

1

Paper 1132-2021

Automated Vehicle Odometer Reading Using SAS® for AI &

Computer Vision

Tyler Rosacker, FCAS, State Farm; Kedar Prabhudesai, Hardi Desai, Neela
Vengateshwaran, and Varunraj Valsaraj, SAS Institute Inc.

ABSTRACT

Artificial intelligence (AI) is gaining increasing popularity with its ability to automate mundane,

repetitive tasks that would otherwise require hours of manual work. In this paper we discuss

one such application using SAS AI and computer vision to automatically extract vehicle

odometer readings from dashboard images. Reading vehicle odometers can be useful for

verifying how far the vehicle has driven, and better understanding the risk the vehicle entails

from an insurability perspective. However, with potentially thousands of images received

daily, it would not be practical for a human to conduct a review of each image. To overcome

this, we have built a system using the You Only Look Once (YOLO) deep learning

architecture, to automatically extract the odometer reading from a vehicle dashboard image.

Our system comprises of two YOLO V2 models – one to detect and isolate the

odometer region from the dashboard image and another to detect individual digits in the

odometer region to construct a string of digits corresponding to the odometer reading. Our

models are trained using a combination of open-source and closed-source datasets to build a

robust system that can be used for automated odometer extraction from a wide variety of

vehicle dashboard images. Our odometer detection model achieved an accuracy of 88.3% and

the digit detection model achieved an overall error rate of 17.5%. This paper discusses the

methodology behind this approach along with detection results.

INTRODUCTION

The automobile insurance industry is one of the biggest industries in the United States

measured by market size and revenue and expected to continue to grow in the forthcoming

years. The biggest boon to the industry is the availability of abundant data that insurance

companies collect from customers to meet their expectations to deliver prompt services in

the event of an accident. This presents a great opportunity for artificial intelligence systems

to be used for automating mundane, repetitive tasks that would otherwise require hours of

manual work.

Auto insurance companies determine the price of an insurance premium using rating variables

– which are characteristics of policyholders used to estimate the cost of risks associated with

the insurance. For example, a vehicle that covers more miles per year has a higher risk from

an insurance perspective compared to one that covers fewer miles per year. Thus, one of the

earliest rating variables used for predicting auto insurance losses was the mileage of the

vehicle being insured. This variable has a ton of appeal as a rating variable due to its high

predictive power and the intuitively causal relationship with insurance loss. It also has a very

objective measurement in the form of the vehicle odometer.

While mileage may be a high impact rating variable for pricing auto insurance; the actual

process of capturing of accurate mileage data can be difficult. Insurance companies have

historically asked their policyholders to estimate the driving they will do, but, as you can

imagine, those estimates are neither accurate nor granular. There is alternatively the option

2

to purchase this data from original manufacturers (OEMs) or from third party data vendors

e.g. Carfax, AutoCheck etc. However, these options cover a limited portion of vehicles on the

road, as well as have a monetary cost. In more recent years insurers have moved to using

vehicle telematics devices to capture mileage as well as other vehicle behavior data. Even so,

an insurer may have concerns about the quality or reliability of the data provided by these

telematics devices.

One potentially attractive way an insurer could get accurate mileage data is to have

policyholders provide their odometer readings through a smart phone app. Over time, these

mileage reads can be used to calculate, or project forward the mileage the vehicle will drive.

Having such a system in place, the insurance company would certainly have an interest in

verifying that the odometer reading provided by the policyholder is accurate. One option for

verification is to have the policyholder provide a photo of their dashboard, which can then be

compared against the odometer reading provided by the policyholder for additional

verification of the data provided. This photo verification process is tedious, since a large

insurance company might have millions of photos that would need verification each month.

In this work we demonstrate a system using SAS AI and computer vision which can be used

to automate the verification of vehicle odometer photos. This system uses computer vision

models to automatically extract a string of digits corresponding to the odometer reading which

can then be compared with the odometer reading submitted by the policyholder to verify

mileage data.

Figure 1. The goal of this project is to automatically extract odometer readings

(shown inset) from dashboard images. The system comprises of two computer

vision models – one to isolate the odometer region and another to detect digits.

