phone
(cell, burner, home). This kind of name collision would interfere with merging values from the
component data sets, as done in the previous examples.

• The same values are used in multiple observations in the SAS data set. For example, in the first
data object, there are two full-time employees, Eric and John, who each have two phones. In the
f inal SAS data set below, the TYPE (renamed to TYPEEMP, below) is “Full” in the first four
observations, and NAME is “Eric” and AGE is “21” in the first two observations.

17

The approach taken in the SAS LIBNAME Statement: JSON Engine documentation is to manually edit
the JSON map file and make multiple changes. We’ll take the following approach.

• Manually rename the TYPE property for type of employee to TYPEEMP in the JSON file.
• First merge INFO and INFO_PHONE by ORDINAL_INFO, then merge that data set with ROOT

by ORDINAL_ROOT.

Af ter repeating the code above for the modified JSON file (not shown), submit the following code.
 data xxx.finaldata4;

 merge xxx.info xxx.info_phone;

 by ordinal_info;

 run;

 data xxx.finaldata4;

 merge xxx.finaldata4 xxx.root;

 by ordinal_root;

 drop ordinal_:;

 run;

Data set FINALDATA4 after the first merge has the following values.
 ordinal_ ordinal_ ordinal_

 Obs root info name age phone type number

 1 1 1 Eric 21 1 cell 540-555-2377

 2 1 1 Eric 21 2 home 540-555-0120

 3 1 2 John 22 3 cell 919-555-6665

 4 1 2 John 22 4 home 336-555-0140

 5 2 3 Bjorn 27 5 cell 720-555-8377

 6 2 3 Bjorn 27 6 burner 720-555-2877

 7 2 3 Bjorn 27 7 home 720-555-0194

Data set FINALDATA4 after the second merge has the following values.
 Obs name age type number typeemp

 1 Eric 21 cell 540-555-2377 Full

 2 Eric 21 home 540-555-0120 Full

 3 John 22 cell 919-555-6665 Full

 4 John 22 home 336-555-0140 Full

 5 Bjorn 27 cell 720-555-8377 Part

 6 Bjorn 27 burner 720-555-2877 Part

 7 Bjorn 27 home 720-555-0194 Part

To test for name collisions, we can check if any variable names are in more than one “P variable” (P1, P2,
and P3 in this case) in ALLDATA. The “P variables” contain the properties from the JSON file in a way
that ref lects the way they are nested.

18

The JSON libname engine creates several macro variables. One of them, of the form libref_JADPNUM,
where libref is the libref used to access the JSON file, contains the number of “P variables”. It’s named
ex34_JADPNUM in this case.
 %macro collisions;

 %local i p_current p_allnames;

 /* Unique variable names from each P variable are

 concatenated in macro variable P_ALLNAMES */

 %let p_allnames=;

 %do i=1 %to &json14a_JADPNUM;

 proc sql noprint;

 select distinct P&i

 into :p_current separated by ' '

 from xxx.alldata;

 quit;

 %let p_allnames= &p_allnames &p_current;

 %end;

 data _null_;

 array names(1000) $32 v1-v1000; /* Variable names */

 length duplicates $200; /* Duplicate names if any */

 /* Copy variable names to array elements */

 p_allnames="&p_allnames";

 i=1;

 names(i) = scan(p_allnames, 1, " ");

 do while (names(i) ne " ");

 i+1;

 names(i) = scan(p_allnames, i, " ");

 end;

 /* Sort names. Blank sorts lowest so only the last I-1 array

 elements contain names. If any adjacent array elements are

 equal, there are duplicates. */

 call sortc(of names(*));

 do j= 1000-i+1 to 1000;

 if names(j)=names(j-1) then do;

 if index(duplicates,strip(names(j)))=0

 then duplicates=catx(' ',duplicates,names(j));

 end;

 end;

 if duplicates="" then put "No name collisions in P variables";

19

 else put "Name collisions in P variables: " duplicates;

 run;

 %mend collisions;

 %collisions;

The macro f inds duplicate TYPE names in the original ALLDATA data set but no duplicates in the
ALLDATA data set generated from the modified JSON file.

