

1

Learning from Experience Requires a Collaborative Team Effort:
an Integrated-Software Solution for Automated and Reliable

Distributed Reporting System.

Noga Meiry Lewin, The Emmes Company, Aimee Wahle, The Emmes Company;
Amarnath Vijayarangan, Emmes Services Pvt Ltd; Abigail G. Matthews, The Emmes

Company

ABSTRACT

Ten years ago, our reporting team developed a web report system to present the status of
ongoing clinical trials for the National Drug Abuse Treatment Clinical Trials Network. Different

programmers contributed to a growing number of electronic data capture (EDC) platforms

and studies, each with its own requirements, with all reports uploading to a common website.
A common setup program standardized the programming process. Nightly one program ran

to generate all reports for all platforms and studies, followed by a summary program that
uploaded reports to the website. Any errors were investigated and corrected, and the program

reran.

As the number of active studies increased, the advantages of using one program to run

everything were outweighed by generation time and debugging, and an error in one study

prevented other studies from being updated.

With the addition of new EDC platforms, our challenge was to create a reliable, multiuser SAS

system to produce web reports for many studies on multiple EDC platforms that adhere to
the following, sometimes contradictory, requirements: reliable, standardized, flexible, and

programmatically and computationally efficient.

We developed a new system that satisfies these requirements:

(1) while studies are programmed using standard processes, they run independently on
different PCs so that failure in one does not affect others; (2) for each study, programs are

assigned for submission using a batch file-creating excel spreadsheet that drives the process
and serves all aspects of documentation; (3) each step only executes if the previous one

succeeded; (4) the batch file runs all programs separately; (5) an initialization program

checks that data was updated, and resets and updates the environment’s permanent libraries,
for the reports that follow, increasing efficiency; and (6) finally, a program checks all required

outputs, creates a consolidated PDF report upon success, uploads reports to the website
directory for posting, and sends a status email to relevant study teams. If a problem is

detected in any stage, only the culprit program is corrected and resubmitted, followed by the
web upload program. A global summary program across all studies and platforms sends an

overall status update daily to key staff.

INTRODUCTION

The National Drug Abuse Treatment Clinical Trials Network has contracted Emmes to serve

as the Data and Statistics Center (DSC) over ten years ago. Included in the scope of work is

to design and implement a daily Trial Progress Reporting System which had in its core a set
of standard reports. The trials consisted of a small number of studies that had many

common traits, and most of the reports were uniform across studies. The sponsor had a

very clear set of requirements and specifications and all studies adhered to them.

Based on this framework, our reporting team developed and implemented a web reporting

system with the following specifications:

2

• different programmers contributed their reports for studies, with all reports

uploading to a common website;

• common setup program and templates standardized the programming process and

relieved programmers from repeating common code;

• an overall report program generated all reports for all platforms and studies, and

runs nightly; and

• a summary JAVA program follows nightly that uploads the reports to the website

upon successful completion of the overall report program.

• If there was an error found with the overall report program, a senior programmer

investigates the error, corrects it, and then reruns the overall report and JAVA

programs.

The CTN portfolio of trials has evolved over time and thus the needs of the web reporting
system changed. While we started with a small number of similar studies, the number of

concurrent studies tripled, and the studies were very different from one another and
substantial customization was needed to meet the needs of each investigative team. As the

web reporting system attempted to adapt to the new paradigm, the advantages of using

one program to run everything were outweighed by the growing number of studies and

increased heterogeneity among them. The issues we encountered were as follows:

• adding a new study to the web reporting system demanded increasingly more time;

• the run time was too long;

• debugging of one long, complicated program became more cumbersome and having

to split the log further complicated debugging; and

• an error in one report in one study prevented all study reports from being updated

since they were all part of one overall report program.

Our goal was to create a reliable, multiuser, multi-platform study SAS® reporting system

that adheres to the following, sometimes contradictory, requirements:

1. Standardization: the process, data, formats and a large subset of reports should be

standardized to the maximum extent possible.

2. Flexibility: each study requires customized reports, and the contributors have
different programming skills and styles. Therefore, the web reporting system should

be as flexible as possible.

3. Programming efficiency: save programming resources by using macros for standard

reports as often as possible.

4. Independent implementation: running failure for one study should not impact other

studies.

5. Implementation efficiency: save running time and turn-around time. Programs for

each study should run quickly and if there is an issue, time to debug and posting of

the complete set of study-specific reports to the website should be minimal.

6. Independent posting: for each study, upload a complete set of reports only after all

its reports run successfully.

7. Streamlining process of adding studies: programming and testing time, as well as

completion time, should not increase as new reports and studies are added to the

system.