METHODOLOGY

We have built a pipeline to automatically extract the odometer reading from photo of the

dashboard as shown in Figure 1. As we observe the images captured contains various

components of vehicle dashboard including but limited to speedometer, trip mileage and

overall mileage. In this solution we have focused on building the solution to accurately read

the overall mileage of the vehicle. The major steps involved in building this solution are

illustrated in Figure 2. At its core are two computer vision models – one to detect the odometer

from the dashboard image and another to recognize digits in the odometer region. For this

project we used the “Image”, “DeepLearn” and “aStore” action sets in SAS Cloud Analytics

Services (CAS); the SAS® Deep Learning Python Interface (DLPy); and the OpenCV toolkit in

Python. In this section we start with a description of the data followed by the details about

the methodology we used to design the system.

3

Figure 2. Flowchart showing the main components of the system. Orange blocks

denote SAS Deep Learning Computer Vision models: Tiny-YOLO-V2 for odometer

detection and YOLO-V2 for digit recognition.

DATA DESCRIPTION & CHALLENGES

The data for this research was provided by State Farm and included 5,000 dashboard photos

used for model training as well as an additional 1,000 photos held out for verifying

performance of the entire pipeline. These photos were generally of high quality; however, a

limited subset of these images were blurry, dark, and not considered as valid dashboard

photos. If the human labeler was able to confidently label the odometer reading from the

dashboard images, we have included the image in our dataset. However about 0.1% of photos

were removed where that was not possible.

The valid photos used for training the models had a high degree of variability. It included

relatively recent vehicle model years with digital odometers as well as older vehicles with

mechanical odometers. It should also be noted that with a huge variety vehicle make and

model, we observed a huge variation the dashboard layout and design too.

The dashboard image was typically clicked on a smart phone by the policy holder on the State

Farm app. This brought in a lot of variability with respect to how zoomed is the odometer

reading, lighting conditions as well as the location of the odometer within an image. The

odometer generally was located near the center of the photo, but the proportion of the photo

that the odometer took up had a wide range between less than 0.1% of the photo, and

upwards of 30%+ of the photo. This is of significance as many computer vision architectures

struggle with this type of scale difference. As we modelled the solution for this use, we have

accounted all the above described situations.

4

DATA PRE-PROCESSING AND LABELLING

The data provided for this project was not labeled as per the requirement for our proposed

solution. To start this project, the 5,000 images were uploaded and manually labeled in an

open-source labelling tool, Computer Vision Annotation Tool (CVAT). A sample annotated

image is shown in Figure 3.

First, we labeled a tightly bound region around the odometer region. This label included

metadata about if the odometer was “mechanical” or “digital” to help the modeling process

pick up distinctions between these two very different looking types of odometers. Next, we

labeled each digit found within the odometer as well as the decimal points included for

numbers like “4,502.1”. This again included a tight bounding box coordinates around the digit

as well as label indicating the value of the digit (0-9). After the images were labeled, the

metadata was output from CVAT, and read into CAS as an “ImageTable” using DLPy.

Figure 3. Example of the odometer and digit labeling in CVAT. Bounding boxes

around the odometer region and individual digits were annotated along with

additional metadata about the odometer such as type and orientation.

ODOMETER DETECTION MODEL

As discussed previously, the first modeling task for this system was to detect the location of

the odometer within the vehicle dashboard. This was generally expected to be the more

difficult task due to the range of repeated symbols on a dashboard. “How would the model

learn what is an odometer versus a speedometer versus a trip odometer?” was an open

question at the beginning of this research.

In order to make this model as broadly applicable as possible, the inputs to the model were

restricted to only the single 416 x 416 pixel image. The data set had other potential predictors

such as make, model, time of day, etc. but this research limited the scope to only using the

image. This makes the model more applicable to real world tasks where that information may

not be as readily available, as well as allowed us to use pre-built model architectures that

only take image inputs.

5

To solve this task, a Tiny-YOLO-V2 model was selected. This model form was selected for a

few reasons. The relatively simple architecture was expected to train faster, as well as have

faster computations during inference. This faster inference time may be appealing in the

specific application as the model may need to run on a smartphone. An extensive

hyperparameter search was conducted across ~30 hyperparameters and over 2,500 models

were ultimately built. The final model was trained for 150 epochs with an AdamSolver, and a

polynomial learning rate scheduler (learning rate = 0.00075, power = 1.5).

The data for this task was relatively limited in the grand scheme of computer vision problems.