EXAMPLE 5. READING THE ALLDATA FILE
Consider the following JSON file, test5.json.
 {

 "quiz": {

 "sport": {

 "q1": {

 "question": "# of NY Knicks titles?",

 "option": [

 "one",

 "two",

 "three",

 "four"

],

 "answer": "two"

 }

 },

 "math": {

 "q1": {

 "question": "5 + 7 = ?",

 "option": [

 "10",

 "11",

 "12",

 "13"

],

 "answer": "12"

 },

 "q2": {

 "question": "12 - 8 = ?",

 "option": [

20

 "1",

 "2",

 "3",

 "4"

],

 "answer": "4"

 }

 }

 }

 }

The desired SAS data set is as follows.
Obs answer option1 option2 option3 option4 question

 1 two one two three four # of NY Knicks titles?

 2 12 10 11 12 13 5 + 7 = ?

 3 4 1 2 3 4 12 - 8 = ?

Let’s execute the same code as the previous example to copy the JSON file to multiple SAS data sets,
and show the resulting SAS data sets.
 libname xxx '/my/home/m1xxx00/example35'; /* SAS library */

 proc datasets library=xxx kill; /* Remove prior SAS files */

 run;quit;

 libname ex35 json '/my/home/m1xxx00/test5.json'

 map='user35.map' automap=create ordinalcount=all; /* JSON file */

 proc copy in=ex35 out=xxx;

 run;

 proc datasets lib=xxx;

 run;quit;

 SPORT_Q1

 ordinal_ ordinal_ ordinal_ ordinal_

 Obs root quiz sport q1 question answer

 1 1 1 1 1 # of NY Knicks titles? two

 Q1_OPTION
 ordinal_ ordinal_ ordinal_ ordinal_ ordinal_

Obs root quiz sport q1 option option1 option2 option3 option4

 1 1 1 1 1 1 one two three four

21

 MATH_Q1

 ordinal_ ordinal_ ordinal_ ordinal_

Obs root quiz math q1 question answer

 1 1 1 1 1 5 + 7 = ? 12

 Q1_OPTION2

 ordinal_ ordinal_ ordinal_ ordinal_ ordinal_

Obs root quiz math q1 option option1 option2 option3 option4

 1 1 1 1 1 1 10 11 12 13

 MATH_Q2

 ordinal_ ordinal_ ordinal_ ordinal_

Obs root quiz math q2 question answer

 1 1 1 1 1 12 - 8 = ? 4

 Q2_OPTION

 ordinal_ ordinal_ ordinal_ ordinal_ ordinal_

Obs root quiz math q2 option option1 option2 option3 option4

 1 1 1 1 1 1 1 2 3 4

 ALLDATA

Obs P P1 P2 P3 P4 P5 V Value

 1 1 quiz 0

 2 2 quiz sport 0

 3 3 quiz sport q1 0

 4 4 quiz sport q1 question 1 # of NY Knicks titles?

 5 4 quiz sport q1 option 0

 6 5 quiz sport q1 option option1 1 one

 7 5 quiz sport q1 option option2 1 two

 8 5 quiz sport q1 option option3 1 three

 9 5 quiz sport q1 option option4 1 four

 10 4 quiz sport q1 answer 1 two

 11 2 quiz math 0

 12 3 quiz math q1 0

 13 4 quiz math q1 question 1 5 + 7 = ?

 14 4 quiz math q1 option 0

 15 5 quiz math q1 option option1 1 10

 16 5 quiz math q1 option option2 1 11

22

 17 5 quiz math q1 option option3 1 12

 18 5 quiz math q1 option option4 1 13

 19 4 quiz math q1 answer 1 12

 20 3 quiz math q2 0

 21 4 quiz math q2 question 1 12 - 8 = ?

 22 4 quiz math q2 option 0

 23 5 quiz math q2 option option1 1 1

 24 5 quiz math q2 option option2 1 2

 25 5 quiz math q2 option option3 1 3

The ORDINAL_ variables all have the value 1, so using them to merge the data sets will be difficult.
Instead, we’ll generate the final data set by reading the ALLDATA data set, noting the following.

