

1

Paper 1102-2021

 Generating .xpt files with SAS, R and Python
 Todd Case and YuTing Tian

 Vertex Pharmaceuticals, Boston, USA

ABSTRACT

The primary purpose of this paper is to first lay out a process of generating a simplified
Transport (.xpt) file with RStudio and Python to meet study electronic data submission

requirements of the Food & Drug Administration (FDA). The second purpose of this paper is
to compare the .xpt files created from three different languages: R, Python and SAS. The

paper is the expansion of the original FDA guideline document “CREATING SIMPLIFIED
TS.XPT FILES”, published in November, 2019.

Transport files can be created by SAS, as well as open source software, including R and
Python. According to the FDA guideline document mentioned above, .xpt files can be

created by R and Python. This may allow Pharmaceutical companies to expand use of R and
Python beyond data visualization and statistical analysis currently being generated by these

two languages. Hopefully, readers can use the process shown in the paper as a template to
create .xpt files.

INTRODUCTION

Transport files are in use in the pharmaceutical industry as a result of FDA e-data

submission requirements. The “Creating Simplified TS.XPT Files” is the specific guide to help
sponsors create TS (ts.xpt) files with R and Python to meet study data submission

requirements.
The paper is divided into four sections which correspond to the steps outlined in our

suggested processes: the first three sections introduce how to produce .xpt files with SAS,R

and Python, respectively, and the fourth section compares the results of simplified .xpt files
generated from the different software packages using SAS Universal Viewer (the application

to view SAS Transport .xpt files).

1) Using SAS to generate final datasets in .xpt format
1.1) Code to generate raw TS domain in SAS

1.2) Export TS.SAS with .xpt format
1.3) Using macro to create .xpt files with SAS

2) Using RStudio to generate final datasets in xpt format
2.1) Code to generate raw TS domain in RStudio

2.2) Export TS.R file with .xpt format
2.3) A fast way to create All .xpt files with RStudio

3) Using Python to generate final datasets in .xpt format

 3.1) Code to generate raw TS domain in Python
 3.2) Export TS.py file with .xpt format

4) Review and Compare generated ts.xpt file in SAS Universal Viewer

2

1). USING SAS TO GENERATE FINAL DATASETS IN .XPT
FORMAT

1.1) CODE TO GENERATE RAW TS DOMAIN IN SAS

The Trial Summary domain is used to record basic information about the study such as
protocol title, trial phase, etc. The purpose of this paper is to introduce the process of

generating xpt files with different languages in terms of the original paper “Creating
Simplified TS.XPT Files. We assume the readers have a fundamental knowledge of using

SAS, RStudio and Python already, therefore we start our paper with raw data already
cleaned with SAS, then the same raw Trial Summary dataset is applied into SAS, RStudio

and Python to generate a ts.xpt file separately. The fabricated TS raw dataset is produced

as Figure1 shown below:

Data TS;

infile datalines truncover firstobs=2;

length STUDYID $20 DOMAIN $2 TSSEQ 8. TSGRPID $40. TSPARMCD $8 TSPARM $40

 TSVAL TSVALNF TSVALCD $200 TSVCDREF $20 TSVCDVER $10;

attrib

 STUDYID label = 'Study Identifier'

 DOMAIN label = 'Domain Abbreviation'

 TSSEQ label = 'Sequence Number'

 TSGRPID label = 'Group ID'

 TSPARMCD label = 'Trial Summary Parameter Short Name'

 TSPARM label = 'Trial Summary Parameter'

 TSVAL label = 'Parameter Value'

 TSVALNF label = 'Parameter Null Flavor'

 TSVALCD label = 'Parameter Value Code'

 TSVCDREF label = 'Name of the Reference Terminology'

 TSVCDVER label='Version of the Reference Terminology';

input @1 STUDYID $ 1-3 @5 DOMAIN $ 5-6 @8 TSSEQ 1. @10 TSGRPID $ 10-22

 @23 TSPARMCD $ 23-31 @32 TSPARM $ 32-57 @59 TSVAL $59-72 @74 TSVALNF $74-75

 @76 TSVALCD $ 76-82 @83 TSVCDREF $ 83-91 @93 TSVCDVER $ 93-103 @

 ;

datalines;

