

SAS® Time Series Analysis & Forecasting (TSAF) at the Canada Revenue Agency (CRA), with COVID impacts

Jason A. Oliver, MBA, CAAP, with the Canada Revenue Agency (CRA)

Jason Oliver is a Project Leader, Senior Compliance Analyst and Data Scientist with the Canada Revenue Agency, who manages a team of data scientists in the pursuit of predictive analytics for tax related data. He is SAS certified and has used SAS extensively, as well as R and Python.

SAS® Time Series Analysis & Forecasting (TSAF) at the Canada Revenue Agency (CRA), with COVID impacts

Jason A. Oliver, MBA, CAAP (with the Canada Revenue Agency – CRA)

Jason Oliver is a Project Leader, Senior Compliance Analyst and Data Scientist with the Canada Revenue Agency, who manages a team of data scientists in the pursuit of predictive analytics for tax related data. He is SAS certified and has used SAS extensively, as well as R and Python.

The Canada Revenue Agency (CRA)

Overview

- The Canada Revenue Agency (CRA) is Canada's federal tax administration.
- As with all tax jurisdictions, the CRA has been challenged to keep pace with COVID-19 shocks and manifestations, which began in March 2020 (the last month of our fiscal year).
- Fortunately, SAS[®] Enterprise Miner™ has been an invaluable aid in gauging these impacts.
- We will begin with a **Glossary of Terms** to explain some of the key concepts.

GLOSSARY

Of key terms at the CRA

- TSAF: Time Series Analysis & Forecasting.
- TEBA: tax earned by audit, which is the amount of tax collectible that is agreed upon in the course of a taxpayer audit.
- TAR: the tax-at-risk, which is the amount that CRA risk assessors arrive at as the precursor to auditing activity.
- C/AR ratio: the ratio of [audit] cases completed, to action requests [submitted] for assistance. It is a tentative measure of auditor productivity.
- Integras: the tool used by CRA auditors to process cases.

Time Series Functional Nodes

In SAS Enterprise Miner

- In SAS® Enterprise Miner™, you have six TSAF nodes in the "Time Series" bar; but we're just going to use four of them.
- To begin, we're going to use the TS Data Prep. & TS Decomp. nodes.

NOTE: the role of your data source must be "Transaction" for these nodes to work.

TSA Initial Setup

- We can first scrutinize on the C/AR ratio as a tentative measure of auditor performance.
- Our diagram is called "Aggreg Integras 27mths", which runs from Jan. 2018 to March 2020.
- The dataset name is "TSA AGGREG SINGLE LINE 27MTHS".
- So, on the initial node for Data Source, we only use the C/AR variable.

TSA Components:

C/AR ratio

• If we run the TS Decomp. Node, then we can see the graphs for trend, seasonality, & cycle components, either in isolation or combined.

TSA Components:

Average TEBA

• Now, let's substitute Avg. TEBA in place of C/AR ratio, to see how the components appear.

Forecasting Average TEBA

TS Exponential Smoothing node

- When we do forecasting, we use the TS Exponential Smoothing node. We let SAS® pick the best forecasting method, and selection criterion (forecast measure).
- Below, we see the forecast continues on a slight upward trajectory, despite the March disruption because of *series momentum*.

Train		
Variables		
Specify an Interval	Month	
Accumulation	Total	
Seasonality	Default	
Forecasting Method	Best	
Forecast Lead	18	
Forecast Back	6	
Forecast Sum Start	1	
Significance Level	0.5	
Input Time Series		
Forecast Input Time Series	Yes	
Extended Value	Predicted Value	
Best Model Selection		
Selection Criterion	Mean Square Error	

Forecasting SUM of TEBA

- Now we can see a drastic difference in using the sum total of TEBA as an aggregate.
- Note that SAS®, in auto-selecting the best forecast method (Multiplicative Winters),
 has graphed a "line of best fit" (blue points) around known data (the red points)

Forecasting C/AR ratio

- In forecasting a fairly low continuous ratio variable such as **C/AR**, the prediction interval can be less reliable. We have to examine the midpoint distribution.
- While the midpoint post-March 2020 tends to be at or above the 10.0 line, this is rare for 2019 datapoints.

Forecasting Avg. Hrs. / case

- We also want to see how Avg. Hrs/case is forecasted.
- For this, I determined that the more ideal Selection Criterion is "Median Rel. Abs. Error".
- The midpoint then goes very subtly upwards for the first few forecasted points, then sharply for summer.
- But with a lower scale, the prediction interval becomes spurious; you can't have negative hours.

Train				
Variables				
Specify an Interval	Month			
Accumulation	Total			
Seasonality	Default			
Forecasting Method	Best			
Forecast Lead	18			
Forecast Back	6			
Forecast Sum Start	1			
Significance Level	0.5			
Input Time Series				
-Forecast Input Time Series	Yes			
-Extended Value	Predicted Value			
Best Model Selection				
Selection Criterion	Median Relative Abs. Error			

Incremental alignment:

April 2020, known values

- Now when we add the month of April 2020 to our data (making it 28mths total), we would expect the Avg. TEBA actuals for subsequent months to become closer to / within forecast range.
- Example: the forecast for Sept., Oct., and Dec. becomes more within range of later-known actuals, once we add April 2020 data.
- However, the July 2020 <u>actual</u> (\$122,000) is *still* above the forecast band for this incremental dataset's forecast.

