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ABSTRACT  

Over the past two decades, generalized linear mixed models (GLMMs) have become 

standard tools for statistical analysis. Since its introduction, PROC GLIMMIX has been 

SAS®/STAT's primary GLMM procedure. The most recent edition of SAS for Mixed Models 

includes three chapters on using GLIMMIX for GLMMs. 

PROC GLIMMIX is an excellent frequentist tool. However, Bayesian approaches are 

becoming increasingly important. Many academic journals prefer - some even require - 

Bayesian analysis. Even when not required, Bayesian methods allow you to use what you 

know prior to, or in the early stages of, an investigation. 

PROC BGLIMM is a new SAS/STAT procedure that makes Bayesian implementation of 

GLMMs relatively easy. BGLIMM uses syntax similar to PROC GLIMMIX, but there are some 

differences. This tutorial presents what you need to know to get started using PROC 

BGLIMM. We use GLMM examples from SAS for Mixed Models, but with a Bayesian twist. 

INTRODUCTION  

Mixed models are important tools for analyzing data from many types of studies, including 

longitudinal or repeated measures, multi-level or split-plot experiments, blocked designs 

with incomplete blocks or missing data and multi-location studies. Linear mixed models 

(LMMs) accommodate response variables assumed to follow a normal (hereafter referred to 

as a Gaussian) distribution. Generalized linear mixed models (GLMMs) extend mixed model 

theory and methods to accommodate non-Gaussian responses such as categorical or count 

data. Because the LMM is a special case of the GLMM – a GLMM with Gaussian data – the 

acronym GLMM is used for the rest of this paper. In the SAS® system, PROC GLIMMIX is the 

preeminent mixed model procedure, allowing users to work with both LMMs and GLMMs. 

PROC GLIMMIX uses a frequentist approach to estimation and inference. The next section, 

“GLMM Basics” gives an overview of what this entails, but the basic idea is that frequentist 

statistics focus on obtaining estimates and standard errors that are used to construct test 

statistics for significance testing or to construct confidence intervals.  

Bayesian statistics provide an alternative approach. Bayesian statistics focus on 

incorporating prior information to obtain posterior distributions of the statistics of interest. 

Posterior distributions combine what you know in advance – the prior – with the data you 

observe. Bayesian statistics are becoming increasingly important for data analysis. One 

reason is that many academic journals now discourage classical significance testing in favor 

of Bayesian analysis. Some journals have even banned significance tests, in effect requiring 

Bayesian analysis. The second important reason is that the statistics obtained from 

frequentist methods are essentially equivalent to Bayesian analysis with a “non-informative” 

prior. In other words, frequentist methods implicitly assume that you know nothing until 

you analyze the data. In reality, this is rarely, if ever, true (if you really know nothing 

before analyzing the data, you probably should not be doing the study!). Many data sets 

come from studies that may be part of a series – phases of clinical trials leading to the 

licensing of a pharmaceutical product – or similar experiments by graduate students with 

the same advisor.  
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PROC MCMC is the SAS system’s original and all-purpose Bayesian procedure. Although you 

can use PROC MCMC for mixed models, the syntax is similar to PROC NLMIXED, which can 

be inconvenient for less-than-simple models or models with CLASS variables. PROC BGLIMM 

was developed to allow you to use syntax similar to PROC GLIMMIX, making Bayesian 

analysis more accessible for GLMMs.   

This tutorial introduces PROC BGLIMM using three examples from SAS for Mixed Models: 

Introduction and Basic Applications (Stroup, et al. 2018).  

• A multi-clinic trial with binomial data from Chapter 11 of SAS for Mixed Models. 

• A multi-level (split-plot) experiment with count data from Chapter 13. 

• Repeated measures (longitudinal) data from Chapter 8. 

The next section called “GLMM Basics,” covers the GLMM setting, essential definitions and 

terminology, and an overview and comparison of PROC GLIMMIX and PROC BGLIMM 

estimation and inference.  

GLMM BASICS 

The classical format for a statistical model is the equation  

Response variable = systematic component + random component 

Think of the systematic component as the fixed effects, e.g., 𝜇 + 𝜏𝑖 in ANOVA-type models 

with treatment effects or 𝛽0 + 𝛽𝑖𝑋 in linear regression models. In mixed models, the random 

component is really two distinct components, random model effects such as block effects, 

and residual effects, such as those that account for serial covariance in a longitudinal mixed 

model. The classical response = fixed + random format works well if you can assume that 

the data follow a Gaussian distribution, but in many cases this is not true. Table 1 shows 

common types of response variables in the left-hand column and types of model effects 

across the top row. 

Response Variable 

Fixed Random 

Categorical 

(CLASS) 𝜇 + 𝜏𝑖 
Continuous 

𝛽0 + 𝛽𝑖𝑋 
Model effect 

Residual / 

Covariance 

structure 

Gaussian    “R-side” 

Categorical 

   binomial 

   multinomial 

   

“G-side” 

Continuous proportion 

   beta 

   

Count 

   Poisson 

   negative binomial 

   

time-to-event    

etc...    

 Table 1. Response variable and model effect types covered by LMM and GLMM 

Replacing the classical model format, the defining elements of the GLMM are as follows: 

• Distributions: 

o 𝑦|𝑏~𝒟(𝜇, Σ);  𝒟 denotes some distribution, e.g., one of those listed above 

o 𝑏~𝑁(0, 𝐺) 

o 𝑓(𝑦|𝑏) ∝ 𝑒𝑥𝑝 (
𝑦𝜃−𝑏(𝜃)

𝜙
), 𝜇 = 𝐸(𝑦|𝑏) =

𝜕𝑏(𝜃)

𝜕𝜃
, 𝑣(𝜇) =

𝜕2𝑏(𝜃)

𝜕𝜃2 , 𝑉𝑎𝑟(𝑦|𝑏) = 𝜙𝑣(𝜇) 
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o Σ = 𝑉𝜇

1
2⁄

𝑅𝑉𝜇

1
2⁄
, 𝑉𝜇

1
2⁄

= 𝑑𝑖𝑎𝑔[√𝑣(𝜇)], 𝑅 is scale matrix, e.g., 𝑅 = 𝐼𝜙 or residual 

covariance  

• Link function: 𝜂 = 𝑔(𝜇) 

• Linear Predictor: 𝜂 = 𝑋𝛽 + 𝑍𝑏 

PROC MIXED allows you to work in the first row of Table 1. PROCs BGLIMM, GLIMMIX, 

MCMC and NLMIXED allow you to work with all of the rows.  

FREQUENTIST GLMM ESTIMATION AND INFERENCE 

The guiding principle of GLMM estimation is maximum likelihood (ML). You obtain estimates 

of the fixed effects by maximizing the log-likelihood, 𝑙𝑜𝑔[𝑓(𝑦; 𝛽)], where 𝑓(𝑦; 𝛽) = 

∫ 𝑓(𝑦; 𝛽|𝑏)𝑓(𝑏)𝑑𝑏. In general, this integral is intractable.  

SAS software uses two approximation strategies: linearization (pseudo-likelihood) and 

integral approximation (quadrature and Laplace). The mixed model equations for Gaussian 

data, the PROC MIXED default used to obtain REML estimates of the variance components 

and ML solutions for 𝛽 and 𝑏, are special cases of pseudo-likelihood (PL). The REML version 

of PL is the PROC GLIMMIX default. Laplace and quadrature are PROC GLIMMIX options. 

PROC NLMIXED uses quadrature only.  

Estimates and standard errors computed from PL or integral approximation are used to 

compute test statistics, p-values and confidence intervals. Classical frequentist inference 

makes extensive use of significance testing.  

BAYESIAN ESTIMATION AND INFERENCE 

The primary tool of Bayesian inference is the posterior distribution, 

 𝑓(𝛽, 𝜎|𝑦, 𝑏) =
𝑓(𝑦,𝑏|𝛽,𝜎)𝑓(𝛽,𝜎)

∬ 𝑓(𝑦,𝑏|𝛽,𝜎)𝑓(𝛽,𝜎)𝑑𝛽𝑑𝜎
 

where 𝜎 denotes the vector of covariance parameters and 𝑓(𝛽, 𝜎) denotes the prior 

distribution of the fixed effects and covariance parameters. The function 𝑓(𝑦, 𝑏|𝛽, 𝜎) is the 

same likelihood used in frequentist estimation, defined by the GLMM distributions 𝑓(𝑦|𝑏) and 

𝑓(𝑏). 

As with the GLMM likelihood, the integrals required for the posterior distribution are 

generally intractable. Unlike frequentist estimation, neither linearization nor integral 

approximation are viable options. Instead, Bayesian methods approximate the posterior 

distribution by simulation.  

PROC BGLIMM involves the following steps: 

• Specify the GLMM (i.e., the defining elements listed above). This step specifies 𝑓(𝑦|𝑏) 
and 𝑓(𝑏). 