• The values to use are from the variable VALUE, for observations where V=1.
• The variable to assign the values to is from the highest non-blank “P variable”. For example, in

observation 4, V is 1, P5 is blank, and P4 is “question”. So, we set QUESTION to “# of NY
Knicks titles?”.

• The f irst variable we encounter is “question” in observation 5. Each time we encounter “question”
again indicates the beginning of a new observation in the final data set. While every variable
needn’t be present in every observation, we’ll make the simplifying assumption that this “first”
variable is always present.

• Variables could be numeric or character. The same variable could be numeric in some non-
ALLDATA data sets and character in others. For example, if ANSWER was numeric for objects
Q1 and Q2 in the JSON f ile (12 and 4 instead of “12” and “4”), it would be numeric in MATH_Q1
and MATH_Q2 and character with length 3 in SPORT_Q1.

• Variables that are character in any non-ALLDATA data set will be character in the final data set,
using the longest length.

• We read ALLDATA and write DATA step code to a temporary file, and then %INCLUDE the file in
a subsequent DATA step. This handles two potential issues reasonably easily.

o The appropriate “P variable” value needs to be on the left side of an assignment
statement (e.g., question=“# of NY Knicks titles?”).

o By writing values from VALUE to the temporary file as text, we avoid some
numeric/character conversion issues.

%macro readjson;

 %local i p_current p_allvars all_charvars currentvar p_numvars p_charvars;

 %let p_allvars=;

 proc sql noprint;

 /* Build list of all variables in the output data set */

 %do i=1 %to &ex35_JADPNUM;

 select distinct P&i

 into :p_current separated by ' '

23

 from xxx.alldata

 where v=1 and p=&i;

 %let p_allvars= &p_allvars &p_current;

 %put i=&i p_allvars=&p_allvars;

 %end;

 /* Create macro variable allcharvars with quoted character

 variables space-separated from all data sets except ALLDATA.

 Same variable could be numeric in one data set and character

 in another, so check all data sets except ALLDATA and a variable

 that is character anywhere is considered character. */

 select distinct quote(trim(name))

 into :all_charvars separated by " "

 from dictionary.columns

 where libname = "XXX" and memname ne "ALLDATA"

 and type="char"

 ;

 quit;

 /* Split p_allvars into character and numeric variables */

 %let p_numvars=; /* numeric variables */

 %let p_charvars=; /* character variables */

 %let currentvar = %scan(&p_allvars, 1, %str()); /* parse 1st word */

 %let i = 1; /* parse 2nd, 3rd, ... word in %DO loop */

 %do %while (¤tvar ne) ; /* stop when %scan returns null */

 %if %index(&all_charvars, "¤tvar") = 0

 %then %let p_numvars= &p_numvars ¤tvar;

 %else %let p_charvars= &p_charvars ¤tvar;

 %let i=%eval(&i+1); /* set counter to parse next word */

 %let currentvar = %scan(&p_allvars, &i, %str()); /* parse next word */

 %end;

 /* If any character variables, create LENGTH statement for

 all character variables using the longest length of each

 variable in all data sets except ALLDATA */

 %if p_charvars ne %then %do;

 /* 1st create data set with name and all lengths of character variables */

24

 proc sql;

 create table allcharvariables as

 select name, length

 from dictionary.columns

 where libname = "XXX" and memname ne "ALLDATA"

 and type = "char";

 quit ;

 /* Sort by name and descending order of length so that

 first.name has the longest length for each variable */

 proc sort data=allcharvariables;

 by name descending length;

 run;

 /* Create LENGTH statement with longest length of each variable */

 data _null_;

 set allcharvariables end=last;

 by name descending length;

 length length_statement $10000;

 retain length_statement;

 if first.name then

 length_statement = trim(length_statement)

 || " " || trim(name)

 || " $" || compress(put(length,3.));

 /* At end of DATA step create macro variable w/LENGTH statement info */

 if last then

 call symput("length_of_vars",trim(length_statement));

 run;

 %end; /* of %if p_charvars ne %then %do; */

 /* Write code to temporary file, will include it later */

 filename out1 temp;

 data _null_;

 set xxx.alldata end=last;

 /* VARFLAG = 1st variable in output data set, when

 encounter it, we know that new record is starting */

 length varflag $32;

 retain varflag "";

