

Paper 1077-2021

Introduction to Doxygen

Tom Bellmer

ABSTRACT

A good programming practice is to document your code via the use of comments in the

header area. Comments support the understanding of code when you have been away from

it or when others need to support it.

Generating external documentation from existing code comments is highly desirable as to

do otherwise will inevitably cause things to no longer be synchronized. A free open source

utility named doxygen does what is needed and this paper describes how to use it.

INTRODUCTION

To reinforce the concept of adding comments to a program header, I wrote a SAS® stored

process to generate a standardized program header (see below). The idea was to be able to

dissect the contents and create documentation from those comments. Below is a very

simple SAS® macro function that uses the header, accepts three parameters and returns a

hex string:

/**
 Program: rgbtohex.sas
 Author: Tom Bellmer
 Created: 20180521 @ 15:18:13
 SAS Version: SAS 9.4 (TS1M3)
 Purpose: returns the SAS (CX) hex value from R, G, B values
 Usage: %let x = %rgb(255, 128, 0); /* returns CXFF8000 */
***/

%macro rgbtohex(r, g, b);
 %sysfunc(compress(CX%sysfunc(putn(&r.,hex2.))%sysfunc(putn(&g.,hex2.))
 %sysfunc(putn(&b.,hex2.))))
%mend;

/*EOF: rgbtohex.sas */

It was my desire to create HTML based documentation with a list of macros in a treeview on

the left similar to what is used on the support.sas.com website (see Figure 1).

Unfortunately, that was not an easy endeavor requiring the use of JSON (JavaScript Object

Notation) data and some advanced JavaScript code. After that I would still have to apply

some custom CSS styles for aesthetics. When I discussed these issues with well-known

SAS® guru, Allan Bowe, he recommended a product named doxygen that he had just

started using.

http://support.sas.com/

Figure 1 - Treeview from support.sas.com

DOXYGEN SOFTWARE

Doxygen is free software, released under terms of the GNU General Public License version 2

(GPLv2). It is used to scan key annotated comments in source code to create standardized

documentation. Dimitri van Heesch created doxygen in 1997 as a cross-platform program

written in C++. As a result, you can run doxygen under Linux, MacOS or

Windows. Doxygen is the defacto documentation standard for C++ but also supports other

languages such as C, C#, Java, Python and Fortran. SAS® is supported by the

EXTENSION_MAPPING tag name. This paper uses Windows 10 but most everything will port

to other platforms unchanged.

With doxygen you can generate on-line documentation using HTML or in Latex, RTF, PDF

and UNIX man pages. This paper will only cover HTML output. In all cases the

documentation is extracted directly from the source code, making it much easier to keep

things synchronized.

Doxygen got its name from the words document and generator where document was

referenced as docs then dox while generator became gen. According to the doxygen FAQ,

van Heesch was looking into lex and yacc, where a lot of things start with ‘yy’, so the ‘y’

slipped in to make it more pronounceable (as docs-ee-gen with a long ‘e’).

INSTALLATION

The first step is to install doxygen by visiting the https://www.doxygen.nl/download.html page

for installation on your platform. At this time the latest release is version 1.9.1 (released

https://www.doxygen.nl/manual/faq.html
https://www.doxygen.nl/download.html

January 8, 2021). From the downloads page, select sources and binaries and select the

appropriate installer for your platform.

Doxygen uses a non-formatted ASCII configuration file (named Doxyfile by default) to store

settings. To create the template configuration, run the following from the command line (if

you omit the <config-file>, one named Doxyfile will be created): doxygen -g <config-

file>

CONFIGURATION SETTINGS

Figure 2 provides an overall flow of how doxygen works. The main areas of interest are the

config parser and tag file parser.

Figure 2- Doxygen flow diagram

The case sensitive uppercase tag names are separated from the associated values by an

equal sign (=). Reading in the 1.91 release of the generated doxyfile, there were 302

unique tags. You can edit those settings in a text editor or in doxywizard.

