

SAS[®] GLOBAL FORUM 2021

Back to Basics: Running an Analysis from Data to Refinement in SAS

Deanna Schreiber-Gregory, Juxdapoze, LLC

Deanna is a Lead Research Statistician and Data Manager on contract through the Henry M Jackson Foundation for the Advancement of Military Medicine to the Department of Defense in Bethesda, MD. She is also an Independent Consultant for Statistics, Research Methods, and Data Management in the private sector through Juxdapoze, LLC. Deanna has an MS in Health and Life Science Analytics, a BS in Statistics, and a BS in Psychology. Deanna has presented as a contributed and invited speaker at over 50 local, regional, national, and global SAS user group conferences since 2011.

Data Science The [Cyber]Space Race

557.68

665.22

568.78

616.64

689.59

962.20

602.14

\$25.22

657.20

899 46

246.0

682.14

638.87

Introduction The Analytic Process

• What is Data Science?

- The COVID Puzzle
 - Limited timeframe & Real-time information
 - Inconsistent reporting, sources, and standards
 - Little to no prior knowledge to work off of
 - Fragile/inconsistent reporting, sources, and standards

Introduction Our Subject: COVID Data

• Lots of Sources

- CDC COVID Tracker
- HealthData.gov
- WHO Global Table
- Kaggle COVID 19 Challenge
- NIH Open-Access COVID 19
- Individual state-based repositories
- John's Hopkins COVID 19 Secondary Analysis
- Open ICPSR COVID-19 Data Repository
- MIDAS Online Portal for COVID-19 Modeling Research
- Google Cloud Big Query COVID 19 public datasets

SAS' GLOBAL FORUM 2021

Outline

- Choosing and Importing Data
- Data Exploration
- Data Driven Modeling
- Matching Your Question to a Model
- Evaluate Your Model
- Conclusion

Choosing and Importing Data CDC COVID Tracker

SAS[®] GLOBAL FORUM 2021

Choosing and Importing Data Key Considerations

• Choosing Data

- Primary Analyses vs Secondary Analyses
- Experimental vs Observational Research
- Does the data ask/answer the right questions
- What is the data structure survey, clinical, observational/mined
- Sample size / generalizability
- Importing Data
 - Data comes in a variety of formats Excel, SPSS, txt, etc
 - Some data may need to be merged

Choosing and Importing Data SAS Procedures

- Getting Data Into SAS
 - Can Enter It Directly
 - Proc Import
- Consider Data Storage
 - Can store data as a SAS dataset (permanent or temporary)
 - Can export data in your desired format (Proc Export)

Choosing and Importing Data

COVID Example

	A	В	C	D	E	F	G	н	1 I	J	K	L	
1	cdc_case_earli	cdc_report_dt	pos_spec_dt	onset_dt	current_s	tsex	age_group	race_ethr	hosp_yn	icu_yn	death_yn	medcond	yn
2	3/23/2020	3/31/2020	3/23/2020		Laborator	Female	0 - 9 Years	Black, Nor	Unknown	Unknown	Unknown	Unknown	
3	3/22/2020	3/23/2020	3/23/2020		Laborator	Female	0 - 9 Years	Hispanic/	Yes	Unknown	Unknown	Unknown	
4	3/22/2020	3/22/2020	3/23/2020	3/22/2020	Laborator	Female	0 - 9 Years	Hispanic/	No	No	No	No	
5	3/23/2020	3/23/2020	3/23/2020	3/23/2020	Laborator	Female	0 - 9 Years	Hispanic/	No	Missing	No	No	
6	3/23/2020	3/23/2020	3/23/2020		Laborator	Female	0 - 9 Years	Hispanic/	Unknown	Unknown	Unknown	Unknown	
7	3/23/2020	3/23/2020	3/23/2020	3/23/2020	Laborator	Female	0 - 9 Years	Hispanic/	No	Missing	No	No	
8	3/23/2020	3/24/2020	3/23/2020		Laborator	Female	0 - 9 Years	Hispanic/	Yes	Unknown	Unknown	Unknown	