• Specify the prior distributions 𝑓(𝛽, 𝜎). The BGLIMM procedure uses pre-programmed 

default priors. Depending on the model and data, you may or may not need to 

replace them with more appropriate prior distributions.   

• PROC BGLIMM implements three computational steps. It is beyond the scope of this 

tutorial to provide technical description of the algorithms used to implement these 

steps. The following is simply a list of the steps and their purpose:  

o Tuning. This step uses the data, model and priors to come up with an 

approximation of the posterior distributions to be sampled.  

o Burn-in. This is initial sampling the posterior distributions. A coin flip exercise 

in introductory statistics class provides simple analogy: the proportion of flips 
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resulting in heads vacillates early in the sampling, but eventually settles 

down to a reasonable approximation of the probability of a head.     

o Sampling the posterior distribution. As the name implies, the posterior 

distribution of each parameter is sampled with the goal of getting a 

sufficiently accurate and detailed characterization.   

The end result is a mean, standard deviation and quantiles of interest for the posterior 

distribution of each element of 𝛽 and each covariance parameter. You can use BGLIMM’s 

ESTIMATE statement to define estimable functions of the 𝛽 that address objectives of your 

data analysis. Two forms of credible intervals are commonly used for Bayesian inference:  

• the highest posterior density (HPD) interval. This is the narrowest interval between 

the lower and upper bound that contains a given percent of the posterior 

distribution. 

• quantile-based interval. For example, you can construct a 95% credible interval 

using the 2.5 and 97.5 percentiles of the posterior distribution as the lower and 

upper bounds.    

There are a number of diagnostics you should check before using PROC BGLIMM results. 

Diagnostics are introduced in the context of the examples in the following sections. These 

examples cover problems you are likely to encounter, how to interpret the relevant 

diagnostics, and PROC BGLIMM options you can use to address these problems in order to 

obtain a useable analysis.  

 EXAMPLE 1: MULTI-CLINIC TRIAL WITH BINOMIAL DATA 

The first example is the Beitler and Landis (Biometrics, 1985) multi-clinic data set that 

appears in SAS for Mixed Models (2018), Chapter 11, Section 11.3. Two treatments, CNTL 

and DRUG, are compared at eight clinics sampled from a target population. At the 𝑗𝑡ℎ clinic, 

𝑛𝑖𝑗 patients are assigned to the 𝑖𝑡ℎ treatment. The response variable, denoted 𝑦𝑖𝑗, is the 

number of patients having a favorable outcome.   

The first step in the analysis of these data is to identify an appropriate statistical model. You 

can do this by following a process presented in SAS for Mixed Models, Chapter 5. List the 

sources of variation separately for the “study” design and the treatment design. The study 

design, also called the “experiment design,” describes the components of the design before 

being assigned treatments or treatment levels. In this case, the study design consists of 

clinics and groups of patients within clinics. The treatment design is simply CNTL and DRUG. 

Groups are randomly assigned to treatments. Table 2 shows the sources of variation.  

STUDY DESIGN TREATMENT DESIGN COMBINED 

SOURCE DF SOURCE DF SOURCE DF 

clinic 7   clinic 7 

  treatment 1 treatment 1 

group(clinic) 8   

group(clinic) | treatment 

a.k.a. clinic x treatment 

a.k.a. unit of observation 

8-1=7 

TOTAL 15   TOTAL 15 

Table 2. Sources of Variation for Multi-Clinic Example Data 

In the combined column, read “group(clinic) | treatment” as “group within clinic after 

accounting for treatment.” List the rows so that treatment appears in the row immediately 

above the unit to which it is assigned – in this case, group(clinic). 

The next step is to write model effects associated with each source of variation and the 

assumed probability distribution of any effects considered to be random. Tables 3 and 4 
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show two scenarios that lead to plausible mixed models. Table 3 describes the elements of a 

logit-normal GLMM, so-called because it the uses a logit link function, 𝑙𝑜𝑔[𝜋𝑖𝑗 (1 − 𝜋𝑖𝑗)⁄ ], 

where 𝜋𝑖𝑗   denotes the probability of a favorable outcome for the 𝑖𝑗𝑡ℎ clinic-treatment 

combination, and all random effects are assumed to follow a normal (Gaussian) distribution. 

Note that clinics effects are random because the clinics in the study are a representative 

sample. Also note that there is a random effect for the group level source of variation. You 

should include this term to account for variation in 𝜋𝑖𝑗 at this level – if you don’t, over-

dispersion may cause misleading results.     

Note that group(clinic) is the unit on which the observations (𝑦𝑖𝑗) are taken. Hence, you can 

refer to it as the “unit level” effect, unit being shorthand for unit of observation. Specifying 

the model requires stating the assumed distribution of the observations, conditional on the 

random effects, at the unit level, and relating its expected value to the linear predictor, e.g., 

through the inverse link function as shown here.  

SOURCE EFFECT DISTRIBUTION OBSERVATION AND MODEL 

clinic 𝑐𝑗~𝑁(0, 𝜎𝑐
2)  

treatment 𝜏𝑖  

group(clinic) | treatment 

a.k.a. clinic x treatment 

a.k.a. unit of observation 

𝑐𝑡𝑖𝑗~𝑁(0, 𝜎𝑐𝑡
2 ) 

𝑦𝑖𝑗|𝑐𝑗 , 𝑐𝑡𝑖𝑗~Binomial(𝑁𝑖𝑗 , 𝜋𝑖𝑗) 

𝜋𝑖𝑗 = 1 {1 + 𝑒𝑥𝑝[−(𝜂 + 𝜏𝑖 + 𝑐𝑗 + 𝑐𝑡𝑖𝑗)]}⁄  

Table 3. Model Effects and Distributions Defining Logit-normal GLMM 

Table 4 gives the elements of a beta-binomial mixed model, a commonly used alternative to 

the logit-normal GLMM for binomial data. The difference between the two models is the way 

group-level variation in the probability of a favorable outcome is modeled. The logit-normal 

GLMM includes a random effect in the linear predictor. The beta-binomial models the 

probability as a random variable, assuming that it follows a beta distribution. Table 4 gives 

the Ferrari and Cribari-Neto (2004) parameterization of the beta in terms of its mean (𝜇𝑖𝑗) 

and scale parameter (𝜑). Alternatively, you can write the distribution in its conventional 

math-stat form, 𝑝𝑖𝑗~Beta(𝛼𝑖𝑗 , 𝛽𝑖𝑗), where 𝛼𝑖𝑗 = 𝜑𝜇𝑖𝑗 and 𝛽𝑖𝑗 = 𝜑(1 − 𝜇𝑖𝑗).    

SOURCE EFFECT DISTRIBUTION OBSERVATION AND MODEL 

clinic 𝑐𝑗~𝑁(0, 𝜎𝑐
2)  

treatment 𝜏𝑖  

group(clinic) | treatment 

a.k.a. clinic x treatment 

a.k.a. unit of observation 

𝑝𝑖𝑗~Beta(𝜇𝑖𝑗 , 𝜑) 
𝑦𝑖𝑗|𝑐𝑗 , 𝑝𝑖𝑗~Binomial(𝑁𝑖𝑗 , 𝑝𝑖𝑗) 

𝜇𝑖𝑗 = 1 {1 + 𝑒𝑥𝑝[−(𝜂 + 𝜏𝑖 + 𝑐𝑗)]}⁄  

Table 4. Model Effects and Distributions Defining Beta-Binomial Mixed Model 

You can use PROC BGLIMM (or PROC GLIMMIX) to implement the logit-normal GLMM, but 

not the beta-binomial. This is because BGLIMM and GLIMMIX are limited to models with 

Gaussian random effects, whereas the beta-binomial has a non-Gaussian random effect, 𝑝𝑖𝑗. 

(Although beyond the scope of this tutorial, you can implement the beta-binomial with PROC 

MCMC)  

The beta-binomial is shown here to illustrate the difference between a “sensible” model and 

an improperly specified model. What constitutes a “sensible” model? You must have a one-

to-one correspondence between sources of variation and model effects or parameters that 

account for them. Table 5 illustrates the difference. 

 LOGIT-NORMAL BETA-BINOMIAL NAIVE GLMM BETA-BIN W/ 𝑐𝑡𝑖𝑗 

SOURCE sensible sensible Over-Dispersion Unit Confounding 

clinic 𝑐𝑗 𝑐𝑗 𝑐𝑗 𝑐𝑗 

treatment 𝜏𝑖 𝜏𝑖 𝜏𝑖 𝜏𝑖 

unit 𝑐𝑡𝑖𝑗 𝜑  𝑐𝑡𝑖𝑗,𝜑 
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Table 5. Sensible and Improperly Specified Mixed Models for Multi-Clinic Binomial Data 

Both the logit-normal and beta-binomial meet the sensible model criterion. The “naive 

GLMM” lacks any term that accounts for variation at the unit level, making the model 

vulnerable to over-dispersion. The 𝑐𝑡𝑖𝑗 effect is thus needed for the logit-normal model, but 

if you include it in the beta-binomial model, it is confounded with the beta distribution’s 

scale parameter (𝜑), which is not good.   