123456789012345678901234567890123456789012345678901234567890123456789012345678901235678901234567890123456

001 TS 1 ACTSUB Actual Number of Subjects 10

001 TS 1 ADAPT Adaptive Design N C49487 CDISC 2019-12-20

001 TS 1 AGEMAX Maximum Age of Subjects P65Y ISO 8601

001 TS 1 AGEMIN Minimum Age of Subjects P18Y ISO 8601

001 TS 1 DCUTDESC Data Cutoff Description DATABASE LOCK

001 TS 1 DCUTDTC Data Cutoff Date 2020-11-26

001 TS 1 group1,drug1 DOSE Dose per Administration 400

001 TS 2 group2,drug2 DOSE Dose per Administration 15

001 TS 1 drug1 DOSFRM Dose Form TABLET C42998 ISO 8601

001 TS 1 drug2 DOSFRM Dose Form CAPSULES C42998 ISO 8601

;

run;

Figure1

Figure1 is a simulated dataset - we have created the eleven standard CDISC (Clinical Data

Interchange Standards Consortium) variables that exist in the TS domain. We assume the
readers are already familiar with the Trial Summary dataset, so we do not explain each

variable and value in detail.

This fabricated data shows some parameters that are required or expected in the Trial
Summary dataset, the STUDYID is “001”; the DOMAIN is “TS”; there are two drugs: -drug1

and drug2; TSPARMCD is the short name of the parameter, such as “ACTSUB”, “AGEMAX”

here; TSPARM is the term for the parameter in corresponding with TSPARMCD, such as
“Actual Number of Subjects”, “Maximum Age of Subjects”; TSVAL is the value of TSPARM,

such as the number of subjects in this study is “10”, the maximum age of subjects is P65Y,
meaning 65 years old, etc.

3

Figure2

Figure2 shows the result of the code from Figure1 in SAS.

1.2) EXPORT IT WITH XPT FORMAT

libname sasfile "E:\users\tiany";

libname xptfile XPORT "E:\users\tiany\ts.xpt";

data xptfile.ts;

 set sasfile.ts2;

run;

/*or another way to xport*/

proc copy in=sasfile

 out=xptfile memtype=data;

 select ts2;

run;

Figure3

Figure3 is the code to generate the ts.xpt file.

1: Define two libnames: “sasfile” for saving sas dataset and “xptile” for saving file with .xpt

format.
Notice: when we create a path for storing xpt file, we should be specific the name of the

.xpt file we are creating into path using XPORT engine, such as: “E:\users\tiany\ts.xpt”
here.

There are two different ways of creating xpt file as below:

2: create xpt file with “data step”
3: to create xpt file with “proc copy” statement.

The process is straightforward as shown in figure2.

Figure4

Finally, the ts.xpt file is created in SAS. In Windows Explorer we can see the file create,

shown in Figure4.

1
1
1

1

d

2
1
1
1

2

1
1

1

d

2
1
1
1

3

1
1

1

d

2
1
1
1

4

1.3) A USEFUL MACRO TO CREATE XPT FILES WITH SAS

%createxpt(inlib=sdtm, xptdir=.\xpt);

In the pharmaceutical company, a macro we call %createxpt can create several .xpt files
effectively and efficiently. This macro includes two required parameters, inlib=XX, the name

of the SAS library containing the input dataset, such as SDTM; xptdir is the folder where the
.xpt files will be created. When invoking the macro %createxpt, then xpt files are created,

Figure5 is shown as below.

Figure5

2)USING RSTUDIO TO GENERATE FINAL DATASETS IN XPT
FORMAT

2.1) CODE TO GENERATE RAW TS DOMAIN IN RSTUDIO

R is a programming language developed cooperatively and noncommercially; RStudio is a

commercial product - it is an integrated development environment as a tool for statistical
computing and graphics. In this section, as an extension of the original document “Creating

Simplified TS.XPT Files”, we use RStudio as one of the programming languages to create
raw TS dataset, SDTM.TS dataset and export it with xpt format.