PROC IMPORT OUT= dataraw

DATAFILE= "D:\[Conference] Current Papers\Back to Basics\Resources - Data\CDC COVID Tracker Data\COVID-19_Case_Surveillance_Public_Use_Data.xlsx" DBMS=XLSX REPLACE; SHEET='COVID-19_Case_Surveillance_Publ'; GETNAMES=YES;

RUN;

Dproc print data=dataraw (obs=200);

run;

	The SAS System											
Obs	cdc_case_earliest_dt	cdc_report_dt	pos_spec_dt	onset_dt	current_status	sex	age_group	race_ethnicity_combined	hosp_yn	icu_yn	death_yn	medcond_yn
1	03/23/2020	03/31/2020	03/23/2020		Laboratory-confirmed case	Female	0 - 9 Years	Black, Non-Hispanic	Unknown	Unknown	Unknown	Unknown
2	03/22/2020	03/23/2020	03/23/2020		Laboratory-confirmed case	Female	0 - 9 Years	Hispanic/Latino	Yes	Unknown	Unknown	Unknown
3	03/22/2020	03/22/2020	03/23/2020	03/22/2020	Laboratory-confirmed case	Female	0 - 9 Years	Hispanic/Latino	No	No	No	No
4	03/23/2020	03/23/2020	03/23/2020	03/23/2020	Laboratory-confirmed case	Female	0 - 9 Years	Hispanic/Latino	No	Missing	No	No
5	03/23/2020	03/23/2020	03/23/2020		Laboratory-confirmed case	Female	0 - 9 Years	Hispanic/Latino	Unknown	Unknown	Unknown	Unknown
6	03/23/2020	03/23/2020	03/23/2020	03/23/2020	Laboratory-confirmed case	Female	0 - 9 Years	Hispanic/Latino	No	Missing	No	No
7	03/23/2020	03/24/2020	03/23/2020		Laboratory-confirmed case	Female	0 - 9 Years	Hispanic/Latino	Yes	Unknown	Unknown	Unknown
8	03/23/2020	03/23/2020	03/23/2020		Laboratory-confirmed case	Male	0 - 9 Years	Missing	Missing	Missing	Missing	Missing

- PROC EXPORT

DATA=dataraw

DBMS=xlsx

RUN:

OUTFILE="D:\[Conference] Current Papers\Back to Basics\Resources - Data\CDC COVID Tracker Data\COVID-19 CDC Data &sysdate..xlsx" REPLACE;

SHEET='Final Dataset';

#SASGF

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. * indicates USA registration. Other brand and product names are trademarks of their respective companies.

Choosing and Importing Data Best Practices

• Choosing Data

- Pay attention to sources
- Understand that data has limitations

Importing Data

- Make sure there is no excess information in the datasheet
- Variables should have names that make sense
- Use labels instead of long names
- Maintain an untouched original dataset without adjustments
- Document your adjustments
- Always review your log

PRACTIC

Data Exploration Health Data.gov Hospital Data

SAS[®] GLOBAL FORUM 2021

Data Exploration Key Considerations

- Consider Data Types
 - Numeric
 - Continuous vs Discrete
 - Interval vs Ratio
 - Categorical
 - Binary/Dichotomous vs Multi-level
 - Nominal vs Ordinal
 - Dummy
- Data Cleaning
 - IMPORTANT

#SASGF

• Natural part of this step

Numeric	Interval	Ratio		
Discrete	Calendar Years 100 BC, 100 AD, 2019 AD	# Children 0, 1, 2, 3, 4		
Continuous	Temperature -10.1°, 0°, 10.9°, 20°	Height 0.2ft, 1.2ft, 2.2ft		
Categorical	Ordinal	Nominal		
Binary / Dichotomous	Pass Fail	Male Female		
Multi-level	Honors	Male		

Pass

Fail

Marginal Pass

SAS' GLOBAL FORUM 2021

Female

Trans-Male

Trans-Female

Data Exploration SAS Procedures

• SAS Procedures

- Proc Freq
- Proc Means
- Proc Univariate
- Proc Corr

• The Data Step

- Implement adjustments to the data
- Additional Helpful Procedures
 - Proc Contents
 - Proc Sort
 - Proc SQL
 - Proc Print
 - SAS Macros