The remainder of this section focuses on implementing the logit-normal model with PROC 

BGLIMM.  

BASIC PROC BGLIMM STATEMENTS FOR THE LOGIT-NORMAL BGLIMM 

PROC BGLIMM uses syntax borrowed from PROC GLIMMIX and, for repeated measures, from 

PROC MIXED. To illustrate, here are the basic GLIMMIX and BGLIMM statements. First, the 

GLIMMIX statements for the logit-normal GLMM from SAS for Mixed Models: 

proc glimmix data=multi_clinic; 

 class clinic treatment; 

 model fav/nij =  treatment; 

 random intercept treatment / subject=clinic; 

 lsmeans treatments / ilink diff oddsratio cl; 

run; 

 

Now the BGLIMM statements: 

proc bglimm data=multi_clinic plots=(trace autocorr density) 

  diagnostics=all outpost=cout; 

 class clinic treatment; 

 model fav/nij =  treatment / init=pinit; 

 random intercept treatment / subject=clinic; 

 estimate “CNTL” intercept 1 treatment 1 0; 

 estimate “DRUG” intercept 1 treatment 0 1; 

 estimate “log_odds_ratio” treatment 1 -1; 

 ods output estimates=model_scale; 

run; 

 

Notice that the CLASS, MODEL and RANDOM statements for the two procedures are 

identical. The FAV/NIJ (events/trials) syntax is specific to the binomial distribution. Also 

notice that there are no statements in the basic PROC BGLIMM program specifying prior 

distributions. BGLIMM has pre-programmed priors that it uses by default. These may or may 

not be appropriate, depending on the model and data. The additional options in the PROC 

BGLIMM statement for PLOT and DIAGNOSTICS should be considered standard operating 

procedure to either verify that the results are useable or to identify problems that need to 

be fixed, such as inappropriate default priors, before the output can be regarded as useable. 

The INIT=PINIT option in the MODEL statement causes the default starting values used for 

the fixed effects to be included is the SAS listing. Consider these to be part of the 

diagnostics. PROC BGLIMM does not have an LSMEANS statement. You must write the 

ESTIMATE statements that correspond to least squares means and treatment differences. 

PROC BGLIMM also lacks an ILINK option. PROC BGLIMM only computes model-scale (in this 

case, logit scale) estimates. The OUTPOST option in the PROC statement and the ODS 

OUTPUT statement give you two ways to obtain data-scale statistics. These are explained 

below in the subsection entitled “Post-Processing to Obtain Data-Scale Statistics.” 

DIAGNOSTICS  

The PLOT, DIAGNOSTICS=ALL and INIT=PINIT produce items in the SAS listing the help 

you identify problems and to decide if the results are useable. This section has two parts: a 
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list of the items and a brief description of their purpose, and diagnostics produced by the 

default PROC BGLIMM statements given above and their interpretation.  

List of Diagnostics   

The PLOT option gives you three plots: autocorrelation, density and trace. Trace plots are 

also called “caterpillar” plots, because ideally they should look like a “fuzzy caterpillar,” 

which indicates the sampling algorithm has produced a reasonable approximation of the 

posterior distribution. The algorithms used to sample the posterior distributions are 

vulnerable to autocorrelation. The autocorrelation plot shows how quickly autocorrelation 

decreases as lag increases. The density plot, as the name implies, shows the posterior 

density produced by the sampling algorithm. 

DIAGNOSTICS=ALL produces the following: 

• Effective Sample Size (ESS). Autocorrelation reduces posterior sampling efficiency. 

ESS gives a measure of the sample size after adjusting for autocorrelation. Low 

efficiency, per se, is not a problem, but ESS should be, at the very least, >1000 in 

order to have an accurate approximation of the posterior distribution. 

• Heidelberger-Welch. These are stationarity tests – is the posterior distribution 

sampling giving consistent results from beginning (immediately after burn-in) to 

end? The key columns in the SAS listing will say “passed” or “failed.” 

• Raftery-Lewis. Addresses the accuracy of the posterior distribution’s percentile 

estimates. The key statistic is the dependence factor. Ideally, it should be  1. 

• Geweke. Compares estimates early and late in the sampling process. Use the 

Geweke statistics to test the null hypothesis that they are acceptably similar. You 

want to see p-values consistent with failing to reject the null hypothesis.  

The listing also includes the number of burn-in iterations, the posterior density sample size 

and the priors the BGLIMM procedure uses by default.  

Results of Preliminary PROC BGLIMM Run with Default Settings 

Figure 1 shows two diagnostic plots. On the left is the plot for the logit-normal GLMM’s 

intercept parameter produced by BGLIMM program given above. On the right is an example 

of what the plot should look like in a run whose results are useable. The plots for the other 

parameters are not shown, but they are similar to these.  

   

Figure 1. Example Diagnostic Plots   

The left-hand plot is what you do not want to see. The trace plot shows erratic and 

inconsistent sampling of the posterior distribution. It looks more like a seismograph during 

an earthquake than the “fuzzy caterpillar” plot on the right. The right-hand plot shows 
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consistent sampling from beginning to end. The autocorrelation plot on the left also signals 

trouble. Autocorrelation should drop to zero quickly, as it does by lag 10 in the right-hand 

plot. The BGLIMM run with default settings produces autocorrelation that never goes to 

zero, even at lag 50. If autocorrelation does not drop to zero at least by lag 25, consider the 

results unusable.   

Output 1 shows results produced by the DIAGNOSTICS=ALL option. Statistics that signal 

trouble are highlighted in bold.  

Output 1. Diagnostic Statistics from PROC BGLIMM Logit-normal Program with Default Settings 

Effective Sample Sizes 

Parameter ESS 
Autocorrelation 

Time Efficiency 

Intercept 174.1 28.7273 0.0348 

trt cntl 301.6 16.5782 0.0603 

trt drug . . . 

Random VC(1) 886.7 5.6389 0.1773 

Random VC(2) 722.3 6.9225 0.1445 

 

Geweke Diagnostics 

Parameter z Pr > |z| 

Intercept -0.4815 0.6302 

trt cntl -0.2990 0.7649 

trt drug . . 

Random VC(1) 0.5412 0.5884 

Random VC(2) 0.9604 0.3369 

 

Raftery-Lewis Diagnostics 

Quantile=0.025 Accuracy=+/-0.005 Probability=0.95 Epsilon=0.001 

Parameter 

Number of Samples 
Dependence 

Factor Burn-In Total Minimum 

Intercept 29 32909 3746 8.7851 

trt cntl 18 19114 3746 5.1025 

trt drug . . . . 

Random VC(1) 4 4636 3746 1.2376 

Random VC(2) 4 4714 3746 1.2584 

 

Heidelberger-Welch Diagnostics 

Parameter 

Stationarity Test Half-Width Test 

Cramer-von 
Mises Stat p-Value 

Test 
Outcome 

Iterations 
Discarded Half-Width Mean 

Relative 
Half-Width 

Test 
Outcome 

Intercept 0.0951 0.6092 Passed 0 0.0875 -0.4288 -0.2041 Failed 

trt cntl 0.2343 0.2098 Passed 0 0.0630 -0.9815 -0.0641 Passed 

trt drug . .  . . . .  
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Heidelberger-Welch Diagnostics 

Parameter 

Stationarity Test Half-Width Test 

Cramer-von 
Mises Stat p-Value 

Test 
Outcome 

Iterations 
Discarded Half-Width Mean 

Relative 
Half-Width 

Test 
Outcome 

Random VC(1) 0.2008 0.2659 Passed 2000 0.0655 1.8446 0.0355 Passed 

Random VC(2) 0.0432 0.9160 Passed 0 0.0855 1.2928 0.0661 Passed 

 

The “Effective Sample Sizes” table ESS and “Efficiency” results indicate trouble. All ESS 

values are less than 1000. The Geweke statistics look okay here, but you should always 

check them. The Raftery-Lewis dependence factors for “Random VC(1)” and “VC(2),” the 

clinic and clinic x treatment variance (𝜎𝑐
2 and 𝜎𝑐𝑡

2 ) respectively, are acceptably close to one, 

but those for the intercept and “trt cntl” effects (𝜂 and 𝜏𝐶𝑁𝑇𝐿) are much too high. Rules of 

thumb being at best approximate, if you see dependence factors greater than 3 or 4, 

consider your results to be unusable. Finally, the Heidelberger-Welch half-width test for 

intercept failed.  

ADDRESSING PROBLEMS  

The problems identified by the above diagnostics can occur for several reasons. The number 

of burn-in iterations or the size of the posterior distribution sampling may be inadequate. 

You can use thinning, that is, only taking every 5th or 10th or even 50th posterior density 

sample instead of every sample, to reduce autocorrelation. The default starting values for 

the fixed effect parameters may not be appropriate. The default priors may be too diffuse, 

including values that are technically in the parameter space, but highly implausible. Or the 

default priors may be where the parameters are not, that is, the most likely values of the 

parameter may be in an extreme tail of the prior distribution. Output 2 shows the defaults 

used by PROC BGLIMM for the logit-normal GLMM. 