##option 1 package##

Install.packages('SASxport')

library(SASxport)

library(Hmisc)

Library(sas7bdat)

##option 2 package##

Install.packages('haven')

library(Hmisc)

library(haven)

Figure6

After installing R and RStudio, then you can use either option1 “SASXport” package or

option2 “Haven” package. For each package, there are three steps separately as shown

below:
1: Install the package “SASXport”. This package is to provide functions to read, list contents

and write SAS export files.
2: Invoke the library function to load it into the current R session: library(SASxport),

library(Hmisc).

1

1
1

1

d

2
1
1
1

2

1
1

1

d

2
1
1
1

3

1
1

1

d

2
1
1
1

4

1
1

1

d

2
1
1
1

5

The Hmisc library contains many functions such as useful data analysis. We need to use
data frame function and label function under Hmisc library.

3: then we can use library(sas7bdat) to read SAS datasets into R.
4: the second way is to install the package “Haven”. Then we invoke library(Hmisc) and

library(haven) to read SAS datasets into R.
As Figure6 is shown above.

ts<-data.frame(STUDYID = c("001","001","001","001","001","001","001","001","001","001"),

 DOMAIN = "TS",

 TSSEQ = c(1,1,1,1,1,1,1,2,1,1),

 TSGRPID = c("","","","","","","group1,drug1","group2,drug2","drug1","drug2"),

 TSPARMCD = c("ACTSUB","ADAPT","AGEMAX","AGEMIN",

 "DCUTDESC","DCUTDTC", "DOSE","DOSE","DOSFRM", "DOSFRM"),

 TSPARM = c("Actual Number of Subjects",

 "Adaptive Design",

 "Maximum Age of Subjects",

 "Minimum Age of Subjects",

 "Data Cutoff Description",

 "Data Cutoff Date",

 "Dose per Administration",

 "Dose per Administration",

 "Dose Form",

 "Dose Form"),

 TSVAL = c("10","N","P65Y","P18Y",

 "DATABASE LOCK",

 strftime(as.Date("2020-11-26",format="%Y-%m-%d")),

 "400","15",

 "TABLET","CAPSULES"),

 TSVALNF = c(""),

 TSVALCD = c("","C49487","","","","","","","C42998","C42998"),

 TSVCDREF = c("","CDISC","ISO 8601","ISO 8601","","","","","ISO 8601","ISO 8601"),

 TSVCDVER = c("",strftime(as.Date("2019-12-20",format="%Y-%m-%d")),"","","",

 "","","","",""),stringsAsFactors = FALSE)

View(ts)

Figure7
Figure7 shows how to create Trial Summary dataset using data.frame function in RStudio.

We use data.frame function to collect variables which share many of the properties of lists,
then we use a series of c vectors to store values. As we mentioned above, we assume

readers have a rudimental knowledge of using RStudio, therefore we won’t explain the code

in detail.

Figure8

Figure8 is the result code from figure7.

6

Library(sas7bdat)

ts<-read.sas7bdat("E:\\users\\tiany\\ts2.sas7bdat", NULL)

##another way##

Library(haven)

ts<-read_sas("E:\\users\\tiany\\ts2.sas7bdat", NULL)

View(ts)

Figure9

Besides creating the Trial Summary dataset using data.frame funcition in RStudio, there are
two other methods of importing SAS datasets into R directly.

1: if we invoke “SASxport” package, then we should use read.sas7bdat function to import
SAS datasets into R.

2: If we invoke “Haven” package, then we should use read_sas function to read SAS
datasets into R;

Notice, the “haven” package can read both uncompressed and compressed SAS datasets,

however, “sas7bdat” package can only read uncompressed SAS datasets.

 Finally, we use View function to look at the whole Trial Summary dataset in RStudio.