Incremental alignment:

May 2020, known values (Avg. TEBA)

- Clearly, the addition of April wasn't enough to right the trajectory of the expanding "COVID window", so I added May 2020 AND I changed the forecast significance level from 0.5 to 0.25.
- But it makes no difference: July actual is still out of forecast range.

• We must simply accept that July 2020 is an irregular value ($^{\$}$ 122K), since July 2018 had Avg. TEBA = $^{\$}$ 45K, and July 2019 Avg. TEBA = $^{\$}$ 57K. This is likely a COVID-

adjustment spike.

Incremental alignment:

June 2020, known values (Avg. TEBA)

- For the addition of June, it didn't improve the forecast band to include actual Avg. TEBA of July.
- So this strengthens the theory that July's value was a one-time event, or *pulse*, in the time series.
- It also strengthens the theory that Avg. TEBA was more resilient to initial COVID-19 transition measures.
- To wit: note that the April-May-June line for the original forecast (left) and actual (right) is just above the \$50K line, and follows the same trajectory.

Fallacy: comparing SUM of TEBA shift to AVG. TEBA changes

- TSA works best when you accumulate data records by *average*, not by sum total.
- If we tried this exercise using SUM TEBA per month, it wouldn't work very well, since <u>sum totals</u> are <u>immediately impacted</u> by any severe transition, i.e. work rearrangements in March 2020 due to COVID.
- Evaluating the March 2019-2020 comparison: the **TEBA_SUM** and **Case Count** have dropped significantly in March 2020, yet the **C/AR** ratio has gone up.
- However, as the staffing situation has attempted to stabilize in the intervening months (April-June 2020), the C/AR ratio has dropped dramatically. The same is true for the TEBA/AR pattern.

Mth / Var.	TEBA_SUM	TEBA_AVG	Case Count	C/AR	TEBA/AR	Avg. Case Hrs.
March 2019	\$973,573,844	\$91,561.54	10,633	10.65	\$975,524.89	6.2526
March 2020	\$691,604,490	\$108,300.11	6,386	12.85	\$1,391,558.33	35.44

SUM of TEBA: drastic change

Last month of actuals: MARCH 2020

None of the actuals of the last six months of 2020 fall in the forecast band.

Last month of actuals: JUNE 2020

Two of the actuals of the last six months (Oct., Nov.) of 2020 fall in the forecast band.

SAS' GLOBAL FORUM 2021

Latent Effects of Shocks

• We would also expect that lower Avg. TEBA wouldn't manifest until much later in the fiscal year 2020-21, due to most of 2020 consisting of *past year* audits.

• Given this, we would need to resort to the use of interventions in our time

series.

Lowest actual in 3 years; Dec. 2020

Avg. TEBA of \$32,404

SAS' GLOBAL FORUM 2021

Interventions

- A TSA may use interventions, if the extreme or irregular event is known in advance.
- This is an adjustment to the time series, using a "dummy" variable for the period of observation.
- An intervention would be recommended for the SUM of TEBA as of March 2020, and for AVG TEBA as of Dec. 2020. Plus, a "pulse effect" for July 2020.
- Programming an intervention requires SAS® Studio™, which is out of scope for this presentation.

A **step** would work best as an intervention, since the trend line shift is sudden and sustained; it does not happen gradually then return to baseline.

SAS' GLOBAL FORUM 2021

Autocorrelation

(from: 2018-2019)

- When we deal with a significant seasonal and/or trend component, we usually find a greater degree of **autocorrelation** (abbrev. "ACF").
- As the name suggests, this is the tendency of a variable to self-influence. It could also be regarded as momentum, or "muscle memory".

• This uses the **TS Correlation** node.

From these three variables, Est. TAR-AI has low ACF, TEBA has moderately high ACF, and Case Hours has very high ACF.

At lag t=5, TEBA reaches the zero line; but Total Hours is still at ACF=0.45.

Autocorrelation

(in 2020)

 By contrast, the ACF for both Avg. TEBA and Total Hours in 2020 is very weak overall. In fact, both drop precipi-tously at the very outset of 2020, just before COVID-19.

CCA – Cross Correlation Analysis

• For CCA (2016-2019), we can explore lagged effects between estimated TAR (taxat-risk) and TEBA, as well as those considering Total Hours (on audit cases).

CCA, continued

(During COVID)

- When we run CCA for lagged effects of TAR (during 2018-2019) on TEBA for 2020, we find a very different pattern at time lag=3 and 12.
- For time lag=3, at left, the best we can get is 3% influence.
- For t=12, at right, it's absolutely nothing.

Industry Profiling Analysis

- Using the same data for CCA, we can subdivide our dataset by industry sector, or **NAICS** code. I can set this input to "Cross ID" in the data source's variables list, then re-run the flow.
- From the TS Data Prep node's Results, right-click in the Time Series Plot and select Data
 Options. We'll pick a NAICS code at random. And you can see that it took a tumble at the
 outset of COVID, and struggled to regain its footing yet exceeding it at calendar year-end.

Subsetting by *Tax Service Office*

(the TSO)

- If I want to subset my analysis by a TSO in Canada, I can easily do so by setting the Case_TSO_ID input to "Cross ID" at the data source node. (Then re-run the flow.)
- However, by default this displays *all* TSOs in the Input Time Series Plot; so I need to right-click this plot area and select "Data Options" to specify WHERE conditions (where the TSO = 5, 18, **or** 40).

Thank you!

Contact Information jason.oliver@cra-arc.gc.ca