3

8. Documentation: there are many platforms, studies, and programs (one for each
report generally). Therefore, a reliable and user-friendly documentation system is

key, with self-documentation preferable.

9. Summary of results for entire process: because the solution is a distributed system,

a single status summary report is necessary, particularly for individuals who require

information on the status of all studies and platforms.

THE SOLUTION

1. STRUCTURE

The study data flow consists of data update, reporting and web upload. Therefore, the
reporting system will first verify that data update was successful, and only then will the

reports run. To insure the integrity of the reports, uploading reports to the website will only

occur after verifying that all reports for the study ran successfully. Thus, all reports on the

website are based on data that were updated at the same time.

For each study, three types of programs run in sequence but independently using a batch
file. Because reports are independent of each other, running them in batch prevents one

report from stopping the other reports as in the case of an include program. The three types

of programs are described below.

1. Initialization program:
• This is the key to having the best of both worlds:

• It only runs once before all programs.

• It sets up the environment, to save running time and programming
resources.

• All programs have access to the environment even though they run
independently, but they do not need to run the time-consuming setup.

• It does the following:
• Verifies that the EDC data has been updated.

• Initializes and creates permanent (on disk, as opposed to ‘work’ directory)
format catalog, and specifications datasets and additional requirements to

be available to all report programs.

• Sets these libraries to read-only.
2. Report programs: the study-specific report programs run after, using the

environment established by the initialization program. Each program creates a
separate log and only runs upon updated data and successful initialization. The

code below is an example of a standard program: it calls a setup program which
points to the common environment, and then executes a standard macro. The

report programmer just needs to change the first four lines.
/***

Program: age_00XX_prod.sas

Author: John Doe

Date:: December 2019

Description:: create age report

SAS Version:: sas9.4m4

Gemini ticket:

Input Data:: enroll, sitename, dem

OUTPUT:: &prot._age.pdf

Revision::

***/

ods listing close;

%LET PROT=00XX;

%LET PLATFORM=YYY;

%let prod_dev=_prod;/*suffix for prod or dev programs. required.*/

4

%let prod_dev_path=prod;

/*do not modify the next three lines*/

%let root=G:\xxx\TPR\yyy;

%let prot_path=&root\&prod_dev_path\&PLATFORM\&Prot;

%INCLUDE

"&prot_path\programs\&platform._setup_&PROT.&prod_dev..sas"/SOURCE2;

/*call your macro*/

 %M_age&prod_dev(PROT=&PROT)

3. Web upload program: this program runs last. It summarizes the distributed system
results and does the following:

• determines the success and completion of the reports
• collates the individual PDF reports to two different PDF consolidated reports

according to specified orders – one for standard reports and one for study-
specific reports

• uploads the individual and consolidated reports to a directory for the website

• sends a status email of success or failure with detailed information on which
report failed to the programming team.

Note that if there is a failure, a programmer follows up by checking the log of the
failed report and fixing the program. They then run this report only and re-run the

web upload program.

2. USE OF EXCEL TO CREATE THE BATCH FILE AND SERVE AS CENTRAL

DRIVER OF THE PROCESS
An Excel spreadsheet is used to create the batch file described above. This approach is
ideal for documentation and tracking purposes given the large number of programs

involved. It also facilitates the addition or removal of certain reports as a study
progresses and controls the order of reports in the consolidated PDFs. The approach

implemented in Excel is described below.

1. Programmers include their SAS programs by filling in three types of columns into
an excel spreadsheet:

a. Columns that serve as input to the batch file (Figure 1):

• Program name and path
• SAS executable path

• Batch filename and path
• Include/exclude column that specifies whether to include the program in

the batch file which determines if the program is run. This way, programs
can easily be turned off and on without removing them from the file.

• Their running order. Usually this will be 0, since the reports are not
dependent on each other. The web upload program is assigned the order of

1 to run last.

5

Figure 1. Columns in the Excel sheet that serve as input to the bat file

b. Columns that serve as input to the summary program (Figure 2):

• Output filename

• Required output for success of web upload program (filecheck_open)
• Whether it needs to be added to the consolidated reports

• Order of the reports in the consolidated reports

Figure 2. Columns that serve as input to the summary program

c. Columns that serve only for tracking purpose (Figure 3):

• Programmer name
• Which team member’s PC the program runs on and the scheduled time

• Comments

6

Figure 3. Columns that serve only for tracking purposes

2. Finally, once they click the ‘submit’ button, an imbedded Visual Basic APP macro

creates the batch file.