Output 2. Sampling, Thinning, Starting Values and Priors for Default Logit-normal BGLIMM Run 

Model Information 

Burn-In Size 500 

Simulation Size 5000 

Thinning 1 

 

Initial Values for Fixed Effects 

Parameter Value 

Intercept -0.3102 

trt cntl -0.4040 

 

Priors for Fixed Effects 

Parameter Prior 

Intercept Constant 

trt cntl Constant 

 



10 

Priors for Scale and Covariance Parameters 

Parameter Prior 

Random Cov (Diag) Inverse Gamma (Shape=2, Scale=2) 

 

The “Model Information” table shows the default burn-in size (number of burn-in iterations), 

the “simulation size” (number of samples of the posterior density) and thinning. Thinning 

equal one means no thinning was done. The “Initial Values for Fixed Effects” table shows 

the starting values for 𝜂 and 𝜏𝐶𝑁𝑇𝐿. Compare these to their estimates from PROC GLIMMIX, 

�̂� = −0.4571 and �̂�𝐶𝑁𝑇𝐿 = −0.7462. You can use the estimates from GLIMMIX as starting values 

instead of letting BGLIMM’s algorithm choose starting values.  

The default priors for 𝜂 and 𝜏𝐶𝑁𝑇𝐿 are “constant” – essentially uniform distributions between 

plus and minus infinity. Overly diffuse priors that include highly implausible parameter 

values can cause problems – given that the actual values of 𝜂 and 𝜏𝐶𝑁𝑇𝐿 are unlikely to be 

very far from their GLIMMIX estimates, the “constant” prior may be an issue. The prior for 

both variance components is an inverse gamma with shape and scale parameters equal to 

two. Figure 2 shows a plot of the inverse gamma(2,2) distribution with vertical lines 

showing the GLIMMIX estimates of 𝜎𝑐
2 and 𝜎𝑐𝑡

2 . 

   
Figure 2. Plot of PROC BGLIMM Default Prior for Variance Components  

The lower vertical bar is the GLIMMIX estimate of the clinic x treatment variance, �̂�𝑐𝑡
2 = 0.06. 

The upper vertical bar is the GLIMMIX estimate �̂�𝑐
2 ≅ 2. You can see that the most likely 

value of the clinic x treatment variance is in the extreme lower tail of the default prior. Most 

of the probability mass of the inverse gamma(2,2) distribution is located over values that 

are implausibly high for 𝜎𝑐𝑡
2 . The clinic variance shows the opposite problem, although to a 

lesser extent – its most likely value is in the upper tail of the default prior.  

Christiansen, et al. (2011) suggest a strategy for selecting an appropriate prior for a 

variance component. They suggest using precision, defined as the inverse of the variance, 

denoted here as 𝛾 = 1 𝜎2⁄ , and identifying a gamma distribution whose mode is 

approximately equal to the most likely value of the parameter being estimated (you can use 

the estimates from PROC GLIMMIX as a logical most likely value) and whose upper and 

lower extreme quantiles (say the 1st and 99th) correspond to values below and above which 

are thought to be highly unlikely. The mode of a gamma distribution with shape parameter 

𝛼 and scale parameter 𝛽 is 𝛽(𝛼 − 1). You can specify the mode, try several values of 𝛼, solve 

for 𝛽 and evaluate the resulting distribution.  
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The following is an example a program you can use for prior hunting. The example is for the 

clinic x treatment variance. The PROC GLIMMIX estimate using the pseudo-likelihood default 

is  �̂�𝑐𝑡
2 = 0.06. The estimate using GLIMMIX’s METHOD=QUADRATURE option is  �̂�𝑐𝑡

2 = 0.01. 

These translate to precisions of 17 and 100 respectively. The program uses a mode between 

the two, in this example 40. Use the PDF and CDF functions to create the distribution for 

each 𝛼, 𝛽 combination. The PROC PRINT statement allows you to examine the lower and 

upper quantiles of the candidate distributions. The PROC GPLOT statement allows you to 

visualize the candidate distributions.  

The program statements are as follows:   

data gamma_prior; 

 mode=40;   

 /* A=shape parameter */ 

 /* B=scale parameter */  

 do a=1.01,1.05,1.1,1.25,1.5,2,3,5,10,20; 

  b=mode/(a-1); 

  do precision=0 to 200; 

   pdf_gamma=pdf("gamma",precision,a,b); 

   cdf_gamma=cdf("gamma",precision,a,b); 

  output; 

 end; 

 end; 

proc sort data=gamma_prior; by a; 

proc print; 

 where (0.009<cdf_gamma<0.011 or 0.989<cdf_gamma<0.991); 

run; 

proc gplot data=gamma_prior; 

 by a; 

 plot pdf_gamma*precision/href=17,40,100; 

 plot cdf_gamma*precision/vref=0.01,0.99; 

run; 

 

Some trial and error, and art along with science, are involved at this point. The distribution 

selected is gamma with shape=3 and scale=20. Figure 3 shows plots of the p.d.f. and c.d.f. 

    

Figure 3. Plots of the Prior Distribution Selected for the Clinic x Treatment Variance 

You can see that p.d.f. has a mode of 40 and contains the precision values 17 and 100 well 

within its range. The c.d.f. plot shows that the lower and upper extreme quantiles are just 

under 10 and just under 200, respectively. Translated to the variance scale, this prior 

covers a range between 𝜎𝑐𝑡
2 = 0.005 to 𝜎𝑐𝑡

2  just over 0.1, the range considered plausible. Using 
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the same strategy, a suitable prior for the clinic precision is gamma with shape=1.5 and 

scale=1. 

REVISED PROC BGLIMM PROGRAM 

The following shows the PROC BGLIMM program modified to include the options needed to 

obtain useable results. These options appear in bold. The program: 

proc bglimm data=clinics seed=81152097 

   nbi=2500 nmc=100000 thin=10  

   plots=(trace autocorr density) diagnostics=all 

   statistics(percent=(2.5 50 97.5)) 

   outpost=cout; 

 class clinic trt; 

 model fav/Nij=trt /   

   init=(list=(-0.46 -0.75) pinit) coeffprior=normal(var=9); 

 random  intercept  / subject=clinic covprior=igamma(shape=1.5, scale=1); 

 random  trt / subject=clinic covprior=igamma(shape=3, scale=0.05); 

 estimate "CNTL" intercept 1 trt 1 0; 

 estimate "DRUG" intercept 1 trt 0 1; 

 estimate "log odds-ratio" trt 1 -1; 

 ods output estimates=modelscale; 

 title "BGLIMM - all needed options"; 

run; 

 

The NBI, NMC and THIN options increase burn-in iterations, posterior distribution sample 

size and thinning, respectively. The INIT=(LIST=( option allows you to specify starting 

values for the fixed effect parameters 𝜂 and 𝜏𝐶𝑁𝑇𝐿. The COEFFPRIOR option specifies a 

𝑁(𝜇 = 0, 𝜎2 = 9) prior distribution for these effects. Note that your options for COEFFPRIOR 

are either “constant” or “normal.” VAR allows you to specify the variance, but the normal 

prior is always centered at a mean of zero. The COVPRIOR option specifies a prior for the 

variance of random model effects. Notice that you can have multiple RANDOM statements, 

which allows you to use different priors for each variance. The COVPRIOR must be specified 

in terms of the inverse gamma distribution. The required syntax is IGAMMA (SHAPE=<
𝑣𝑎𝑙𝑢𝑒 >, SCALE=< 𝑣𝑎𝑙𝑢𝑒 >). Use the following result: 𝛾~𝐺𝑎𝑚𝑚𝑎(𝛼, 𝛽) is equivalent to 

1 𝛾⁄ ~𝑖𝑛𝑣𝑒𝑟𝑠𝑒 − 𝑔𝑎𝑚𝑚𝑎(𝛼, 1 𝛽⁄ ). For example, the 𝑔𝑎𝑚𝑚𝑎(3,20) prior for the clinic x treatment 

precision translates to an 𝑖𝑛𝑣𝑒𝑟𝑠𝑒 − 𝑔𝑎𝑚𝑚𝑎(3,0.05) prior for the clinic x treatment variance. 

Output 3 shows selected results.  

Effective Sample Sizes 

Parameter ESS 
Autocorrelation 

Time Efficiency 

Intercept 2952.3 3.3872 0.2952 

trt cntl 10000.0 1.0000 1.0000 

trt drug . . . 

Random1 Var 7644.9 1.3081 0.7645 

Random2 Var 8756.1 1.1421 0.8756 
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Raftery-Lewis Diagnostics 

Quantile=0.025 Accuracy=+/-0.005 Probability=0.95 Epsilon=0.001 

Parameter 

Number of Samples 
Dependence 

Factor Burn-In Total Minimum 

Intercept 6 6350 3746 1.6951 

trt cntl 2 3834 3746 1.0235 

trt drug . . . . 

