

1

Paper 1029-2021

Transcoding: Understand, Troubleshoot, and Resolve a Most
Mysterious SAS® Error

Yun (Julie) Zhuo, PRA Health Sciences

ABSTRACT

In today’s integrated and interconnected world, sharing SAS data among organizations and
countries has become increasingly common. The transcoding error, which may occur during
data transfers between incompatible SAS encoding environments, remains one of the most
mysterious SAS errors to programmers. This presentation discusses three steps to
demystify the transcoding issues. First, encoding, transcoding and other background
information will be explained. Second, SAS procedures, options and other techniques that
are useful for troubleshooting will be given. Finally, the character variable padding (CVP)
engine and SAS configuration files are provided as solutions to the problem. By the end of
the presentation, the audience should have a clear vision for troubleshooting and solving
transcoding errors.

INTRODUCTION
If we live in a perfectly standardized world, sharing data would be a smooth copy-and-paste
from computer to computer. Unfortunately, we often receive data from an incompatible
computing environment with an incompatible session encoding. Problems thus arise.

SAS Cross-Environment Data Access (CEDA) is designed to tackle the problem of
incompatibility encodings. However, it has limitations. For example, data loss or truncation
may occur when the data contain extended ASCII or other special characters. When this
happens, CEDA will issue a message such as the following:
ERROR: Some character data was lost during transcoding in the dataset
SOURCE.DM. Either the data contains characters that are not representable
in the new encoding or truncation occurred during transcoding.

What can we do when confronted with such a mysterious error message? Pushing back the
data to the data provider is not always a feasible option. In this paper, we aim to demystify
the error message, and provide tools, workarounds, and solutions to help resolve the error
at the data recipient’s end.

UNDERSTAND THE TRANSCODING ERROR
Before we attempt to troubleshoot and resolve the transcoding error, it is helpful to
understand why the error occurs. In this section, we are going to provide background
information to help demystify the error message.

WHAT IS ENCODING
In computers, character data is stored as a series of bytes, which is made up of binary
digits called bits. A coded character set associates each character with a number.
Computer encoding maps the bits and bytes of stored data to the correct characters via
the coded character set. Since our computing environments are not perfectly standardized,
there are different types of encodings in use, and each encoding has its own character set.

2

Name of
Encoding

Associated Character Set Distinguishing Factors

WLATIN1

ASCII and Extended ASCII
character set

Represent 256 characters. Each character is
stored in a single byte.
Single Byte Character Set (SBCS)

SHIFT-JIS

ASCII, Katakana, and other
Japanese characters

Characters are stored in either 1 or 2 bytes.
Double Byte Character Set (DBCS)

UTF-8

Unicode character set
including ASCII, foreign
languages, special symbols,
and more

Represent over 120,000 characters. Each
character is stored in 1 to 4 bytes.
Multi-Byte Character Set (MBCS)

Table 1. Examples of Commonly Used Encodings

Table 1 gives examples of some commonly used encodings and their associated character
sets. The last column of the table shows two distinguishing factors of different data
encoding types:

1. The number of characters each encoding can represent differs. While the WLATIN1
encoding, the most widely used encoding type in the Western countries, can only
represent 256 lower ASCII, ASCII control, and extended ASCII characters, the UTF-8
encoding, a common encoding form of the Unicode standard, can represent over
120,000 characters. Figure 1 shows all the lower ASCII and extended/upper ASCII
characters.

2. The storage size of each encoding differs. While the single byte character set (SBCS)
only takes up one single byte for each character, the multiple byte character set
(MBCS) needs up to four bytes to store characters. For example, Figure 2 shows that
in order to represent the extended ASCII character ‘á’, the WLATIN1 encoding needs
only one byte, but the UTF-8 encoding uses two bytes to represent the character.