Figure10

Figure10 is the result code from Figure9, in addition:

Figure 8 and figure10 are outputs using data.frame function and read.sas7bdat/ read_sas
function in RStudio are identical.
label(ts) <- 'Trial Summary'

label(ts$STUDYID)<-'Study Identifier'

label(ts$DOMAIN)<-'Domain Abbreviation'

label(ts$TSSEQ)<-'Sequence Number'

label(ts$TSGRPID)<-'Group ID'

label(ts$TSPARMCD)<-'Trial Summary Parameter Short Name'

label(ts$TSPARM)<-'Trial Summary Parameter'

label(ts$TSVAL)<-'Parameter Value'

label(ts$TSVALNF)<-'Parameter Null Flavor'

label(ts$TSVALCD)<-'Parameter Value Code'

label(ts$TSVCDREF)<-'Name of the Reference Terminology'

label(ts$TSVCDVER)<-'Version of the Reference Terminology

Figure11
Figure11 shows of using label function to assign labels for each variable.

1

1
1

1

d

2
1
1
1

2

1
1

1

d

2
1
1
1

7

2.2) EXPORT TS.R FILE WITH .XPT FORMAT

write.xport(ts,file="E:/users/tiany/ts_R.xpt")

Figure12

Finally, we use write.xport function to export TS file with xpt format. Figure12 is shown as
above.

Figure 13
Figure13 is the ts.xpt file created by RStudio.

2.3) A FAST WAY TO CREATE ALL XPT FILES IN A DIRECTORY

WITH RSTUDIO

##import all files##

Library(haven)

setwd("E:\\Users\\Tiany")

ldf <- list()

listsas <- dir(pattern = "*.sas7bdat")

for (k in 1:length(listsas)){

 ldf[[k]] <- read_sas(listsas[k])

 m<-substr(listsas[[k]],1,2)

 path<-paste("E:\\Users\\Tiany\\sas\\",m,"_new.xpt",sep="")

 write_xpt(ldf[[k]],path)

}

1: create a list

2: create the list of all the sas7bdat files in the directory
3: using for loop function to import all sas7bdat files from the SAS library to RStudio.

Figure15
Figure15 shows the result of #3 in figure14.

4: concatenate the string and create the path where store all .xpt files

Figure14

1

1
1

1

d

2
1
1
1

2

1
1

1

d

2
1
1
1

3

1
1

1

d

2
1
1
1

4

1
1

1

d

2
1
1
1

5

1
1

1

d

2
1
1
1

8

Figure16
Figure16 shows the result of #4 in figure14

5: export all xpt files with write_xpt function.

Figure17
Figure17 is the result of code from #5 in figure15.

3) USING PYTHON TO GENERATE FINAL DATASETS IN XPT

FORMAT

3.1) CODE TO GENERATE RAW TS DOMAIN IN PYTHON

Python is an interpreted, object-oriented, high-level programming language. In the
pharmaceutical industry, there is a growing acceptance towards using Python to deal with

data and to deliver programming outputs efficiently and effectively.

After installing python, open the CMD.exe command line interface, set the directory where

python is installed and type in pip install xport, as shown on below Figure18.

Figure18

Open the IDLE application, which is an integrated development environment for Python,

then start to create a new file.

Figure19

Figure19, we import two packages, “XPORT” and “PANDAS”.

1: “XPORT” is a module for providing load function for reading data from a SAS file;

>>> import xport

>>> import pandas as pd

1

1
1

1

d

2
1
1
1

2

1
1

1

d

2
1
1
1

9

2: “PANDAS” is a standard for data analysis and management, it offers an easy way to

import data, modulate variables, etc.

The following process shows how to import statement “pandas” with “as” to define a short

name “pd”.