Random1 Var 2 3803 3746 1.0152 

Random2 Var 2 3650 3746 0.9744 

 

Posterior Summaries and Intervals 

Parameter N Mean 
Standard 
Deviation 95% HPD Interval 

Intercept 10000 -0.4491 0.5504 -1.6003 0.5728 

trt cntl 10000 -0.7454 0.3053 -1.3201 -0.1303 

trt drug 0 . . . . 

Random1 Var 10000 2.1165 1.5208 0.3744 4.6572 

Random2 Var 10000 0.0261 0.0281 0.00444 0.0639 

 

Posterior Summaries 

Parameter N Mean 
Standard 
Deviation 

Percentiles 

2.5 50 97.5 

Intercept 10000 -0.4491 0.5504 -1.5574 -0.4418 0.6304 

trt cntl 10000 -0.7454 0.3053 -1.3539 -0.7410 -0.1619 

trt drug 0 . . . . . 

Random1 Var 10000 2.1165 1.5208 0.6293 1.7386 5.7644 

Random2 Var 10000 0.0261 0.0281 0.00701 0.0193 0.0845 

 

Results from ESTIMATE Statements 

Label Mean 
Standard 
Deviation 95% HPD Interval 

CNTL -1.1946 0.5612 -2.3136 -0.0881 

DRUG -0.4491 0.5504 -1.6003 0.5728 

log odds-ratio -0.7454 0.3053 -1.3201 -0.1303 

Output 3. Selected Results from Useable PROC BGLIMM Run for Beitler-Landis Data 

The “Effective Samples Sizes” table shows acceptable ESS and efficiency numbers. All 

Raftery-Lewis dependence factors are <2. In the interest of space, the other diagnostics are 

not shown here, but they are similarly acceptable, indicating that this run has produced 

useable results. The “Posterior Summaries and Intervals” table shows the mean, standard 

deviation and 95% highest posterior density (HPD) intervals for the model fixed effects and 

the variance components. The estimates in the “Mean” column are similar to those obtained 

with PROC GLIMMIX. Note that the fixed effect component of the linear predictor, 𝜂 + 𝜏𝑖 is 

not full rank. PROC BGLIMM uses the same convention – setting the last effect, in this case 
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𝜏𝐷𝑅𝑈𝐺, to zero – as other SAS linear model procedures. The “Posterior Summaries” table 

gives percentiles specified by the STATISTICS(PERCENT= option instead of HPD intervals. 

The “Results from ESTIMATE Statements” table give the posterior distribution mean, 

standard deviation and 95% HPD intervals from the ESTIMATE statements.  

Note that all of these statistics are on the model scale – in this case the logit scale. Because 

PROC BGLIMM has no ILINK option, you must output these results and use post-processing 

steps to obtain data scale estimates. The most obvious of these are the probabilities of a 

favorable outcome for each treatment, �̂�𝐶𝑁𝑇𝐿 and �̂�𝐷𝑅𝑈𝐺, the difference between the two, 

�̂�𝐷𝑅𝑈𝐺 − �̂�𝐶𝑁𝑇𝐿, and the odds-ratio, 
�̂�𝐶𝑁𝑇𝐿

1−�̂�𝐶𝑁𝑇𝐿

�̂�𝐷𝑅𝑈𝐺

1−�̂�𝐷𝑅𝑈𝐺
⁄ . There are two ways to do this. These are 

shown in the next section. 

POST-PROCESSING TO OBTAIN DATA-SCALE ESTIMATE 

You can either use the data set produced by the OUTPOST option in the PROC statement or 

the ESTIMATES from the ODS OUTPUT statement to obtain data-scale estimates.  

Data Scale Estimates Using OUTPOST and the %SUMINT Macro 

After you run the PROC BGLIMM program that produces useable output, use the following 

statements: 

data datasc; 

 set cout; 

 pr_cntl=logistic(cntl); 

 pr_drug=logistic(drug); 

 ProbDiff=logistic(drug)-logistic(cntl); 

 OddsRatio=exp(log_odds_ratio); 

run; 

%sumint(data=datasc, var=pr_cntl: pr_drug: ProbDiff: OddsRatio)     

 

The OUTPOST option creates a data set of posterior samples for the model fixed effects and 

ESTIMATES. In this example, the data set is called COUT. The DATA step creates a new data 

set, DATASC, with the favorable outcome probabilities, labelled PR_CNTL and PR_DRUG, 

their difference, PROBDIFF, and the odds-ratio. The LOGISTIC function implements the 

logit’s inverse link, 𝜋 = 1 [1 + 𝑒𝑥𝑝(−𝜂)]⁄ . The difference �̂�𝐶𝑁𝑇𝐿 − �̂�𝐷𝑅𝑈𝐺 estimates the log of the 

odds-ratio, so 𝑒𝑥𝑝(�̂�𝐶𝑁𝑇𝐿 − �̂�𝐷𝑅𝑈𝐺) gives you the estimated odds-ratio. The %SUMIT macro 

computes and prints inferential statistics for the terms listed after VAR= for the data set 

given by DATA=<data set name>. Output 4 shows the results. 

Posterior Summaries and Intervals 

Parameter N Mean 
Standard 
Deviation 

95% HPD 
Interval 

OddsRatio 10000 0.4970 0.1532 0.2251 0.8004 

pr_cntl 10000 0.2461 0.0990 0.0750 0.4475 

pr_drug 10000 0.3965 0.1224 0.1679 0.6394 

ProbDiff 10000 0.1504 0.0667 0.0248 0.2800 

  Output 4. Data Scale Estimates from OUTPOST and %SUMINT 

Data Scale Estimates Using ODS OUTPUT  

Instead of using the OUTPOST data set and the %SUMINT macro, you can use the following 

statements: 

data lsm; set modelscale; 
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 if label='CNTL' or label='DRUG'; 

 prob=1/(1+exp(-Mean)); 

 lower=1/(1+exp(-HPDLower)); 

 upper=1/(1+exp(-HPDUpper)); 

data oddsratio; set modelscale; 

 if label='log odds ratio'; 

 OddsRatio=exp(Mean); 

 lower=exp(HPDLower); 

 upper=exp(HPDUpper); 

proc print data=lsm; 

proc print data=oddsratio; 

run;  

 

MODELSCALE is the data set produced by the ODS OUTPUT statement. These DATA steps 

produce two data sets. The one called LSM uses the logit’s inverse link to compute the 

estimates and HPD interval lower and bounds for 𝜋𝐶𝑁𝑇𝐿 and 𝜋𝐷𝑅𝑈𝐺. The data set called 

ODDSRATIO computes the estimates and HPD bounds for the odds-ratio. Use the IF LABEL= 

statement to select items to be included in each data set. The LABEL names are the labels 

used in the ESTIMATE statements. Both data sets use the results of the ESTIMATE 

statements instead of the posterior sample data set, so the results differ from the %SUMINT 

listing above. If you want the estimated difference between the probabilities, �̂�𝐷𝑅𝑈𝐺 − �̂�𝐶𝑁𝑇𝐿 

use OUTPOST and %SUMINT – it is more convenient. Output 5 shows the results using the 

ODS OUTPUT approach. 

Obs Label Mean StdDev HPDLower HPDUpper prob lower upper 

1 CNTL -1.1946 0.5612 -2.3136 -0.0881 0.23245 0.09001 0.47798 

2 DRUG -0.4491 0.5504 -1.6003 0.5728 0.38957 0.16793 0.63942 

 

Obs Label Mean StdDev HPDLower HPDUpper OddsRatio lower upper 

1 log odds-ratio -0.7454 0.3053 -1.3201 -0.1303 0.47452 0.26712 0.87780 

Output 5. Data Scale Estimates from ODS OUTPUT and Follow-up DATA Steps 

The Mean, StdDev, HPDLower and HPDUpper values are model scale values from the 

BGLIMM ESTIMATE statements. The three columns on the right, labelled “prob” or 

“OddsRatio” and “lower” and “upper” are the data scale estimates.  

  

EXAMPLE 2: MULTI-LEVEL DESIGN WITH COUNT DATA 

This example appears in SAS for Mixed Models (2018) in Chapter 13, Section 13.3. The data 

are from an agricultural experiment comparing two cultivation methods and two seed mixes. 

Each of six fields is divided into two sections, called whole plots. Each whole plot is 

randomly assigned to a method so that both methods appear at each field. Each whole plot 

is divided into two split plots to which mixes are randomly assigned. Table 6 shows the 

sources of variation.  

EXPERIMENT DESIGN TREATMENT DESIGN COMBINED 

SOURCE DF SOURCE DF SOURCE DF 

field 5   field 5 

  method 1 method 1 

whole-plot(field)  6   field x method (wp) 6-1=5 

  mix 1 mix 1 

  method x mix 1 method x mix 1 
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split-plot(wp) 12   sp (wp) | method, mix 12-2=10 

TOTAL 23   TOTAL 23 

 Table 6. Sources of Variation for Multi-Level Field Trial 

The response variable is a discrete count. SAS for Mixed Models describes two “sensible” 

models, the Poisson-normal GLMM and the negative binomial GLMM. This section presents 

the latter, as it is the model of choice for these data, and the negative binomial illustrates 

PROC BGLIMM options that would not be used with the Poisson-normal model.  