Approximately 5,000 photos were part of the labelled dataset. These images were split

70/15/15 as Training/Validation/Test set respectively. With this size of data as described

above, many make/model/model year combinations had only 1 or 2 photos. While the

dashboard looks identical across different vehicles of the same type, we wanted the model to

generalize to different lighting conditions, image orientations, and odometer sizes. To that

end, the “augmentImages” and “processImages” CAS actions were used to create additional

variability in the set of training images. This action made it possible to mirror pixels across

the image to create images with different odometer sizes. An example of these augmented

images is included in Figure 4. Use of these augmented photos was grid searched like other

hyperparameters, and it was clear that the augmented data enhanced the model. However,

as expected the training time of the model increased linearly with the number of augmented

images. One noticeable benefit from this image augmentation was that model performance

improved significantly for photos with extremely small odometers compared to the full image

(i.e., odometers smaller than 0.5% of overall image pixels) while not hurting the performance

for images with large odometers.

6

Figure 4. Example of augmenting a photo using pixel mirroring to make the

odometer smaller. A large portion of the image is “fake”.

As an additional way to handle the limited dashboard data available for this project, pretrained

weights were used for warm starting the model training. These pre-trained weights were

provided from a model that focused on a totally unrelated task of detecting odometers. That

unrelated task was predicting the targets of the Open Images V4 dataset, which has images

with a broad set of 600 classes from a variety of topics, none of which relate to vehicle

odometers. Even though these pre-trained weights seemingly should have no applicability to

the task at hand, the use of random weight initialization versus these pre-trained weights was

grid searched like other hyperparameters, and it was clear that the pretrained weights

enhanced the model.

DIGIT RECOGNITION MODEL

The second modeling task was to recognize digits from the odometer region to generate a

string of digits corresponding to the odometer reading. This was achieved by training a

separate digit recognition model based on the YOLO-V2 deep learning architecture.

Like the variability in the odometer types, there was a large variability in digit types as well.

Some of the factors that contributed to the variability were: digit fonts, digit angles, digit

types (digital vs. analog), background color, foreground color, lighting conditions etc.

7

To build a digit recognition that is robust enough to account for these variabilities, we used a

combination of open-source and closed-source datasets to train the digit recognition model.

To start with model training, we trained the YOLO-V2 model for 50 epochs with 50,000 images

from the Street View House Numbers (SVHN) dataset, using the AdamSolver optimizer with

learning rate of 0.0001 (“step” learning rate policy with step size = 10). The SVHN dataset

consists of images of house numbers as shown in Figure 5. After training the model using

images from the SVHN dataset, we froze the model weights and continued training the model

with an additional 2,700 images provided by State Farm. Recall that dashboard images were

manually annotated with bounding boxes around the odometer region and around individual

digits. We extracted odometer crops from dashboard images and resized them to 416 X 416

to train the digit recognition model for an additional 25 epochs (“step” learning rate policy

with step size = 5). A total of 11 object classes were used for training: 10 for digits 0-9 and

one class for the decimal.

Figure 5. Sample images from the open-source Street View House Numbers

(SVHN) dataset. We used 50,000 images from the SVHN dataset along with 2,700

images from State Farm to train the digit recognition model.

COMBINED PIPELINE

After training the odometer detection and digit recognition models, ASTORE files were

generated for each model to deploy the models and score holdout dashboard images. Each

holdout image was first resized to a size of 416 X 416 and the odometer detection model was

run. Since YOLO-V2 model returns normalized bounding box co-ordinates, the output was

used to crop odometer region from the original non-resized dashboard image. This allowed

8

us to get the best resolution of the odometer crop region. Using the raw outputs from the

odometer detection model, we found that the bounding boxes had a tight margin around the

odometer region, which tended to trim the first or the last digit of the odometer. Hence to

ensure that all the digits in the odometer region would be accounted for, we padded a few

pixels around the bounding box to extract a slightly bigger odometer crop, as shown in Figure

6.