Figure 1. ASCII and Extended ASCII Characters

3

Figure 2. Difference in Storage Size for WLATIN1 and UTF-8 Encodings

WHAT IS TRANSCODING
Now what is transcoding? Transcoding is the process of converting from one computer
encoding to another. In SAS, each programming session has a pre-configured encoding. If
the encoding of the input data differs from the encoding of our currently executing SAS
session, SAS will invoke the Cross-Environment Data Access (CEDA) engine to transcode
the data, automatically converting the input data encoding to the encoding of the SAS
session in the target computer. Figure 3 demonstrates the process of transcoding from one
computing environment to another.

Figure 3. Cross-Environment Computer Transcoding Process

When SAS invokes CEDA and the transcoding occurs, SAS issues the following informational
note to the log:
NOTE: Data file is in a format that is native to another host, or the
file encoding does not match the session encoding. Cross Environment
Data Access will be used, which might require additional CPU
resources and might reduce performance.

HOW TRANSCODING ERROR OCCURS
Unfortunately, the SAS CEDA does not work as miraculously as we hope. Transcoding error
occurs when the CEDA transcoding process fails. The transcoding error contains two
components, as shown below in Figure 4, each pointing to a potential problem that causes
the error.

4

Figure 4. Two Components of the Transcoding Error Message

The first problem is characters that are not representable in the new encoding. As we
explained earlier, some encodings such as the UTF-8 encoding store more than 120,000
characters covering 129 scripts and multiple symbol sets. ASCII characters, Asian languages
and non-ASCII special characters are all represented in the UTF-8 encoding. By contrast,
the WLATIN1 encoding only contains 256 ASCII and extended ASCII characters. Any
character that is not included in the WLATIN1 encoding will be lost if we try to transcode
from UTF-8 to WLATIN1. In short, the unrepresentable characters error occurs when the
input data set contains characters that do not exist in the target computer encoding,
triggering the transcoding error message in the log.

The second problem is character data truncation. As we explained earlier, one distinguishing
factor between encodings is the storage size. The single byte character set (SBCS) only
takes up one single byte for each character, but the multiple byte character set (MBCS)
needs more than one bytes to store characters. Therefore, if the target data set uses a
MBCS such as the UTF-8, the length of the character variables defined in the source or input
data set may not be big enough to hold all the characters for storage in the target encoding
environment. When this occurs, SAS will trigger the transcoding error message to warn you
about truncation.

TROUBLESHOOT THE TRANSCODING ERROR
Now that we understand how transcoding error occurs, the next step is to troubleshoot the
issues. There are a number of SAS options and procedures that are helpful. In this section,
we will provide answers to specific questions encountered during troubleshooting.

The first question we ask is which of the two components in the error message has caused
the problem. Is it unrepresentable characters or data truncation? To answer this question,
we need to find out the encodings used in both the source data and the currently executing
SAS session. If SAS transcodes SBCS (e.g., WLATIN1) to MBCS (e.g., UTF-8), then the
problem is data truncation. On the other hand, if SAS transcodes a large character set to a
smaller character set, then the problem is most likely the unrepresentable characters.

WHAT IS THE ENCODING OF YOUR INPUT DATA
We can find out the encoding of the input data using one of the following two methods.

The first method is the CONTENTS procedure. That is, we run the following simple SAS
CONTENTS procedure:

proc contents data=source.DM;
 run;

Then we look for the encoding row in the output:

5

Figure 5. The Encoding Attribute in the PROC CONTENTS Output

The example in Figure 5 shows that the input data set SOURCE.DM was created under the
Windows computing environment using the WLATIN1 encoding. If the transcoding error
occurs and the currently executing SAS session uses a different encoding with higher byte
character set (e.g. UTF-8), then the problem is data truncation.

If you see the following data representation and encoding values instead in the PROC
CONTENTS output:

then the input data set was created under the UTF-8 encoding. If the transcoding error
occurs and the currently executing SAS session uses a different encoding with a smaller
character set (e.g. WLATIN1), then the problem is unrepresentable characters.

The alternative method to find out the encoding of the input data is the ATTRC function.