Doxywizard is a GUI front-end (see Figure 3) for configuring and running doxygen. You can

specify a configuration file by specifying it from the File | Open… or Open Recent

options. The important areas are the Wizard, Expert and Run tabs highlighted in red.

Figure 3- Doxywizard GUI

The Wizard tab is used to quickly configure the most important settings while leaving the

other options at their defaults. The Expert tab provides access to all the available options -

it is very detailed and covers all 300+ options. The Run tab is used to create the output

based on the defined options that have been selected. Read the doxygen manual for

complete details on all the options.

SPECIAL COMMANDS

Next we will cover the steps needed in each of the source files to make them compatible

with doxygen. This example uses the macro code from the first page and how it is

refactored to work within the doxygen environment.

Use the JavaDoc style /** (slash followed by two asterisks) in the header section to signify

this contains comments to be analyzed by doxygen. Special commands recognized by

doxygen can start with a backslash (\) or an at sign (@).

I like to use the latter and start with a @file that resolves to the name of the file. This is

followed by @brief or a one line brief description. Next up is @details to contain a longer,

more detailed description of the code. Notice markdown language for the URL with a mouse

over title as well as ‘>’ as a blockquote. In order to retain the “%” sign in your output, be

sure it is indented not 2 but 4 spaces. That assumes a TAB_SIZE = 2 value in the Doxyfile

configuration.

The @param command is used to describe parameters. @return or @returns starts a return

value description. An @note command can be used to call out things that users should

understand. The @version command can contain whatever you like but I use it to reveal

the specific version of SAS® used when it was created. The @author displays just that and

the @todo will write out a block quote to make the action stand out as well as create a

separate page that is a collection of all @todo occurrences across all input files.

/**
 @file
 @brief convert RGB to hex
 @details Usage:

 %put %rgbtohex(255, 128, 0);

 returns:
 > CXFF8000

 Credit Perry Watts' inspiring [SUGI 28 paper](https://bit.ly/3aiKJWo

 “Working with RGB and HLS Color Coding Systems in SAS Software”)

 @param r The decimal value (0 to 255) for the color red
 @param g The decimal value (0 to 255) for the color green
 @param b The decimal value (0 to 255) for the color blue

 @returns a hex value preceded by CX used by SAS graphics
 @note values < 0 or > 255 will generate erroneous values
 @version SAS 9.4 (TS1M3)
 @author Tom Bellmer

 @todo Need to create more examples
*/

GENERATING OUTPUT

From the doxywizard interface, click on the Run tab then Run doxygen. You can see the

generated file by clicking on Show HTML Output or the index.html file located in the

destination directory specified in the Wizard tab. See figure 4 for an example of the output.

If you would like to see a more complete site that contains a collection of production ready

SAS® macros using doxygen then visit the open source site https://core.sasjs.io/.

https://bit.ly/3aiKJWo
https://core.sasjs.io/

Figure 4- Doxygen Output

An even more impressive add on feature is the use of Graphviz and the DOT language to

create data driven diagrams, but that is beyond the scope of this paper. However, as a

teaser, here is an example of what can be done and is being done in the SAS® based Data
Controller product that can be seen in figure 5 and in this

video: https://vimeo.com/383391622

Figure 5- Graphviz output in Data Controller

CONCLUSION

Doxygen is an extremely robust document generator that has been around for nearly 25

years and passed the test of time. There is no need to reinvent the wheel when you have

free options like doxygen around.

REFERENCES

Doxygen. “Generated Documentation From Source Code”. Accessed February 20, 2021.

https://www.doxygen.nl/index.html

Macro Core. “Production Ready Macros for SAS Application Developers”. Accessed February

20, 2021 https://core.sasjs.io/

Data Controller. “Flexible and Secure Data Modification”. Accessed February 20, 2021

https://datacontroller.io/

https://datacontroller.io/
https://datacontroller.io/
https://vimeo.com/383391622
https://www.doxygen.nl/index.html
https://core.sasjs.io/
https://datacontroller.io/

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Tom Bellmer

thomas.bellmer@gmail.com

https://KanSAScode.blogspot.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies.

mailto:thomas.bellmer@gmail.com
https://kansascode.blogspot.com/

Appendix A - Common Doxygen Configuration Tag Names

TAG_NAME Setting Description

ALPHABETICAL_INDEX NO Alphabetical index of all compounds

ALWAYS_DETAIL_SEC NO Only create a detailed section if there is
something in that section

DISABLE_INDEX YES Control top index (tabs) at top of page

ENABLE_PREPROCESSING NO Evaluate all C-preprocessor directives

EXCLUDE

Specify files and/or directories that should be

excluded from the INPUT source files.