#SASGF

Data Exploration COVID Example

	state=W	N						Frequency		Table of	state by hospita	il_si
Variable	Label	N	Mea	n Std Dev	Minimum	Maximu	m	Row Pct		ho	spital_subtype(h	osp
total beds 7 day avo	total beds 7 day avo	882	135 898752	8 193 2193817	12 0000000	1055	10	Col Pct	state(state)	Childrens Hospitals	Critical Access Hospitals	Lo
all_adult_hospital_beds_7_day_av all_adult_hospital_inpatient_bed	all_adult_hospital_beds_7_day_avg all_adult_hospital_inpatient_beds_7_day	882 y_avg 881	126.798299	3 174.1552067 1 144.5298688	12.0000000	1044. 923.90000	30 00		AK	0.00	126	
	state=W	ry						L		0.00 0.00	47.01 0.53	(
Variable	Label			stat	e=VA				AL	36 0.04	90 0.10	
total_beds_7_day_avg	total_beds_7_day_avg			Mor	nents					2.11 2.20	5.27 0.38)
all_adult_hospital_beds_/_day_a all_adult_hospital_inpatient_bed	v all_adult_hospital_beds_7_day_avg all_adult_hospital_inpatient_beds_7_	Ν		1466	Sum Weig	hts		1466	AR	36	489	
		Mean		-11369.721	Sum Obse	rvations	-16	668012		2.44	33.15	
∃proc freq data=healthgov	;	Std De	viation	107120.577	Variance		1.147	748E10	AZ	18	197	
tables state*(hospit run;	al_subtype is_metro_micro);	Skewn	ess	-9.1332643	Kurtosis		81.5	281416		0.02 1.40	0.23 15.37	
∃proc sort data=healthgov	;	Uncorr	ected SS	1.70001E13	Corrected	SS	1.681	106E13		1.10	0.83	_
by state; run;		Coeff \	/ariation	-942.15657	Std Error M	lean	2797	.73077	CA	0.21	0.74	
Ennog moong data-hoolthgo								<u> </u>		2.83	10.13	:
var total_beds_7_day by state; run;	v; _avg all_adult_hospital_be	eds_7_da	y_av al	l_adult_hos	pital_inpa	tient_be	1;		со	36 0.04 2.33 2.20	570 0.65 36.96	
<pre>proc univariate data=hea var total_beds_7_day by state; run;</pre>	lthgov; _avg all_adult_hospital_be	eds_7_da	y_av al	l_adult_hos	pital_inpa	tient_be	1;		СТ	18 0.02 3.33 1.10	2.41 0 0.00 0.00 0.00	

ibtype ital_subtype) ong Term Short Term Total 18 124 268 0.02 0.14 0.31 6.72 46.27 0.36 0.22 142 1440 1708 1.65 0.16 1.95 8.31 84.31 2.87 2.52 131 819 1475 0.15 0.94 1.69 55.53 8.88 2.64 1.43 100 967 1282 0.11 1.11 1.47 7.80 75.43 2.02 1.69 359 5168 6350 0.41 5.92 7.27 5.65 81.39 7.24 9.04 36 900 1542 1.03 0.04 1.76 58.37 2.33 0.73 1.57 36 486 540 0.04 0.56 0.62 6.67 90.00 0.73 0.85

SAS' GLOBAL FORUM 2021

SAS and all other SAS Institute Inc. product or service names are registered trademarks of trademarks of SAS Institute Inc. in the USA and other countries. * indicates USA registration. Other brand and product names are trademarks of their respective companies.