Table 7 uses the combined sources of variation column from Table 6 to show how the 

negative binomial arises in the context of this experiment. 

SOURCE EFFECT DISTRIBUTION OBSERVATION AND MODEL 

field 𝑓𝑘~𝑁(0, 𝜎𝑓
2)  

method 𝛼𝑖  

field x method (wp) 𝑤𝑖𝑘~𝑁(0, 𝜎𝑤
2 )  

mix 𝛽𝑗  

method x mix 𝛼𝛽𝑖𝑗  

sp(wp)|method,mix 

a.k.a. unit of obs. 
𝑢𝑖𝑗𝑘~𝑔𝑎𝑚𝑚𝑎(1

𝜑⁄ , 𝜑) 
𝑦𝑖𝑗𝑘|𝑓𝑘 , 𝑤𝑖𝑘 , 𝑢𝑖𝑗𝑘~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖𝑗𝑘𝑢𝑖𝑗𝑘) 

𝜆𝑖𝑗𝑘 = 𝑒𝑥𝑝(𝜂 + 𝛼𝑖 + 𝛽𝑗 + 𝛼𝛽𝑖𝑗 + 𝑓𝑘 + 𝑤𝑖𝑘) 

 Table 7. Model Effects and Distribution Defining Poisson-Gamma Process 

The method and mix effects are denoted by 𝛼 and 𝛽, respectively. The negative binomial 

arises from a Poisson-gamma process. Variation at the unit of observation level is assumed 

to follow a gamma distribution with 𝐸(𝑢𝑖𝑗𝑘) = 1. If you integrate out the unit level term, 

𝑦𝑖𝑗𝑘|𝑓𝑘, 𝑤𝑖𝑘~𝑁𝐵(𝜆𝑖𝑗𝑘 , 𝜑), where NB denotes negative binomial. Thus, the following elements 

define the GLMM: 

• Distributions: 𝑦𝑖𝑗𝑘|𝑓𝑘 , 𝑤𝑖𝑘~𝑁𝐵(𝜆𝑖𝑗𝑘 , 𝜑), 𝑓𝑘~𝑁(0, 𝜎𝑓
2), 𝑤𝑖𝑘~𝑁(0, 𝜎𝑤

2 ) 

• Link function: 𝜂𝑖𝑗𝑘 = 𝑙𝑜𝑔(𝜆𝑖𝑗𝑘)  

• Linear predictor: 𝜂 + 𝛼𝑖 + 𝛽𝑗 + 𝛼𝛽𝑖𝑗 + 𝑓𝑘 + 𝑤𝑖𝑘 

With PROC BGLIMM, replacing the effects part of the linear predictor, 𝜂 + 𝛼𝑖 + 𝛽𝑗 + 𝛼𝛽𝑖𝑗, with 

its cell means, full rank equivalent makes it easier to use the ESTIMATE statement to 

compute terms of interest. The cells means form can be written 𝜂𝑖𝑗 + 𝑓𝑘 + 𝑤𝑖𝑘.  

The CLASS, MODEL and RANDOM statements for this model are: 

class field method mix; 

 model count=method*mix / noint distribution=negbin;   

 random intercept method/ subject=field; 

 

As with Example 1, the default BGLIMM settings give unusable results. In the interest of 

space, not all diagnostics are shown. Output 6 shows two examples, the Geweke statistics 

and the plots for the negative binomial scale parameter, 𝜑. 

Geweke Diagnostics 

Parameter z Pr > |z| 

method 1*mix 1 1.8922 0.0585 

method 1*mix 2 2.3868 0.0170 

method 2*mix 1 0.9584 0.3379 

method 2*mix 2 1.8992 0.0575 

Scale -2.7547 0.0059 
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Geweke Diagnostics 

Parameter z Pr > |z| 

Random VC(1) 1.4784 0.1393 

Random VC(2) -0.4486 0.6537 

 

Output 6. Example diagnostics: PROC BGLIMM negative binomial GLMM with default settings 

Four of the seven parameters on the “Geweke Diagnostics” table show low p-values. For the 

scale parameter, p<0.01. The trace and autocorrelation plots are unacceptable. To obtain 

useable results, you must work through the same set of steps as illustrated in the previous 

section. The following program statements are the result: 

proc bglimm data=sp_counts plots=(trace autocorr density)  

   nbi=2500 nmc=1000000 thin=100 seed=20210209 

   diagnostics=all dic outpost=model_scale; 

 class field method mix; 

 model count=method*mix / noint distribution=negbin  

   init=(list=(2.5, 2.9, 0.8, 2.0) Pinit) 

   scaleprior=gamma(shape=20,iscale=25);   

 random intercept method/ subject=field  

   covprior=igamma(shape=4,scale=3);  

 estimate "LSM_11" method*mix 1 0 0 0; 

 estimate "LSM_12" method*mix 0 1 0 0; 

 estimate "LSM_21" method*mix 0 0 1 0; 

 estimate "LSM_22" method*mix 0 0 0 1; 

 estimate "interaction" method*mix 1 -1 -1 1; 

 estimate "Method Main Effect" method*mix 1 1 -1 -1 / divisor=2; 

 estimate "Mix Main Effect" method*mix 1 -1 1 -1 / divisor=2; 

 ods output estimates=link_scale; 

 title "Negative Binomial GLMM"; 

run; 

 

The burn-in, posterior sampling and thinning options may look extreme, but computing time 

is minimal, and they guarantee useable results. The INIT option uses PROC GLIMMIX results 

as starting values for the METHOD*MIX (𝜂𝑖𝑗) effects. Changing from the “constant” to the 

“normal” prior has little effect with this model.  

The COVPRIOR in the RANDOM statement is based on using estimates from PROC GLIMMIX, 

�̂�𝑓
2 = 1.64 and  �̂�𝑤

2 = 1.38, as most likely values. Given that they are similar in value, the same 

inverse gamma with shape=4 and scale =3 is used for both. The SCALEPRIOR option allows 

you to specify a prior for the negative binomial scale parameter. The search using the 

Christiansen, et al. approach described in the previous section resulted in selecting a 
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𝑔𝑎𝑚𝑚𝑎(𝑠ℎ𝑎𝑝𝑒 = 20, 𝑠𝑐𝑎𝑙𝑒 = 0.04) prior. Note that BGLIMM requires the gamma distribution to 

be specified using the inverse scale, hence ISCALE=25 rather than SCALE=0.04.  

The ESTIMATE statements define means, interaction and main effect differences. These are 

given on the model (log) scale in the SAS listing. You can use either the %SUMINT macro 

with the OUTPOST=MODEL_SCALE data set or the ODS OUTPUT data set to compute data-

scale equivalents. In the interest of space, only the OUTPOST plus %SUMINT program 

statements and output are shown.  

The SAS statements: 

data data_scale; 

 set model_scale; 

 Lambda_11=exp(LSM_11); 

 Lambda_12=exp(LSM_12); 

 Lambda_21=exp(LSM_21); 

 Lambda_22=exp(LSM_22); 

 Method_Diff_Ratio=exp(Method_Main_Effect); 

 Mix_Diff_Ratio=exp(Mix_Main_Effect); 

%sumint(data=data_scale, var=Lambda_11: Lambda_12: Lambda_21: Lambda_22: 

        interaction: Method_Diff_Ratio: Mix_Diff_Ratio) 

    

Output 7 shows the listing. 

Posterior Summaries and Intervals 

Parameter N Mean 
Standard 
Deviation 95% HPD Interval 

Lambda_11 10000 19.2095 18.9908 0.7638 52.9988 

Lambda_12 10000 31.6319 31.0823 1.4792 86.1046 

Lambda_21 10000 4.2671 3.5069 0.4212 10.6353 

Lambda_22 10000 13.5674 11.0600 1.0802 32.3851 

interaction 10000 0.6695 0.8461 -0.9995 2.3477 

Method_Diff_Ratio 10000 3.6754 2.7677 0.3665 8.3976 

Mix_Diff_Ratio 10000 0.4728 0.2049 0.1595 0.8911 

Output 7. Data-Scale Results of Negative Binomial Split-Plot GLMM Analysis 

The LAMBDA_11, etc. terms give the rate parameter estimates, �̂�𝑖𝑗 = 𝑒𝑥𝑝(�̂�𝑖𝑗) for the four 

method-mix combinations. The “interaction” term remains on the model scale. There is no 

need to express it on the data scale, as its only purpose is to assess the magnitude of the 

method x mix interaction. The HPD interval includes zero; using interval as the criterion, 

you could conclude that there is insufficient evidence to reject the hypothesis of no 

interaction. The METHOD_DIFF_RATIO” term estimates 𝜆1̅⋅ 𝜆̅
2⋅⁄  where 𝜆̅

𝑖⋅ is the rate 

parameter for the 𝑖𝑡ℎ method averaged over both mixes. The difference �̅�1⋅ − �̅�2⋅ = 𝑙𝑜𝑔(𝜆1̅⋅) −

𝑙𝑜𝑔(𝜆̅
2⋅), hence 𝑒𝑥𝑝( �̅�1⋅ − �̅�2⋅) = 𝜆1̅⋅ 𝜆̅

2⋅⁄ . The “MIX_DIFF_RATIO” is similarly defined, but for mix 

instead of method. Think of these as data scale main effect measures. Although not shown 

here, you could also obtain statistics for differences between selected LSM terms, similar to 

the way PROBDIFF was defined in the previous section.   