After we run the following SAS codes:
%let dsn=source.DM;
%let dsid=%sysfunc(open(&dsn,i));
%put &dsn ENCODING is: %sysfunc(attrc(&dsid,encoding));
%let rc=%sysfunc(close(&dsid));

The encoding will be printed to the SAS log as shown below:

WHAT IS THE ENCODING OF OUR CURRENT SAS SESSION
We can find out the encoding of our currently executing SAS session using one of the
following two methods.

The first method is the OPTIONS procedure. That is, we run the following simple SAS
OPTIONS procedure in our current SAS session:

proc options option=encoding;
run;

Then we look for the encoding information printed to the SAS log.

6

Figure 6. The Encoding Attribute in the SAS Log from the OPTIONS Procedure

The example in Figure 6 shows that the current SAS session in our computer uses the
WLATIN1 encoding to represent character data.

Alternatively, we can use the GETOPTION function. That is, we run the following SAS code
in our current SAS session:

%put encoding=%sysfunc(getoption(encoding));

We will find the similar encoding information printed to the SAS log. As shown below:

The above examples show that the current SAS session uses WLATIN1, the encoding with
single byte character set. If transcoding error occurs and the input data has a larger
character set, then the problem is the unrepresentable characters.

WHERE ARE THE UNREPRESENTABLE CHARACTERS
Unrepresentable characters are often buried under mountains of data on hand. A single
unrepresentable character in an inconvenient location can stop SAS from transcoding. It is
helpful if we can identify the unrepresentable characters causing transcoding issues and
visually inspect them before we make decisions on our next move.

In the example below, shown in Figure 7, input data set has the UTF-8 encoding but the
current SAS session in our computer uses the WLATIN1 encoding. We use a simple data
step to read the input data set. Not surprisingly, a transcoding error occurs. In the log, in
addition to the transcoding error message, SAS also prints a warning message indicating
that the data step stopped right after it finished processing 799 observation. What it means
is that on observation number 800, there must be some unrepresentable characters that
stopped the data step from processing.

7

Figure 7. Warning Message from Data Step Shows Where Error Occurs in Data

To confirm our theory, we use the ENCODING=ASCIIANY SAS option to bypass the
transcoding error in order to take a visual inspection of the row number 800 in the input
data set. Note that the ENCODING=ASCIIANY option will allow SAS to ignore the UTF-8
encoding altogether. SAS will interpret every bite in the input data using its single byte
ASCII coded values.

The syntax is the simple SAS codes shown below:
Data indata.cm4;
 Set rawdata.cm4 (encoding=asciiany);
Run;

After we execute the above codes, we will be able to read the entire input data set with
1163 observations without any error or warning messages, as shown below in Figure 8.

Figure 8. Bypass Transcoding Error with the SAS Encoding=ASCIIANY Option

Then, to locate the unrepresentable characters, we open the output data set we have
created without error, scroll down to row number 800, and then as shown in Figure 9, we
immediately spot some weird characters that do not make any sense.

8

Figure 9. Locate the Unrepresentable Characters in the Output Data Set

What happened is that, with the ENCODING=ASCIIANY bypassing option, SAS will interpret
every bit in the input data using its single byte ASCII coded values. It is most likely that the
unrepresentable characters will be turned into ASCII special characters such as those in the
blue rectangle in Figure 1. ASCII and Extended ASCII Characters.

Therefore, the ENCODING=ASCIIANY SAS option provides a way for us to locate the
unrepresentable characters, and visually inspect the data. It also helps us estimate the
extent of our issues. However, it does not completely resolve our problem.

SOLUTIONS
The transcoding error has two components. Each component points to a potential reason for
the transcoding failure: data truncation or unrepresentable characters. Each component also
has its own solutions. If the error is caused by data truncation, we can use the Character
Variable Padding (CVP) engine to avoid truncation. If the error is caused by unrepresentable
characters, we propose updating the session encoding in the SAS configuration file if easy
walk-around solutions do not work for you.