EXTENSION_MAPPING sas=Java Specifies the parser to use for a file extension

EXTRACT_ALL YES Ensure that all files in INPUT are processed
even those without any doxygen special
characters

EXTRACT_LOCAL_CLASSES NO Include classes in documentation

FILE_PATTERNS *.sas Which file extensions to process in folders

GENERATE_LATEX NO Create a Latex file?

GENERATE_TREEVIEW YES Create a tree-like index should be created

HIDE_FRIEND_COMPOUNDS YES Hide friend compounds

HIDE_IN_BODY_DOCS YES Hide documentation inside body of function

HIDE_SCOPE_NAMES YES Show members with full namespace scope

HIDE_UNDOC_CLASSES YES Hide undocumented classes

HIDE_UNDOC_MEMBERS YES Hide undocumented members in files

HTML_OUTPUT doxy Location of HTML files

HTML_HEADER

User defined HTML header file

HTML_FOOTER

User defined HTML footer file

HTML_STYLESHEET

User defined CSS file

IMAGE_PATH

Specify one or more files or directories

https://www.doxygen.nl/manual/config.html#config_format

that contain images that are to be included in
the documentation

INHERIT_DOCS NO Will undocumented member inherit

INLINE_INFO NO Insert tag for inline members

INPUT

Directory that contains source files

MAX_INITIALIZER_LINES 0 Max # of lines - if 0 it is ignored

PROJECT_BRIEF

Text in title area

PROJECT_NAME

Title of most generated pages

PROJECT_LOGO

Logo or icon max dimensions of max
dimension of 55px by 200 px

RECURSIVE YES Search subdirectories

REPEAT_BRIEF NO Prepend brief before detailed description

SHOW_NAMESPACES NO Create namespace page

SHOW_USED_FILES NO List files generated at bottom of page

SOURCE_BROWSER YES Create list of source files generated

SOURCE_TOOLTIPS NO Enable mouse over tooltips

STRICT_PROTO_MATCHING YES Handling when parameters do not match

STRIP_CODE_COMMENTS NO Hide comments from source

SUBGROUPING NO Show subgrouping

TAB_SIZE 2 Tabbing space, min: 1, max: 16

USE_MDFILE_AS_MAINPAGE

Use a markdown file such as README.md

VERBATIM_HEADERS NO Copy header for included code

Appendix B - Common Doxygen Special Commands

Command Description

@author {list of authors} Author’s name

@b <word> Displays text in bold

@brief {brief description} One line brief description

@date {date description} Display a date

@details {detailed
description}

Detailed description

@e <word> Show the word in italics

@emoji “name” Displays an emoji using the specified name. Names can be
found here: https://gist.github.com/rxaviers/7360908

@file [<name>] Name of program

@image[‘{‘option’}’] <format>
<file>

Inserts an image into the documentation. Doxygen will look
for images in the IMAGE_TAG tag. Example:
@image html application.png

@li {item-description} Generates a simple list of items

@mainpage [(title)] Used to customize the index page. The tag
USE_MDFILE_AS_MAINPAGE is an alternative

@n Force a new line

@note {text} Indented notes

@param ‘[‘dir’]’ <parameter-
name> {parameter
description}

Starts a parameter description

@return {description of
return value}

Description of the return value

@see {references} One or more cross-references

@todo {what needs to be
done}

Adds a TODO section and also creates a separate TODO list

@version {version number} Show a version

@warning {warning text} Displays a warning paragraph

https://www.doxygen.nl/manual/commands.html
https://gist.github.com/rxaviers/7360908