EXAMPLE 3: REPEATED MEASURES DATA 

This example is from Chapter 8 of SAS for Mixed Models (2018). It appears as “Respiratory 

Data” for a repeated measures example in Littell, Pendergast and Natarijan (2000), and in 

Chapter 4 of SAS for Linear Models, 4th Edition (Littell, et al., 2002). The data are from a 
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trial comparing a standard asthma treatment (A), a test drug (C) and a placebo (P). 

Treatments were randomly assigned to 24 patients (72 patients total participated in the 

trial). The response variable, FEV1, is a measure of breathing ability. A baseline 

measurement (BASEFEV1) was taken on each patient, then measurements every hour for 

eight hours starting at one hour after application. FEV1 can be assumed to follow a 

Gaussian distribution. Table 8 shows the experiment design, treatment design and 

combined sources of variation. 

EXPERIMENT DESIGN TREATMENT COMBINED 

SOURCE DF SOURCE DF SOURCE DF 

  drug 2 drug 2 

patient 72-1=71 
 

 
patient(drug) 

a.k.a. between 
71-2=69 

  hour 7 hour 7 

  drug x hour 14 drug x hour 14 

occasion(patient) 
72(8-1) = 

504 

 
 

occ(patient)|drug 

a.k.a. within 
504-7-14 = 493 

TOTAL 575   TOTAL 575 

  Table 8. Sources of Variation for Respiratory Repeated Measures Data 

In repeated measures terminology, patient(drug) is called the between subjects effect 

and the occ(patient)|drug (occasion within patient after accounting for drug) residual term 

is called the within subjects effect. Following SAS for Mixed Models, the LMM of choice has 

the following elements: 

• Distributions 

o 𝒚𝑖𝑗|𝑏𝑖𝑗~𝑁(𝝁𝑖𝑗 , 𝑹), where 𝒚𝑖𝑗′ = [𝑦𝑖𝑗1 𝑦𝑖𝑗2 𝑦𝑖𝑗3  … 𝑦𝑖𝑗7 𝑦𝑖𝑗8], the vector of FEV1 

measures on the 𝑗𝑡ℎ patient assigned to the 𝑖𝑡ℎ drug over the 𝑘 = 1,2,3, … ,7,8 

hours of observation, 𝝁𝑖𝑗 is the corresponding mean vector and 𝑹 is the 8 × 8 

covariance matrix modeling serial correlation among the within subjects 

effects. SAS for Mixed Models uses the AR(1) covariance model. 

o 𝑏𝑖𝑗~𝑁(0, 𝜎𝑏
2) is the between subjects effect 

• Linear Predictor: 𝜇𝑖𝑗𝑘 = 𝜂 + 𝛿𝑖 + 𝜏𝑘 + 𝛿𝜏𝑖𝑘 + 𝑏𝑖𝑗, where 𝛿 and 𝜏 denote drug and time 

(hour) effects, respectively.  

The covariance parameters for the for the 𝑅 matrix are 𝜌 for autocorrelation and 𝜎𝑤
2 for 

residual (within subjects) variance. You can include the baseline covariance, BASEFEV1, by 

modifying the linear predictor to 𝜇𝑖𝑗𝑘 = 𝜂 + 𝛽𝑋𝑖𝑗 + 𝛿𝑖 + 𝜏𝑘 + 𝛿𝜏𝑖𝑘 + 𝑏𝑖𝑗, where 𝑋𝑖𝑗 denotes 

BASEFEV1 for the  𝑗𝑡ℎ patient assigned to the 𝑖𝑡ℎ drug.  

Figure 4 shows the interaction plot, which you can obtain using the PLOT=MEANPLOT option 

in the PROC GLIMMIX LSMEANS statement. The interaction plot is instructive, because it 

helps you visualize the objectives of this study and the requirements of the model needed to 

address the objectives.  
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Figure 4. Interaction Plot showing Change in FEV1 over hours by treatment. 

The treatment is initially effective for the A and C drugs but not the placebo. Over time, 

FEV1 decreases as the drugs’ effectiveness wears off. The objective of the study is to see if 

there is a difference between the treatments as measured by initial effectiveness and by 

how long the effect lasts.  

There are two ways to approach this objective. One is to model HOUR as a CLASS variable 

and track the simple effects 𝜇𝐴𝑘 − 𝜇𝑃𝑘 and 𝜇𝐶𝑘 − 𝜇𝑃𝑘 at each hour 𝑘, where 𝜇𝑖𝑘 = 𝜂 + 𝛿𝑖 + 𝜏𝑘 +
𝛿𝜏𝑖𝑘. The other is to redefine 𝜇𝑖𝑗 in terms of an unequal slopes linear regression model, i.e., 

𝜇𝑖𝑘 = 𝛼𝑖 + 𝛽𝑖𝐻𝑘, where 𝐻𝑘 denotes the 𝑘𝑡ℎ hour, and compare intercept and slope coefficients.  

NOTE: The documentation for PROC BGLIMM uses this data set as an example. In one 

passage, the documentation gives what it calls “Model 2” and “Model 3.” The MODEL 

statements for each are: 

• Model 2: fev1=basefev1 drug hour; 

• Model 3: fev1=basefev1 drug|hour; 

The documentation characterizes the difference between model 2 and model 3 as “minor,” 

and shows results for model 2 but not model 3. Perhaps the difference is “minor” from a 

programming point of view, but the difference is not “minor” from a statistical practice point 

of view. Model 2 is incapable of addressing the objectives of this study and therefore fails 

the “sensible model” criterion. To address this study’s objectives, the drug x hour 

interaction must be included in the model in some form.  

The PROC BGLIMM statements for simple effects and unequal slopes approaches are given 

as follows. For the simple effects approach, it is much more convenient to specify the cell-

means form of the model. The statements are: 

proc bglimm data=fev1uni nbi=1000 nmc=50000 thin=5 seed=97816352 

      plots=(trace autocorr density) diagnostics=all; 

   class Drug Patient Hour; 

   model FEV1 = BaseFev1 Drug*Hour; 

   random int / subject=Patient(drug); 

   repeated Hour / subject=Patient(Drug) type=ar(1) r rcorr; 

run; 

 

Notice that PROC BGLIMM barrows the syntax of the PROC MIXED REPEATED statement to 

specify the covariance model for the within subjects effect. The default priors work well for 

this model, but increasing burn-in, posterior sampling and thinning improves the results. 

There are twenty-four DRUG*HOUR least squares means, and sixteen simple effects 
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comparing drug A and C to the placebo at each hour, for a total to forty ESTIMATE 

statements. In the interest of space, only one example of each type of statement is shown.  

You can access the SAS files for all examples in this tutorial at ... (I need to find out from 

SAS where...) 

The example ESTIMATE statements are: 

estimate "LSM A at hour 1"  intercept 1 basefev1 2.6493  

   Drug*Hour 1 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0; 

estimate "A vs P at hour 1"   

   Drug*Hour 1 0 0 0 0 0 0 0  0 0 0 0 0 0 0 0  -1 0 0 0 0 0 0 0; 

 

The coefficients for least squares means (LSM) obtain the adjusted mean at the average 

BASEFEV1 covariate value of 2.6493. If you are in doubt, use the E option of the PROC 

GLIMMIX LSMEANS statement to get the coefficients needed for these statements.  