25

 array pall $ p1-p&ex35_JADPNUM; /* Names in the P variables */

 file out1; /* Write generated code to file */

 if varflag="" and v = 1 then do; /* Found very 1st variable*/

 varflag=pall(p); /* Save so we know when a new record starts */

 /* Write initial 1x code, first variable */

 %if &p_charvars ne %then %do;

 put "length &length_of_vars;";

 put "array allcharvars (*) $ &p_charvars;";

 %end;

 %if &p_numvars ne %then %do;

 put "array allnumvars (*) $ &p_numvars;";

 %end;

 put "keep &p_allvars;";

 /* If only numeric variables, always write a numeric value,

 otherwise check if current variable is character or numeric */

 %if &p_charvars eq %then %do;

 put pall(p) "=" value ";"; /* Write numeric value */

 %end;

 %else %do;

 if pall(p) in (&all_charvars)

 then put pall(p) "='" value +(-1) "';"; /* Write character value */

 else put pall(p) "=" value ";"; /* Write numeric value */

 %end;

 end;

 else if v = 1 then do; /* Found a variable to write after 1st time */

 if pall(p) = varflag then do; /* Start of new record */

 put "output;"; /* Write record we have accumulated */

 /* Clear out variables for new record in case not

 all variables have values in this record */

 %if &p_charvars ne %then %do;

 put "do i=1 to dim(allcharvars); allcharvars(i)='';end;";

 %end;

 %if &p_numvars ne %then %do;

 put "do i=1 to dim(allnumvars); allnumvars(i)=.;end;";

 %end;

 end;

 /* If only numeric variables, always write a numeric value,

26

 otherwise check if current variable is character or numeric */

 %if &p_charvars eq %then %do;

 put pall(p) "=" value ";"; /* Write numeric value */

 %end;

 %else %do;

 if pall(p) in (&all_charvars)

 then put pall(p) "='" value +(-1) "';"; /* Write character value */

 else put pall(p) "=" value ";"; /* Write numeric value */

 %end;

 end; /* of else if v = 1 then do */

 if last then put "output;"; /* Write final record */

 run;

 /* Run the DATA step to create the SAS data set */

 data finaldata5;

 %include out1;

 run;

%mend readjson;

%readjson;

EXAMPLE 6. CUSTOM CODING REQUIRED
The SAS® 9.4 Global Statements: Reference (LIBNAME Statement: JSON Engine chapter, ALLDATA
Data set section) contains the first 24 records of the following ALLDATA data set.
 OBS P P1 P2 P3 P4 V Value