AVOID DATA TRUNCATION WITH THE CVP ENGINE
If you find out that the encoding of your session uses the MBCS but the encoding of the
source data set uses the SBCS or the DBCS, the error message you encountered above
usually means that there is not enough space in one or more character columns to convert
the data to the target encoding. If this is the case, you should consider using the Character
Variable Padding (CVP) engine to avoid truncation.

What is the CVP engine? It is a read-only engine that expands the length of the character
variables at your request. It serves as an intermediate engine that is used to prepare the
data for transcoding. By default, it multiplies the character variable lengths in the input data
set by 1.5. After the lengths are increased, the primary engine is used to do the actual
processing.

In the following example, the input data set was created under the Windows computing
environment using the WLATIN encoding which represents a SBCS character set. As shown
in Figure 10, the input data set contains one character variable and two records. Both

9

records contain four ASCII and extended ASCII characters. The length of the character
variable is set to 4, which provides enough space in the WLATIN encoding environment to
store the data because SBCS only takes up one single byte for each character.

Figure 10. Example Input Data Set with Extended ASCII Characters

When we try to read the above input data set into a different encoding session such as the
UTF-8 encoding SAS session. The character variable will be truncated. Because in the UTF-8
encoding, it takes more than one byte to store special characters such as the ‘Ø’ and ‘Ü’ in
this example.

To resolve this issue, we run the following code to invoke the CVP engine with a default
multiplier of 1.5:

libname source cvp 'Source-data-library';

After running the above code, the length of the variable will be automatically increased from
4 to 6, as demonstrated below in Figure 11.

Figure 11. Variable Length Before and After CVP Engine Processing

In order to multiply the character variable lengths by a different amount, you need to use
the CVPMULTIPLIER= option to specify a number. You can specify a value from 1 to 5, or
you can specify a value of 0 to let the CVP engine determine the amount. Here is the
example code that uses a user-specified multiplier:

libname source cvp 'Source-data-library' cvpmultiplier=2.0;

It may take some experimenting to determine the correct multiplier in order to make sure
you have adequate space for all situations. During the experimenting process, be sure to
review the log carefully and watch for truncation error messages.

Since the CVP engine is read-only, an additional LIBNAME statement is required in order to
save a permanent copy of the converted data set. Here is the full example code:

libname source cvp 'Source-data-library';
libname target 'Target-data-library';
proc copy noclone in=source out=target;
run;

In the above example, the NOCLONE option in PROC COPY is required. The option makes
sure SAS adopt the target operating system data representation, the target session
encoding, and other relevant attributes.

To conclude, we run the risk of truncating character data when transcoding into a character
set that stores data in multiple bytes. By expanding the length of the character variables,

10

the CVP read-only LIBNAME engine is an effective and elegant solution to avoid data
truncation.

UPDATE SAS SESSION ENCODING FOR UNREPRESENTABLE CHARACTERS
If you find out that the source data encoding is UTF-8 but our SAS session encoding is
WLATIN1 or any encoding other than the comprehensive UTF encoding, the problem is most
likely the unrepresentable characters because some characters in the UTF-8 character set
do not exist in other encoding types. Although the CVP engine resolves the issue of
truncation, it is not helpful if the transcoding error was triggered by the characters that are
not representable in the target encoding in our SAS session.

What can we do? The first impulse is to contact the data provider and ask them to remove
or replace all the unrepresentable characters. However, this will involve negotiations with
outside organizations, and it may not be feasible or convenient in many instances.

The solution is to update the encoding type in our currently executing SAS session. We can
update the encoding type to either the UTF-8 encoding or the same encoding of the source
data so that all characters in the source data can be represented in the SAS session in our
computer.

The encoding type of our SAS session is configured in the SAS configuration file. Figure 12
below is a partial snapshot of an example SAS configuration file that defines the encoding of
the SAS session as UTF-8.

Figure 12. Encoding Definition in the SAS Configuration File

To update the SAS session encoding, firstly, we need to locate the SAS configuration file in
our computer. After running the following OPTIONS procedure:

Proc options option=config;
Run;

The location of the SAS configuration file will be printed to the log, as show below in Figure
13.