Data Exploration Best Practices

- Avoid Categorical Data as Numbers If You Can
- Address Missing Data Appropriately
- Thoroughly Clean the Data!
- Data is More Than Just Numbers and Text
 - Data is: People, Animals, Plants, Environment, Al
 - Data is a snapshot of information, not the whole picture
- Treat Data Like a 3-D Living Thing
 - Use different perspectives (wise men and the elephant)
 - Consider what the data is not telling you
 - Consider the age of the data

• S.W.O.T. the Data

- Strengths
- Limitations/Weaknesses
- Opportunities
- Threats

#SASGF

• Always review your log

Data Driven Modeling WHO Global Table Data

SAS[®] GLOBAL FORUM 2021

Data Driven Modeling Key Considerations

- 1) Identify the roles of your variables what are the variable relationships
 - Predictors (IV)
 - Outcomes (DV)
 - Confounders
 - Covariates
- 2) Variable roles determine their location in the research question
- 3) Research question structure informs the analysis type Next Section

Outcome = Predictor1 + Predictor2 + Confounding + Covariate

DV = *IV1* + *IV2* + *Confounding* + *Covariate*

Data Driven Modeling SAS Procedures

• SAS Procedures

- Proc Freq
- Proc Means
- Proc Univariate
- Proc Corr

• The Data Step

- Implement adjustments to the data
- Additional Helpful Procedures
 - Proc Contents
 - Proc Sort
 - Proc SQL
 - Proc Print
 - SAS Macros

#SASGF

Data Driven Modeling COVID Example

proc corr data=WHOdata;

var Cases __cumulative_total Cases __cumulative_total_per_1_m
Cases __newly_reported_in_last_7 Cases __newly_reported_in_last_2
Deaths __cumulative_total Deaths __cumulative_total_per_1
Deaths __newly_reported_in_last Deaths __newly_reported_in_last;

run;

proc sort data=WHOdata;

by WHO Region;

Run;

proc corr data=WHOdata;

var Cases __cumulative_total Cases __cumulative_total_per_1_m
 Cases __newly_reported_in_last_7 Cases __newly_reported_in_last_2
 Deaths __cumulative_total Deaths __cumulative_total_per_1
 Deaths __newly_reported_in_last Deaths __newly_reported_in_lastl;
by WHO_Region;

run;

‡SASGF

proc freq data=WHOdata;

tables WHO_Region * Transmission_Classification/chisq;
run;

Statistics for Table of WHO_Region by Transmission_Classification

Statistic	DF	Value	Prob
Chi-Square	30	344.9434	<.0001
Likelihood Ratio Chi-Square	30	114.7165	<.0001
Mantel-Haenszel Chi-Square	1	3.1146	0.0776
Phi Coefficient		1.2064	
Contingency Coefficient		0.7699	
Cramer's V		0.5395	
WARNING: 64% of the cells hav than 5. Chi-Square may r	/e ex	pected cou	ints less st.

Pearson Correlation Coefficients, N = 35 Prob > Irl under H0: Rho=0 Cases cumulative total Cases cumulative total per 1 m Cases newly reported in last 7 Cases newly reported in last 2 Deaths cumulative total Deaths cumulative total per 1 Cases cumulative total 0.02718 0.75812 1.00000 0.75314 0.92604 0.04610 Cases - cumulative total 0.8769 < 0001 < 0001 < 0001 0.7926 Cases cumulative total per 1 m 0.02718 1.00000 0.00064 0.01073 -0.01051 0.89184 Cases - cumulative total per 1 million 0.8769 0 9971 0.9512 0.9522 < 0001 population Cases newly reported in last 7 0 75812 0.00064 1.00000 0 99424 0.53596 -0 00158 Cases - newly reported in last 7 days <.0001 0.9971 <.0001 0 0009 0.9928

SAS' GLOBAL FORUM 2021

SAS and all other SAS Institute Inc. product or service names are registered trademarks of their respective companies.

Data Driven Modeling Best Practices

- What Has Been Done?
 - Check the work of others for guidance on variable relationships
 - Address the findings of past research
- Variable Couples Counseling
 - Even if you think a variable is not related to another, check anyways
 - Pay attention to the impact one variable may have on the relationships of others
- Data Structure Incompatibility Mathematical Theory
 - Consider differences between numeric/categorical data
 - Potential use of binning
 - Consider limitations of mixing within-group data structures
 - Nominal & Ordinal, Multi-Level & Binary/Dichotomous
 - Interval & Ratio, Discrete vs Continuous
- Always review your log