 1 1 stores 0

 2 2 stores Name 1 Bob's Mart

 3 2 stores opened 1 06-01-2001

 4 2 stores sales 0

 5 3 stores sales Hot_Dogs 0

 6 4 stores sales Hot_Dogs count 1 39

 7 4 stores sales Hot_Dogs price 1 1.09

 8 3 stores sales Salami 0

 9 4 stores sales Salami count 1 20

 10 4 stores sales Salami price 1 5.99

 11 3 stores sales Canteloupes 0

 12 4 stores sales Canteloupes count 1 26

 13 4 stores sales Canteloupes price 1 1.39

 14 3 stores sales Mustard 0

27

 15 4 stores sales Mustard count 1 6

 16 4 stores sales Mustard price 1 2.19

 17 2 stores Code 1 12BMx2

 18 1 stores 0

 19 2 stores Name 1 Grab 'n' Git

 20 2 stores opened 1 06-03-2012

 21 2 stores sales 0

 22 3 stores sales Hot_Dogs 0

 23 4 stores sales Hot_Dogs count 1 18

 24 4 stores sales Hot_Dogs price 1 1.19

DATA step code is used to read ALLDATA and create the following data set.
 OBS StoreName Code Item Count Price
 1 Bob's Mart 12BMx2 Hot_Dogs 39 1.09
 2 Bob's Mart 12BMx2 Salami 20 5.99
 3 Bob's Mart 12BMx2 Canteloupes 26 1.39
 4 Bob's Mart 12BMx2 Mustard 6 2.19
 5 Grab 'n' Git 10GNx9 Hot_Dogs 18 1.19
 6 Grab 'n' Git 10GNx9 Salami 3 7.99
 7 Grab 'n' Git 10GNx9 Mustard 6 2.19
 8 Grab 'n' Git 10GNx9 Beer 20 8.99
 9 Larry's Quick Shoppe 17LQx2 Hot_Dogs 39 1.09
 10 Larry's Quick Shoppe 17LQx2 Salami 20 5.99
 11 Larry's Quick Shoppe 17LQx2 Mustard 6 2.19
 12 Larry's Quick Shoppe 17LQx2 Beer 7 8.99
 13 Larry's Quick Shoppe 17LQx2 Wine 15 12.99

The DATA step code takes advantage of knowledge about the contents of ALLDATA. For example, it
assigns the values in P3 to a variable called ITEM. In some cases, like this one, it might be very difficult
to automate copying the JSON file into SAS, and custom code that takes advantage of content
knowledge as shown in the SAS documentation might be the best or even only approach.

JSONL FILES
As noted in Hemedinger (2018), a format growing in popularity is newline-delimited JSON (a.k.a. JSONL
or JSON Lines). Each text line represents a valid JSON object, but there is no hierarchical relationship
between the lines so a JSONL file is not valid JSON. JSONL files can be converted to a JSON file in a
DATA step, as noted in Hemedinger (2018) and by Tom Abernathy in a SAS Communities thread
(2020b).

Here is a small JSONL file, four.jsonl, with data values from a prior example.
 {"country": "usa","city": "chicago","income": 100,"date": "20201001"}

 {"country": "usa","city": "cleveland","income": 200,"date": "20201101"}

 {"country": "canada", "city":"montreal", "income":300, "date": "20201201"}

Here is code to convert JSONL file four.jsonl to JSON file four.json.
 filename jsonl "/my/home/m1xxx00/four.jsonl";

 filename json "/my/home/m1xxx00/four.json";

28

 data _null_;

 infile jsonl end=eof;

 file json;

 input;

 if _n_=1 then put '[' @ ;

 else put ',' @ ;

 put _infile_;

 if eof then do;

 put ']';

 end;

 run;

Here is the resulting JSON file, which can be read using the techniques in the prior section.
[{"country": "usa","city": "chicago","income": 100,"date": "20201001"}

,{"country": "usa","city": "cleveland","income": 200,"date": "20201101"}

,{"country": "canada", "city": "montreal", "income": 300, "date": "20201201"}

]

JSONPP DATA STEP FUNCTION
When copying a SAS data set to a JSON file, the PROC JSON statement option PRETTY creates a
JSON f ile in a human-readable format with indentation and multiple lines instead of one long record.

The JSONPP DATA step function copies an existing single record JSON file to a “pretty” JSON file.

Here’s the single record JSON file created in Example 3 in the section on copying a SAS data set to a
JSON f ile.
[{"country":"usa","city":"chicago","income":100,"date":"20201001"},{"country"
:"usa","city":"cleveland","income":200,"date":"20201101"},{"country":"canada"
,"city":"montreal","income":300,"date":"20201201"}]

This DATA step statement copies single record JSON file test1.json to “pretty” JSON file test1pretty.json.
 rc = jsonpp('/my/home/m1xxx00/test1.json',

 '/my/home/m1xxx00/test1pretty.json');

Here is the resulting “pretty” JSON file.
 [

 {

 "country": "usa",

 "city": "chicago",

 "income": 100,

 "date": "20201001"

 },

29

 {

 "country": "usa",

 "city": "cleveland",

 "income": 200,

 "date": "20201101"

 },

 {

 "country": "canada",

 "city": "montreal",

 "income": 300,

 "date": "20201201"

 }

]

CONCLUSION
JavaScript Object Notation (JSON) is an open standard file format and data interchange format used for
some of the same purposes as XML. More information about JSON is readily available on the internet.
Starting in SAS ® 9.4, you can copy SAS data sets to JSON files with PROC JSON. Starting in SAS ®
9.4TS1M4, you can copy JSON files to SAS data sets with the JSON engine.
Copying data from SAS to JSON with PROC JSON is relatively straightforward. Copying data from JSON
to SAS can be much more complicated in some cases. Copying data from JSON to SAS in an automated
way that does not rely on extensive knowledge of data specifics is of course desirable. This paper
included examples where copying JSON files to SAS could be automated relatively easily, cases where
automation required a good deal of coding, and a case where prior knowledge of the data made
automation difficult or perhaps not realistic. Determining how to copy additional types of JSON files into
SAS in an automated way is an area of ongoing research, and input from readers of this paper would be
greatly appreciated.