11

Figure 13. Locate the SAS Configuration File using the OPTIONS Procedure

By default, during SAS installation, SAS installs three configuration files to our computer.
Figure 14 shows three default sub-folders and each sub-folder contains a copy of the SAS
configuration file with a specific type of encoding.

Subfolder ‘1d’ contains a copy of the configuration file with the encoding type of SHIFT-JIS.

Subfolder ‘en’ contains a copy of the configuration file with the encoding type of WLATIN1.

Subfolder ‘u8’ contains a copy of the configuration file with the encoding type of UTF-8.

More encoding types could be installed through a customized SAS installation.

Figure 14. Default locations for SAS Configuration Files

The second step is to instruct SAS to use a copy of the SAS configuration file that has the
desired type of encoding: the UTF-8 encoding or the encoding used in the data.

If you use the Windows platform, you can customize your shortcut icon to instruct SAS to
invoke UTF-8 by following the steps below, as illustrated in Figure 15.

1. Locate your SAS shortcut icon or your SAS Enterprise Guide shortcut icon. If you do
not have a SAS shortcut icon already created, you have the option of creating one
before customizing it following the below steps.

2. Right-click the shortcut icon and select Properties.

3. On the Shortcut tab, in the Target line, update to instruct SAS to use the UTF-8
version of the NLS (National Language Support) configuration file (sasv9.cfg). For
example:
"C:\Program Files\SASHome\SASFoundation\9.4\sas.exe" -CONFIG
"C:\Program Files\SASHome\SASFoundation\9.4\nls\u8\SASV9.CFG"

4. Click OK.

12

5. Optionally, you can rename the shortcut icon to indicate this shortcut will invoke SAS
with the UTF-8 encoding. On your desktop, you can also create additional shortcut
icons that have other types of encoding.

Figure 15. Update SAS Session Encoding through the SAS Shortcut Icon

If you invoke SAS through a command line or a batch file, you have the option to specify
the configuration file location through the CONFIG system option. For example, the code
below invokes SAS using the UTF-8 encoding version of the configuration file:

C:\Progra~1\SASHome\SASFou~1\9.4\sas.exe
-sysin ProgramName.sas
-config C:\Progra~1\SASHome\SASFou~1\9.4\nls\u8\SASV9.CFG

For detailed instruction on invoking SAS with different language and encoding sessions on
the Windows platform, refer to the SAS Technical Paper: Setting up SAS9 National
Language Support in Microsoft Windows Operating Environments.

If you use the UNIX platform, SAS is invoked by Bourne Shell scripts. The invocation scripts
are named using the language codes of the installed language. For example, sas_en invokes
the English version, and sas_u8 invokes the Unicode version. Follow the steps below to
update your session encoding:

1. Locate the invocation script under the following directory:
 !SASROOT/bin

2. Update the script to change the SAS session locale or encoding.

For detailed instruction on invoking SAS with different encoding sessions on the UNIX
platform, refer to SAS Configuration Guide for SAS 9.4 Foundation for UNIX Environments.

13

To conclude, the encoding of our SAS session may not be able to accommodate special
characters in the source data set. After we convert our SAS session encoding to either UTF-
8 or a compatible type of encoding, we will be able to avoid the transcoding error. We will
be able to work with all special characters in the data including foreign languages and other
non-ASCII characters.

CONCLUSION
We may encounter the mysterious transcoding error when we try to work with data from a
different encoding environment. This paper shows that if we understand computer encoding
and how the transcoding occurs, the problem is not as mysterious as it appears to be.

There are two potential reasons for the transcoding failure. If the reason is data truncation,
we can use the CVP engine to expand the length of the character variables in the data. On
the other hand, if the reason is unrepresentable characters, we may have to convert our
own SAS session encoding to be compatible with the encoding in the data. Either way, data
recipients will be able to resolve the problem at their end.