This odometer crop was then resized to a size of 416 X 416 and scored using the digit

recognition model. The digit recognition model provided bounding boxes around detected

digits in the odometer region along with a confidence score associated with class of each

detection. We observed that in many instances the digit recognition model produced multiple

detections i.e. multiple bounding boxes, around a single digit as shown in Figure 7. We

performed non-max suppression to solve this. First, we computed pairwise intersection-over-

unions (IoU) for each bounding box pair and used a threshold of 0.2 to detect overlapping

bounding boxes. Next, for overlapping bounding boxes, we selected the box with a higher

confidence score and suppressed the box with the lower confidence score. Finally, we sorted

the bounding boxes based on the x co-ordinates to build a string of digits corresponding to

the odometer reading.

Figure 6. (A) Sample odometer crops based on bounding box output of the

odometer detection model. The model tended to produce a tight margin around the

odometer region which resulted in some digit getting trimmed. (B) We padded a

few pixels along both row and column dimensions to ensure that all digits were

accounted for.

9

Figure 7. (A) Sample images of odometer crops overlayed with bounding boxes

around digits from the digit recognition model. Notice that some digits have

multiple predictions: digit nine has predictions 0, 9 (top left), digit five has

predictions: 5, 3 (bottom left). (B) Output of respective images after performing

non-max suppression, resulting in a single detection for each digit.

RESULTS

In this section, we discuss the performance of the odometer detection model and the digit

recognition model separately and finally the performance of the entire system putting both

the models together.

ODOMETER DETECTION MODEL

We evaluated the performance of the odometer detection model based upon a 40% pairwise-

intersection over union (IoU) threshold between the detected odometer and the ground truth

odometer bounding box. At that threshold, the precision was 88.3%, the false-positive rate

was 13.3%. Included below is the precision of the final model across different IoU thresholds.

This relatively low threshold was selected because this model did not need to have a perfect

bounding box around the odometer. Instead, it was important that the full odometer was

included in the final image so that the Digit detection model did not have to deal with cropped

digits. This bounding region was further padded as described in the “Combined Pipeline”

section above which would tend to increase the union area of the bounding boxes further.

10

While difficult to quantify, a visual inspection of model errors was conducted. In general, most

images were satisfactory with about 90% of images appearing to be good detections of the

odometer.

For those images with poor odometer detections, a common cause of model confusion was

tightly packed characters near each other. Figure 10 shows one such example where the

model was distracted by the word “standard” seemingly due to the tightly packed characters.

Figure 8. Precision of the Odometer Detection Model across various IoU

thresholds. An IoU threshold of 40% was used for hyperparameter tuning.

11

Figure 9. Example of a true positive detections for the odometer detection model.

The numeric value above each box shows confidence level in the detection.

Figure 10. Two examples of false positive detections for the odometer detection

model. The numeric value above each box shows confidence level in the detection.

In the first example, the model was more confident in the word “standard” than

the actual odometer, and in the second example the model detected two

odometers.

12

The Tiny-YOLO-V2 architecture is known for struggling with detecting objects with extremely

small scales. This fact is due to the low-resolution grid (13 X 13) used for object detection. A

potential enhancement on this model would be to investigate using other architectures such

as the YOLO-V3 model or even two stage models like Fast RCNN. These models are known to

handle small object detection better, especially if high resolution images are provided.

DIGIT RECOGNITION MODEL

We evaluated the performance of the digit recognition model using the digit error rate

(DER) metric, which is analogous to the word error rate metric used in automatic speech

recognition. The DER accounts for three types of errors that can occur when detecting

individual digits, shown in Figure 11:

(A) Deletion type error: When the model fails to detect a digit altogether

(B) Insertion type error: When the model inserts a digit at a location where a digit does

not exist

(C) Substitution type error: When the model substitutes a digit with an incorrect digit

The number of instances of each of the above errors are determined by comparing the true

odometer digit string with detected digit string using a dynamic programming approach, and

the sum of these instances are normalized by the length of the true odometer digit string to

calculate the DER:

𝐷𝑖𝑔𝑖𝑡 𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 (𝐷𝐸𝑅) = 100 × [
𝑁𝑑𝑒𝑙𝑠 + 𝑁𝑖𝑛𝑠 + 𝑁𝑠𝑢𝑏𝑠

𝑁𝑡𝑜𝑡𝑎𝑙

]

Figure 11. Examples of images with detection bounding boxes demonstrating the

three types of errors used for calculating digit error rate (DER). (A) Deletion type

error: digit one is missed altogether by the model, (B) Insertion type error: model

has inserted digits eight, two erroneously, (C) Substitution type error: model has

incorrectly detected the digit eight as three.