REFERENCES
Hemedinger, Chris. 2018. “Create newline-delimited JSON (or JSONL) with SAS,” The SAS Dummy
blog, published November 14, 2018. Available at
https://blogs.sas.com/content/sasdummy/2018/11/14/jsonl-with-proc-json/
SAS Communities thread. 2020a. “Automating reading JSON files into SAS”. Available at
https://communities.sas.com/t5/SAS-Programming/Automating-reading-JSON-files-into-SAS/m-
p/710327#
SAS Communities thread. 2020b. “SAS EG - how to read in JSON file”. Available at
https://communities.sas.com/t5/SAS-Programming/SAS-EG-how-to-read-in-JSON-file/m-p/710217
SAS Institute Inc. 2017a. "JSON Procedure". In Base SAS® 9.4 Procedures Guide, Seventh Edition.
Cary, NC: SAS Institute Inc. Available at
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=proc&docsetTarget=p
0ie4bw6967jg6n1iu629d40f0by.htm&locale=en

https://blogs.sas.com/content/sasdummy/2018/11/14/jsonl-with-proc-json/
https://communities.sas.com/t5/SAS-Programming/Automating-reading-JSON-files-into-SAS/m-p/710327
https://communities.sas.com/t5/SAS-Programming/Automating-reading-JSON-files-into-SAS/m-p/710327
https://communities.sas.com/t5/SAS-Programming/SAS-EG-how-to-read-in-JSON-file/m-p/710217
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=proc&docsetTarget=p0ie4bw6967jg6n1iu629d40f0by.htm&locale=en
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=proc&docsetTarget=p0ie4bw6967jg6n1iu629d40f0by.htm&locale=en

30

SAS Institute Inc. 2017b. "LIBNAME Statement: JSON Engine". In Base SAS® 9.4 Global Statements:
Reference. Cary, NC: SAS Institute Inc. Available at
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=lestmtsglobal&docset
Target=n1jfdetszx99ban1rl4zll6tej7j.htm&locale=en

ACKNOWLEDGMENTS
Support from the following people is greatly appreciated. Chevell Parker at SAS Institute provided
sustained technical support that greatly increased my understanding of JSON files. Tom Abernathy at
Pf izer Inc. provided detailed information on the SAS Communities site, including the DATA step to
convert a JSONL file to a JSON file. Donna Hill (technical document review), Heidi Markovitz (SAS
content review), and Sandesh Shetty (JSON information) at the Federal Reserve Board all contributed
substantially to the development of this paper.
The following applies to examples 4 and 6 in the section “Copy a JSON file into SAS”:
JSON table and ALLDATA data set values taken from SAS® 9.4 and SAS® Viya® 3.5 Programming
Documentation, Copyright © 2020, SAS Institute Inc., USA. All Rights Reserved. Reproduced with
permission of SAS Institute Inc, Cary, NC

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Bruce Gilsen
Federal Reserve Board, Mail Stop N-122, Washington, DC 20551
202-452-2494
bruce.gilsen@frb.gov

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=lestmtsglobal&docsetTarget=n1jfdetszx99ban1rl4zll6tej7j.htm&locale=en
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=lestmtsglobal&docsetTarget=n1jfdetszx99ban1rl4zll6tej7j.htm&locale=en
mailto:bruce.gilsen@frb.gov

	Abstract
	INTRODUCTION
	Copy a SAS data set to a JSON file: simple examples
	Example 1. Copy SAS data set to A JSON file with PROC JSON
	This code copies SAS data set ONE to JSON file /my/home/m1xxx00/test1.json.
	COMMON PROC JSON statement options

	Copy a JSON file INTO SAS
	JSONL files
	JSONPP DATA step function
	Conclusion
	References
	Acknowledgments