The statements for the unequal slopes approach are as follows: 

data fev1uni; 

 set fev1uni; 

 H=hour; 

proc bglimm data=fev1uni nbi=1000 nmc=50000 thin=5 seed=44672057 

      plots=(trace autocorr density) diagnostics=all; 

   class Drug Patient Hour; 

   model FEV1 = BaseFev1 drug H(drug); 

   random int / subject=Patient(drug); 

   repeated Hour / subject=Patient(Drug) type=ar(1) r rcorr; 

   estimate "intercept - Drug A" intercept 1 basefev1 2.6493 drug 1 0 0; 

   estimate "intercept - Drug C" intercept 1 basefev1 2.6493 drug 0 1 0; 

   estimate "intercept - Drug P" intercept 1 basefev1 2.6493 drug 0 0 1; 

   estimate "slope - Drug A" H(drug) 1 0 0; 

   estimate "slope - Drug C" H(drug) 0 1 0; 

   estimate "slope - Drug P" H(drug) 0 0 1; 

   estimate "intercept A vs C" drug 1 -1 0; 

   estimate "intercept A vs P" drug 1 0 -1; 

   estimate "intercept C vs P" drug 0 1 -1; 

   estimate "slope A vs C" H(drug) 1 -1 0; 

   estimate "slope A vs P" H(drug) 1 0 -1; 

   estimate "slope C vs P" H(drug) 0 1 -1; 

run; 

 

You need to define a second variable for HOUR – in this case the DATA step with H=HOUR – 

and use one as the direct regression variable in the MODEL statement and the other as a 

CLASS variable for the REPEATED statement. The “INTERCEPT – DRUG A” etc. ESTIMATE 

statements obtain �̂�𝑖 the estimated regression intercepts, adjusted for the baseline 

covariate, and the “SLOPE – DRUG A” etc. statements obtain �̂�𝑖, the slopes. The next six 

statements compare intercepts and slopes among the DRUG treatments.  

Output 8 shows the covariance parameter estimates obtained using the cell means model. 

Output 9 shows the least squares means listing from the cell means model. Output 10 

shows the simple effect difference results.  

Posterior Summaries and Intervals 

Parameter N Mean 
Standard 
Deviation 95% HPD Interval 

Residual Var 10000 0.0846 0.0104 0.0664 0.1058 
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Posterior Summaries and Intervals 

Parameter N Mean 
Standard 
Deviation 95% HPD Interval 

Residual AR(1) 10000 0.5386 0.0550 0.4278 0.6407 

Random Var 10000 0.2458 0.0453 0.1612 0.3341 

Output 8. Covariance parameter estimates. 

“Residual Var” gives the within subjects variance statistics. “Mean” gives you �̂�𝑤
2 = 0.0846. 

“Residual AR(1)” give the autocorrelation parameter, �̂� = 0.5386. “Random Var” gives the 

between subjects variance, �̂�𝑏
2 = 0.2458. 

 

Results from ESTIMATE Statements 

Label Mean 
Standard 
Deviation 

95% HPD 
Interval 

LSM A at hour 1 3.4739 0.1178 3.2501 3.7107 

LSM C at hour 1 3.6903 0.1187 3.4705 3.9330 

LSM P at hour 1 2.8264 0.1183 2.5956 3.0589 

LSM A at hour 2 3.3963 0.1175 3.1685 3.6287 

LSM C at hour 2 3.6251 0.1194 3.3849 3.8521 

LSM P at hour 2 2.8916 0.1176 2.6606 3.1195 

LSM A at hour 3 3.1839 0.1181 2.9470 3.4114 

LSM C at hour 3 3.5764 0.1190 3.3390 3.8059 

LSM P at hour 3 2.8974 0.1186 2.6571 3.1239 

LSM A at hour 4 3.0460 0.1175 2.8098 3.2714 

LSM C at hour 4 3.4424 0.1190 3.2178 3.6824 

LSM P at hour 4 2.8713 0.1180 2.6237 3.0877 

LSM A at hour 5 3.0533 0.1185 2.8278 3.2873 

LSM C at hour 5 3.2487 0.1187 3.0172 3.4829 

LSM P at hour 5 2.7686 0.1183 2.5390 2.9997 

LSM A at hour 6 2.9800 0.1183 2.7533 3.2130 

LSM C at hour 6 3.0845 0.1186 2.8482 3.3096 

LSM P at hour 6 2.8160 0.1179 2.5817 3.0423 

LSM A at hour 7 2.8687 0.1181 2.6414 3.0987 

LSM C at hour 7 2.9764 0.1181 2.7273 3.1924 

LSM P at hour 7 2.7859 0.1180 2.5595 3.0183 

LSM A at hour 8 2.8581 0.1171 2.6377 3.0913 

LSM C at hour 8 3.0093 0.1175 2.7724 3.2359 

LSM P at hour 8 2.7330 0.1188 2.4999 2.9644 

Output 9. Drug x Treatment Least Squares Means for Repeated Measures Data 
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Results from ESTIMATE Statements 

Label Mean 
Standard 
Deviation 

95% HPD 
Interval 

A vs P at hour 1 0.6475 0.1652 0.3224 0.9630 

C vs P at hour 1 0.8639 0.1683 0.5235 1.1894 

A vs P at hour 2 0.5048 0.1648 0.1606 0.8070 

C vs P at hour 2 0.7335 0.1678 0.4078 1.0694 

A vs P at hour 3 0.2865 0.1651 -0.0478 0.6028 

C vs P at hour 3 0.6789 0.1687 0.3453 1.0093 

A vs P at hour 4 0.1747 0.1649 -0.1565 0.4920 

C vs P at hour 4 0.5711 0.1680 0.2481 0.9090 

A vs P at hour 5 0.2847 0.1658 -0.0489 0.6031 

C vs P at hour 5 0.4801 0.1677 0.1611 0.8200 

A vs P at hour 6 0.1641 0.1651 -0.1476 0.4993 

C vs P at hour 6 0.2685 0.1669 -0.0668 0.5785 

A vs P at hour 7 0.0828 0.1654 -0.2411 0.4083 

C vs P at hour 7 0.1905 0.1673 -0.1365 0.5220 

A vs P at hour 8 0.1251 0.1659 -0.1932 0.4553 

C vs P at hour 8 0.2763 0.1667 -0.0641 0.5925 

   Output 10. Simple effect differences between drugs (A, C) and placebo (P) 

Output 10 is the PROC BGLIMM analog to the results you would get with the 

SLICEDIFF=HOUR option in PROC GLIMMIX.  

Output 11 gives the ESTIMATE statement results from the unequal slopes regression model. 

Results from ESTIMATE Statements 

Label Mean 
Standard 
Deviation 95% HPD Interval 

intercept - Drug A 3.5169 0.1205 3.2852 3.7577 

intercept - Drug C 3.8065 0.1197 3.5730 4.0403 

intercept - Drug P 2.8859 0.1199 2.6516 3.1233 

slope - Drug A -0.0887 0.0117 -0.1115 -0.0651 

slope - Drug C -0.1057 0.0117 -0.1285 -0.0825 

slope - Drug P -0.0160 0.0119 -0.0390 0.00708 

intercept A vs C -0.2896 0.1690 -0.6066 0.0506 

intercept A vs P 0.6310 0.1706 0.3002 0.9703 

intercept C vs P 0.9206 0.1703 0.5897 1.2525 

slope A vs C 0.0170 0.0166 -0.0166 0.0486 

slope A vs P -0.0727 0.0168 -0.1057 -0.0399 

slope C vs P -0.0897 0.0167 -0.1236 -0.0578 

Output 11. Unequal slopes linear regression repeated measures model estimates and differences 
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You can see that the estimated intercepts for drug A and C and both greater than for the 

placebo (3.51 and 3.81 versus 2.89) indicating that initial breathing ability is greater for the 

two drugs than the placebo. On the other hand, the estimated slopes for drug A and C are 

−0.09 and −0.11 respectively versus −0.02 for the placebo. The placebo’s HPD credible 

interval for slope includes zero, whereas the intervals for drugs A and C do not. The 

placebo’s regression is essentially flat because its initial effect is negligible.      

CONCLUSION 

In the SAS system hierarchy, PROC BGLIMM occupies a space between PROC GLIMMIX and 

PROC MCMC. You can use PROC BGLIMM for any GLMM that PROC GLIMMIX can implement. 

The advantage of the BGLIMM procedure is that it allows to access to Bayesian estimation 

and inference using the same CLASS, MODEL and RANDOM syntax as PROC GLIMMIX. The 

main difference between BGLIMM and GLIMMIX is that because Bayesian analysis depends 

on complex simulation algorithms, there are more diagnostics that must be monitored and 

more options that you may need to use in order to get a useable analysis.   

PROC MCMC uses syntax borrowed from PROC NLMIXED. This means that it does not have a 

CLASS statement, making it more tedious to specify models, especially effects models with 

factorial treatment structures. On the other hand, unlike PROC BGLIMM, you can use PROC 

MCMC to fit nonlinear models, semiparametric models, and mixed models with non-

Gaussian random effects, such as beta-binomial and Poisson-gamma models. PROC MCMC 

also provides more flexibility in specifying prior distributions. For example, you can use 

priors centered at the starting value for fixed effects, where BGLIMM limits you to 

“constant” or zero-centered Gaussian priors.  

Finally, when you use PROC BGLIMM with non-Gaussian response variables, these is an 

additional post-processing step, either using the %SUMINT macro or the ODS OUTPUT data 

set, in order to get data scale estimates inferential statistics. The lack of an ILINK option 

means an extra step, but as we see in Examples 1 and 2, it is not a difficult step.  

PROC BGLIMM makes Bayesian analysis highly accessible to data analysts who have PROC 

GLIMMIX experience but are new to the Bayesian world.  
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