Matching Your Question to a Model OpenICPSR

COVID Isolation on Sleep and Health in Healthcare Workers

SAS' GLOBAL FORUM 2021

Matching Your Question to a Model Key Considerations

- Checking Model Assumptions Common Assumptions
 - Normality
 - Homogeneity of Variance
 - Homogeneity of Variance-Covariance Matrices
 - Linear Relationships
 - Absence of Multicollinearity
 - Absence of Auto-Correlation
 - Randomization

#SASGF

- Large Sample Size
- Model Assumption Violations
 - Can sometimes be mitigated through variable adjustment
 - Fatal violations require a change in model choice

Matching Your Question to a Model SAS Procedures

- Normality
 - Proc Univariate
 - Proc Capability
- Homoscedasticity
 - Proc GLM
 - Proc Reg
 - Proc Model
 - Proc Transreg

- Homogeneity of V-C Matrices
 - Proc Discrim
 - Proc GLM
 - Proc Standard
- Multicollinearity
 - Proc Corr
 - Proc Reg

- Autocorrelation
 - Proc Reg
 - Proc Autoreg
- Linear Relationship
 - Proc Reg
 - Proc Corr
 - Proc Logistic

SAS' GLOBAL FORUM 202

Note: Some tests require multiple steps across different SAS procedures

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. * indicates USA registration. Other brand and product names are trademarks of their respective companies

Matching Your Question to a Model COVID Example

/* Q8 Are you currently conducting your job mostly from home now? */

proc reg data=ICPSRdata;

model Q8 = Q12a Q13a Q19a Q20a Q21a Q22a/vif tol collin;

run;

#SASGF

	Parameter Estimates									
Variable	Label	DF	Parameter Estimate	Standard Error	t Value	Pr > t	Tolerance	Variance Inflation		
Intercept	Intercept	1	0.40092	0.10424	3.85	0.0001		0		
Q12a		1	-0.00588	0.01406	-0.42	0.6761	0.92103	1.08574		
Q13a		1	0.03492	0.00789	4.43	<.0001	0.91953	1.08752		
Q19a		1	0.00952	0.02407	0.40	0.6925	0.33699	2.96742		
Q20a		1	0.01180	0.02014	0.59	0.5581	0.33491	2.98589		
Q21a		1	0.05378	0.05145	1.05	0.2962	0.25996	3.84679		
Q22a		1	-0.03984	0.04557	-0.87	0.3823	0.25774	3.87993		

Number	Eigenvalue	Condition Index
1	4.69372	1.00000
2	1.64087	1.69130
3	0.40569	3.40144
4	0.13071	5.99253
5	0.06204	8.69825
6	0.05289	9.42021
7	0.01408	18.25661

SAS' GLOBAL FORUM 2021

Matching Your Question to a Moder Best Practices

- More Than One Way...
 - There are numerous routes to test an assumption
 - Use multiple or narrow in on the most appropriate
- Do Not Hesitate to Switch Models If Needed
- Do Not Force a Model
- The High-Rollers Club
 - The more complex the analysis, generally the more numerous and complex the assumptions
 - Violations/naïve analyses can be very harmful
 - Enlist help

#SASGF

- Null Results Are NOT Necessarily a Model Failure
- Always review your log

Evaluate Your Model

SAS[®] GLOBAL FORUM 2021

Evaluate Your Model Key Considerations

- After The Model is Run You Are Not Done!
- Check for Key Model Health Indicators
 - Predictive Power
 - Model Fit
- Consider/Check Data Health Indicators
 - Validity
 - Reliability
 - Generalizability

Evaluate Your Model SAS Procedures

• Power

#SASGF

- Cox-Snell: Proc Logistic & Proc Reg
- Tjur: Proc Logistic & Proc Ttest
- Model Fit
 - Pearson: Proc Logistic
 - Hosmer-Lemeshow: Proc Logistic
 - Stukel: Proc Logistic
 - %goflogit macro
 - AIC, etc: Proc Phreg, Proc Reg, & Proc Logistic

_	_	_	_	
_				

Evaluate Your Model COVID Example

model __Population_Fully_Vaccinated = Total_Reported_Inventory2 CCVI_Score Scoioeconomic_Status

Household_Composition_Disability Housing_Type_Transportation Epidemiological_Factors Healthcare_System_Factors/rsq;

a run;

run:

#SASGF

□proc logistic data=ILVdata;

Ó

model __Population_Fully_Vaccinated = CCVI_Score Scoioeconomic_Status

Household_Composition_Disability Housing_Type_Transportation Epidemiological_Factors Healthcare_System_Factors/rsq;

			Model Fit Statis	stics
		Criterion	Intercept Only	Intercept and Covariates
0		AIC	1053.297	1043.108
		SC	1266.710	1274.964
ha	3	-2 Log L	891.297	867.108

R-Square 0.2093 Max-rescaled R-Square 0.2093

Testing Global Null Hypothesis: BETA=0								
Test Chi-Square DF Pr > Chi								
Likelihood Ratio	24.1891	7	0.0011					
Score	19.6161	7	0.0065					
Wald	25.1271	7	0.0007					

Model Fit Statistics							
Criterion	Intercept Only	Intercept and Covariates					
AIC	1061.804	1050.840					
SC	1276.000	1280.902					
-2 Log L	899.804	876.840					

R-Square 0.1981 Max-rescaled R-Square 0.1982

Testing Global Null Hypothesis: BETA=0								
Test	Chi-Square	DF	Pr > ChiSq					
Likelihood Ratio	22.9640	6	0.0008					
Score	19.0016	6	0.0042					
Wald	23.6376	6	0.0006					

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries.* indicates USA registration. Other brand and product names are trademarks of their respective companies

Evaluate Your Model Best Practices

- More Than One Way...
 - There are numerous routes to test power and model fit
 - Use multiple or narrow in on the most appropriate
- Do Not Hesitate to Switch Models If Needed
- Do Not Hesitate to Restructure a Model in Poor Health
- Do Not Force a Model
- Null Results Are NOT Necessarily a Model Failure
- Always review your log

PRACTY

Conclusion

SAS[®] GLOBAL FORUM 2021

Conclusion Key Takeaways

Choosing and Importing Data

- Choose/collect data that matches your question
- Consider research method basics
- Pay attention to data structure, size, and generalizability.

Data Exploration

• Get to know your data! How to run basic descriptive statistics with consideration to data type.

Data Driven Modeling

• Identify predictors (IV), outcomes (DV), confounders, and covariates

Matching Your Question to a Model

• Make sure your model assumptions fit your question and data. Every model has its own set of assumptions! Violation of these assumptions lead to incorrect conclusions

• Evaluate Your Model

- Check and refine your model performance through exploration of power and model fit
- If necessary, evaluate validity, reliability, and generalizability of data

Conclusion Best Practices

Choosing and Importing Data

- Pay attention to where your data is coming from & know that data has limitations
- Practice good data storage basics, maintain an untouched original dataset, & document adjustments.

Data Exploration

- Address missing data appropriately & avoid categorical data as numbers
- See the face of data & know that data is a living 3-dimensional entity
- Data Driven Modeling
 - · Consider data structure incompatibility & Test variable relationships
 - Document and implement findings from past research
- Matching Your Question to a Model
 - There are more than one way to test assumptions use them
 - Do not hesitate to switch models, do not force a model
 - Consider model complexity

Evaluate Your Model

- There is more than one way to test power and model fit use them
- Do not hesitate to appropriately restructure a model in poor health
- Null results do not mean model failure/incompatibility.
- Always review your log

#SASGF

Conclusion Remember

- Data is everywhere and understanding data science is a growing necessity for navigating today's world.
- This journey should not be done solo. Interdisciplinary teams of scientists/researchers, statisticians, programmers, and advocates/specialists are needed to make the most of the information available to us.
- Having an understanding of the analytic process will help create the bridge of communication needed to answer the complex questions of today.

Resources Further Reading

- A Gentle Introduction to Statistics Using SAS Studio book
- Introduction to Biostatistics with JMP book
- Fundamentals of Programming in SAS book
- Practical Data Analysis with JMP book
- Real World Health Care Data Analysis Causal Methods and Implementation Using SAS – book
- Lexjansen.com SAS Papers

Thank you!

Contact Information d.n.schreibergregory@gmail.com

SAS' GLOBAL FORUM 2021

SAS[®] GLOBAL FORUM 2021