We evaluated the results of the digit recognition model on a holdout set of 1,243 images.

Note that for these images, we did not run the odometer detection model but extracted the

odometer crops from the annotations generated during the manual labeling task. Figure 12

shows some sample images superimposed with the detections generated from the digit

recognition model. Note the large variability in the digit characteristics as discussed before.

13

We calculated the DER by comparing the output of the digit recognition model with the true

odometer readings provided by human labelers. A histogram of the DER over 1,243 holdout

images is provided in Figure 13. Since we are calculating the error rate, a lower value indicates

better performance. We notice that a bulk of the mass of the histogram is concentrated on

the DER value of zero percent. A total of 1,022 (82.2%) images had a DER of zero percent,

that is they had a perfect prediction, whereas a total of 1,198 (96.3%) images had a DER less

than forty percent. Based on these results, we can conclude that despite the variability in

odometer digits, training the digit recognition model with help of SVHN and State Farm

images, helped the model to generalize and detect digits accurately in most of the images.

Figure 12. Examples of images with digit detection bounding boxes superimposed.

Images are arranged in a 3X3 grid with respective odometer readings generated

14

using the digit recognition model shown below. Digits detected correctly are

shown in green whereas incorrect or missed detections are shown in red. Note the

variability in the digit types, digit fonts, digit angles, lighting conditions etc.

Figure 13. Histogram of Digit Error Rate (DER) over 1,243 holdout images

demonstrating performance of the digit recognition model. We notice that the bulk

of the distribution is concentrated on the value of zero percent DER.

COMBINED PIPELINE

We used a separate holdout set of 989 images to test the performance of the combined

pipeline i.e. both the odometer detection and digit recognition models. This holdout set was

separate and untouched during training or validation for both the odometer detection and

digit recognition models. Histogram of DER over these 989 images is shown in Figure 14. A

total of 648 (65.5%) images had a DER of zero percent indicating perfect prediction. Note

that a perfect prediction indicates that both the odometer detection model accurately detected

where the odometer is, and the digit recognition model accurately predicted all the digits. A

total of 833 (84.2%) images had a DER of less than forty percent. A DER of hundred percent

indicates that either the odometer detection model did not produce an accurate odometer

crop, or the digit recognition model did not predict a single digit in the odometer accurately.

A total of 95 (9.6%) images had a DER of hundred percent.

We also calculated the overall digit error rate by aggregating the errors over the entire set of

989 images. A total of 5,492 digits (𝑁𝑡𝑜𝑡𝑎𝑙) were present in the set of images and the individual

errors were as follows:

- Deletion type errors: 600 (𝑁𝑑𝑒𝑙𝑠)

- Insertion type errors: 115 (𝑁𝑖𝑛𝑠)

- Substitution type errors: 248 (𝑁𝑠𝑢𝑏𝑠)

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐷𝐸𝑅 = 100 × [
600 + 115 + 248

5,492
] = 17.53%

15

Figure 14. Histogram of Digit Error Rate (DER) over 989 holdout images

demonstrating performance of the combined pipeline i.e. using both the odometer

detection model and the digit recognition model. Note that these results were

evaluated on a set of holdout images different from the one shown in Figure 13.

FUTURE WORK

For future work, we have a wide set of potential enhancements that may be valuable to

research to improve overall system performance. While these areas of research were not

deeply explored as part of this project, we think these are fairly logical extensions of this

research, and good things to look into before someone might try to recreate this type of

system in their production environment.

One difficulty with this research was the quality of the input images. Many images were overly

blurry, dark, or taken from a weird angle/rotation. While ideally a computer vision model

would generalize to these scenarios, there is a physical limit to how bad a photo can be before

a model can’t reasonably be expected to interpret the photo. To that end, we would like to

research ways to pre-process and filter out poor quality photos before they are input into the

system. This could involve an additional model run before the rest of the system that predicts

if the model is of high enough quality, or a simpler approach would be to use heuristics like

average light level or estimating the sharpness of the image using rise distance. The end

result would be that a user of this system could go back to the person who took an image and

say “could you please try again”, and hopefully the average quality of images fed into the

model in production would improve.

Another issue during this model build was the comparatively limited set of images (~5,000).