>>> ts_frame=

 pd.DataFrame(

 {"STUDYID":

["001","001","001","001","001","001","001","001","001","001"],

 "DOMAIN": ["TS","TS","TS","TS","TS","TS","TS","TS","TS","TS"],

 "TSSEQ" : [1,1,1,1,1,1,1,2,1,1],

 "TSGRPID":

["","","","","","","group1,drug1","group2,drug2","drug1","drug2"],

 "TSPARMCD" :["ACTSUB","ADAPT","AGEMAX","AGEMIN","DCUTDESC",

 "DCUTDTC", "DOSE","DOSE","DOSFRM", "DOSFRM"],

 "TSPARM" : ["Actual Number of Subjects",

 "Adaptive Design",

 "Maximum Age of Subjects","Minimum Age of Subject,

 "Data Cutoff Description","Data Cutoff Date",

 "Dose per Administration",

 "Dose per Administration",

 "Dose Form",

 "Dose Form"],

 "TSVAL" : ["10","N","P65Y","P18Y","DATABASE LOCK",

 "2020-11-26","400" ,"15","TABLET","CAPSULES"],

 "TSVALNF" :["","","","","","","","","",""],

 "TSVALCD" :["","C49487","","","","","","","C42998","C42998"],

 "TSVCDREF" :["","CDISC","ISO 8601","ISO 8601","","","","","ISO 8601","ISO

8601"],

 "TSVCDVER" :["","2019-12-20","","","",

 "","","","",""],

 }

)

>>> pd.set_option("display.max_columns", None)

>>> pd.set_option("display.max_rows",None)

>>> ts_frame.head()
Figure20
1: Showing how to use the “dataframe” function of “PANDAS” to create data frame columns

and rows.

2: In order to show all columns and rows of ts_frame data, we use set_option function to

display all columns and rows;

3: finally, use head function to show the TS data in Python.

Figure21

Figure21 is the output of code from Figure20 in Python. It is the same result with Figure2,

the one created by SAS , and Figure10, the one created by RStudio.

1

1
1

1

d

2
1
1
1

2

1
1

1

d

2
1
1
1

3

1
1

1

d

2
1
1
1

10

3.2) EXPORT TS.PY FILE WITH .XPT FORMAT

Figure22
In figure22, We use (with open) function to export ts_frame.py with ts_python.xpt format

and store it to the location “E:/users/tiany/python file.

Figure 23
The result shows on figure23.

4)REVIEW AND COMPARE GENERATED SIMPLIFIED TS.XPT FILE

IN SAS UNIVERSAL VIEWER

The SAS Universal Viewer is a replacement for the SAS System Viewer, we use SAS

Universal Viewer to open the ts.xpt file that we created.

Figure24

Figure24 is the view of ts.xpt file created by SAS.

Figure25

Figure25 is the view of ts.xpt file created by RStudio

>>> with open("E:/users/tiany/python file/ts_python.xpt","wb") as

f:xport.from_columns(ts_frame,f)

11

Figure26
Figure26 is the view of ts.xpt file created by Python.

While SAS, R and Python create ts.xpt file, we want to compare among them. Firstly, when

we look at ts.xpt file generated by SAS, the length of variables is corresponding with the
standard variables’ length in SDTM specification document. SAS allows us to change the

variables’ length. However, in both R and Python, the variables’ length depends on the

length of elements in a vector. Secondly, when we look at the “label” column, both SAS and
R can assign variables’ labels, however, it does not work in Python because the Python

Xport Module does not have advanced properties capabilities such as variable labels cannot
be assigned. In conclusion, SAS and R include more advanced capabilities to edit .xpt files.

REFRENCE

CREATING SIMPLIFIED TS.XPT FILES

https://www.fda.gov/media/132457/download

Study Data Technical Conformance Guide_v4.5

https://www.fda.gov/media/136460/download

Technical Rejection Criteria for Study Data
https://www.fda.gov/media/100743/download

ACKNOWLEDGMENTS

Thanks to the people at SAS Tech Support

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Todd Case: Todd_Case@vrtx.com
YuTing Tian: YuTing_Tian@vrtx.com

https://www.fda.gov/media/132457/download
https://www.fda.gov/media/136460/download
https://www.fda.gov/media/100743/download
mailto:Todd_Case@vrtx.com

