

Automated Vehicle Odometer Reading Using SAS® for Al and Computer Vision

Tyler Rosacker, Angela Wu (State Farm)

Kedar Prabhudesai, Hardi Desai, Neela Vengateshwaran, Varunraj Valsaraj (SAS Institute Inc.)

Agenda

- Research Goal
- Odometer Detection Model
- Digit Detection Model
- Combined Pipeline
- Potential Enhancements

Research Goal

Build a pipeline that can read a vehicle odometer based upon just the dashboard photo

Challenges

- Localizing Odometer region
 - Dashboards have a <u>lot</u> of digits on them other than odometers
- Size of Odometer region
 - Area covered is less than 0.01 % of total area
- Mechanical vs. Digital Odometer
- Digit Recognition
 - Different vehicles have different digits formats
 - Decimal is set differently in mechanical and digital odometer
 - Confusion in digits: (1,7), (3,8) and (0,8)

General Pipeline

General Pipeline

Odometer Detection

Task

- Spot the odometer
- Give a confidence on its detection

Model Building

- Random grid search over 3-week period
- Total of ~2500 models built

Champion Performance

- Percent of Odometers Detected: 88.3%
- False Positive Detections: 13.3%

Odometer Detection - Demo

Odometer Detection - Demo

General Pipeline

33,000 SVHN Images + 2,700 State Farm Images

Digit Detection - Demo

Some bad performers

Evaluation using Digit Error Rate (DER)

$$DER = \left[\frac{N_{subs} + N_{dels} + N_{ins}}{N_{total}}\right] \times 100$$

Combined Pipeline Results

Evaluated on 989 holdout images

Histogram of DER

- 648 images (65.5%) had 0% DER
- 833 images (84.2%) had DER <= 40%
- 380 images (38.42%) had DER > 40%
- Total DER for 5,492 digits = 17.53%

$$= \frac{N_{subs} (248) + N_{dels} (600) + N_{ins} (115)}{N_{total} (5,492)}$$

Summary

- Our system automatically extracts odometer readings from vehicle dashboard images using two deep learning models – one to isolate the odometer and another to recognize digits
- The odometer detection model has an accuracy of 88.3% with a false positive rate of 13.3%

- The digit recognition model has an overall digit error rate of 17.53%
- Please refer to our paper for additional details about the methodology along with results

Other Applications using Computer Vision

Case #1: Identification of Shared Ride Vehicles

Case #2: Identification of Reappearing Claims

Case #3: Identification of Previous Damage

Case #4: Identification of the Damaged Car Part

#SASGF

SAS GLOBAL FORUM 2021

SAS® GLOBAL FORUM 2021

sasglobalforum.com