REFERENCES
Bouedo, M. 2020. “The SAS Encoding Journey: A Byte at a Time.” Proceedings of the SAS
Global Forum 2020 Conference, Cary, NC: SAS Institute Inc. Available at
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-
proceedings/2020/4561-2020.pdf

Carlton, J. 2017. “SAS Blogs: Demystifying and Resolving Common Transcoding Problems.”
Accessed March 6, 2018. https://blogs.sas.com/content/sgf/2017/05/19/demystifying-and-
resolving-common-transcoding-problems/

Dutton, D. 2015. “Data Encoding: All Characters for All Countries.” Proceedings of the
PharmaSUG 2015 Conference, Cary, NC: SAS Institute Inc. Available at
https://www.lexjansen.com/phuse/2015/dh/DH03.pdf

Li, H. 2020. “Turn Yourself into a SAS® Internationalization Detective in One Day: A Macro
for Analyzing SAS Data of Any Encoding.” Proceedings of the SAS Global Forum 2020
Conference, Cary, NC: SAS Institute Inc. Available at
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-
proceedings/2020/4645-2020.pdf

SAS Institute Inc. 2014. Usage Note 52716. Cary, NC: SAS Institute Inc. Available at
http://support.sas.com/kb/52/716.html

SAS Institute Inc. 2015. Setting up SAS® 9 National Language Support in Microsoft
Windows Operating Environments. Cary, NC: SAS Institute Inc. Available at
http://support.sas.com/techsup/technote/ts801.pdf

SAS Institute Inc. 2016. Moving and Accessing SAS® 9.4 Files, Third Edition. Cary, NC: SAS
Institute Inc. Available at
http://documentation.sas.com/?docsetId=movefile&docsetTarget=titlepage.htm&docsetVers
ion=9.4&locale=en

SAS Institute Inc. 2017. Configuration Guide for SAS® 9.4 Foundation for UNIX
Environments. Cary, NC: SAS Institute Inc. Available at
http://support.sas.com/documentation/installcenter/en/ikfdtnunxcg/66380/PDF/default/conf
ig.pdf#page=33

14

SAS Institute Inc. 2017. Migrating Data to UTF-8 for SAS® ViyaTM 3.3. Cary, NC: SAS
Institute Inc. Available at
http://documentation.sas.com/?cdcId=vdmmlcdc&cdcVersion=8.1&docsetId=viyadatamig&
docsetTarget=titlepage.htm&locale=en

SAS Institute Inc. SAS Technical Paper: Multilingual Computing with SAS® 9.4. Cary, NC:
SAS Institute Inc. Available at
https://support.sas.com/resources/papers/Multilingual_Computing_with_SAS_94.pdf

Stackhouse, M. 2018. “UTF What? A Guide for Handling SAS Transcoding Errors with UTF-8
Encoded Data.” Proceedings of the PharmaSUG 2018 Conference, Cary, NC: SAS Institute
Inc. Available at https://www.pharmasug.org/proceedings/2018/BB/PharmaSUG-2018-
BB08.pdf

Zhuo, Y. 2018. “Tips and Fixes for Cross-Environment Batch Transfer of SAS® Data.”
Proceedings of the PharmaSUG 2018 Conference, Cary, NC: SAS Institute Inc. Available at
https://www.pharmasug.org/proceedings/2018/BB/PharmaSUG-2018-BB14.pdf

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Yun (Julie) Zhuo
PRA Health Sciences
ZhuoYun@PRAHS.com
jzhuo@KitePharma.com

	Abstract
	In today’s integrated and interconnected world, sharing SAS data among organizations and countries has become increasingly common. The transcoding error, which may occur during data transfers between incompatible SAS encoding environments, remains one...
	Introduction
	understand the transcoding error
	What is encoding
	what is transcoding
	how transcoding error occurs

	troubleshoot the transcoding error
	what is the encoding of your input data
	what is the encoding of our current sas session
	where are the unrepresentable characters

	After we execute the above codes, we will be able to read the entire input data set with 1163 observations without any error or warning messages, as shown below in Figure 8.
	solutions
	avoid data truncation with the cvp engine
	update sas session encoding for unrepresentable characters

	Conclusion
	References
	Contact Information