With computer vision tasks there is a wide set of image augmentation methods that could be

used, and those were briefly researched as part of this project. Additional work could be done

to further this image augmentation. Of particular interest would be additional time spent

trying to tweak the perspective of photos such as modifying photos to look like they were

taken from more off-center angles.

Next, we liked to research how applications of multitask learning could help with allowing the

odometer detection model to generalize. The current odometer detection model only knows

16

to detect 3 things (“digital odometer”, “mechanical odometer”, “empty space”). This type of

detection can lead to many false positives where other parts of a vehicle dashboard will look

more like an odometer than they do like empty space such as a trip odometer or a

speedometer. Potentially expanding the task of this odometer detection model to have it also

detect other objects on the dashboard such as a speedometer could help it generalize better

to have fewer false positives on the actual task of interest.

A final item to research would be applications of meta-modeling. When the odometer detection

model is run it produces potentially multiple odometer detections as well as confidence levels

for each detection. Likewise, the digit detection model produces similar metrics. A promising

idea for future research would be to build a model that sits at the end of the system, takes

these various metrics (“how confident about the predictions are you”, “how many detections

were made”, “for each odometer detected, how many digits would be detected for that specific

odometer”), and feed them in as predictors. This model would then output an overall

confidence level of the model building pipeline and could be used in production to flag

potentially misleading results for human review. It could also be used in model development

to debug the types of images that have poor performance currently.

CONCLUSION

The goal of this project was to demonstrate that SAS AI and computer vision can be used to

automate mundane and repetitive tasks that would otherwise need hours of manual work. In

this paper we described a system to automatically extract odometer readings from vehicle

dashboard images using two deep learning computer vision models – one to isolate and

localize the odometer region and one for digit recognition. From the results from the combined

pipeline section we see that from 65.5% of images had a perfect prediction and would require

no manual labor to validate the odometer readings. If we assume that the system is prone to

errors with respect to a few digits, 84.2% of images had a DER of less than forty percent.

Thus, manual labor would be required for the rest of the images (15.8%) where DER is greater

than forty percent.

REFERENCES

Actuarial Standards Board of the American Academy of Actuaries,“Actuarial Standard of

Practice No. 12, Risk Classification (for AllPractice Areas),” revised in 2005, updated for

deviation language in 2011.

Karapiperis, Dimitri; Birnbaum, Birny; Brandenberg, Aaron; Castagna, Sandra; Greenberg,

Allen; Harbage, Robin; and Obersteadt, Anne, Usage-Based Insurance and Vehicle

Telematics: Insurance Market and Regulatory Implications, National Association of

Insurance Commissioners, CIPR Study, March 2015, pp. 1-16 (excluding section on Tower

Watson’s DriveAbility) and 42-60.

J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” arXiv preprint, 2017. 3, 4

Nguyen, N., Do, T., Ngo, T. D., & Le, D, “An Evaluation of Deep Learning Methods for Small

Object Detection”. Annual Review of Anthropology, 2020, ["3189691"]

SAS Deep Learning Python Interface. Version 1.2.1-dev

https://sassoftware.github.io/python-dlpy/getting-started.html.

https://sassoftware.github.io/python-dlpy/getting-started.html

17

ACKNOWLEDGMENTS

We would like to thank members of the SAS Center of Excellence (CoE) team and the SAS

pre-sales team who helped us with labeling odometers and digits which were used for

modeling. We would also like to thank Conor Hagan for setting up the AWS environment and

Mike James for managing the State Farm Student Exchange Program.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Tyler Rosacker

State Farm Mutual Insurance Company

tyler.rosacker.fhn6@statefarm.com

Kedar Prabhudesai

SAS Institute, Inc.

Kedar.Prabhudesai@sas.com

Hardi Desai

SAS Institute, Inc.

Hardi.Desai@sas.com

Neela Vengateshwaran

SAS Institute, Inc.

Neela.Vengateshwaran@sas.com

Varunraj Valsaraj

SAS Institute, Inc.

Varunraj.Valsaraj@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA

registration.

Other brand and product names are trademarks of their respective companies.

mailto:tyler.rosacker.fhn6@statefarm.com
mailto:Kedar.Prabhudesai@sas.com
mailto:Hardi.Desai@sas.com
mailto:Neela.Vengateshwaran@sas.com
mailto:Varunraj.Valsaraj@sas.com