3. RUNNING REPORTING PROGRAMS USING THE BATCH FILE

Below is a description of how the batch file functions in the report generation process.

1. Within the batch file, call this sub to run each program. It uses the information in the

Excel spreadsheet to create the parameters (enclosed between %%):

:sub

IF EXIST "%SASLOC%\%PROGRAM%" (

 "%SASPATH%" -CONFIG "C:\Program

Files\SASHome2\x86\SASFoundation\9.4\nls\en\sasv9.cfg" -sysin

"%SASLOC%\%PROGRAM%" -print "%LSTLOC%\%PROGRAM%.lst" -log

"%LOGLOC%\%PROGRAM%.log" -ICON %MEM%

) ELSE (SET ERROR=1

 ECHO file %SASLOC%\%PROGRAM% does not exist

)

exit /b

2. Run the initialization program using this code in the batch file:

7

(

SET PROGRAM=%platform%_INITIALIZE_%SUFFIX%

REM INITIALIZE ENVIRONMENT. IF NOT SUCCESSFUL DO NOT CONTINUE (CHECK IF

INIT_Y WAS CREATED)

REM **

attrib -r %root%\initdata*.* /s

del "%INIT_Y%"

call :sub

if NOT exist "%INIT_Y%" GOTO EXIT

3. Next, call the report-generating programs. The program names are extracted from

the information in the Excel spreadsheet by the Visual Basic App.

REM **

set PROGRAM=RANDOMIZATION_plots_00xxA_prod.sas

REM **

call :sub

REM **

set PROGRAM=title_page_00xxA_prod.sas

REM **

call :sub

4. Finally, call the web upload program:

REM **

set PROGRAM=web_upload_00xx_prod.sas

REM **

call :sub

4. USE DAILY STATUS EMAILS FOR MONITORING

Two types of emails provide status reports to staff:

1. Daily study status email - Figure 4 is an example of a success email, and Figure 5 is

an example of failure intended for programmers. They also provide information on
reports found in the directory that were not required. You can see in the example

how this helps with the debugging – the required report name should have been the

name of the extra file.

8

Figure 4. Study Status Report Email - Success

Figure 5. Study Status Report Email - Failure

2. Overall status email - an overview program scans all directories for platforms and
studies and sends a status email to all DSC staff including management. Figure 6

and Figure 7 depict examples of the success and failure overall status emails. In

Figure 7 for study “00XX” – a failure early in the data update stops reporting,
reflecting the principle that each step executes only if the previous step completed

successfully. (TED and CUP are data update processes, PRIV-UNPRIV are programs

that manipulate the updated data, TPR – web reports process).

9

Figure 6. Overall Status Report Email – Success

Figure 7. Overall Status Report Email – Failure in data update and reporting

5. TEAMWORK IS VITAL

For this system to work, it requires collaboration among different players with
different skill sets, namely data managers, statisticians and SAS programmers with

different levels of experience, and a Visual Basic programmer. Our work environment

is supported by the following practices:

1. regular meetings to discuss updates and questions or issues;

2. ongoing training on how to take advantage of what the system offers (e.g.,

macro variables, formats);

3. clear roles and backup assignments to allow for continuous coverage;

4. ongoing documentation on how to use the system; and

5. open door approach: no question should go unanswered.

10

6. PERFORMANCE INDICATORS

Figure 8 is a top overview of the process. We were able to save time on each step:

Figure 8: Top View of the Reporting System

The time it takes to add a study to the old system grew from ten hours when we seldom
added studies ten years ago, to twenty hours, and just prior to revamping the web reporting

process, it had grown to forty hours. After implementing the process described here, it
takes four hours to add a new study to this system. It had taken an hour and a half to run

and upload a complete set of all studies to the web in the previous system, while now, in

many cases, it takes a full report set five to ten minutes to run and upload to the web.

Add a study

Run reports

Error?

Debug

Upload to
website

no

Add a platform

yes

11

CONCLUSION

The development of our web reporting system is a process of continuous evaluation. New
methods build on the ones that exist and had proven themselves in order to preclude “re-

inventing the wheel” and conserve resources. For example, while writing the paper we
learned that we should develop performance measuring tools for accurate monitoring.

Participation to the internal Emmes SAS User Group keeps us informed of methods used by

other groups supporting different clients within the company, and some of which have been

adopted and incorporated into the new process.

The current system has been functioning in production for six months, with another nine
months of revamping prior to implementation. Development of programs is not hindered by

the growing number of studies and various, complex reporting requirements.
Standardization simplifies the programming and allows for easier central monitoring and

aggregation.

ACKNOWLEDGMENTS

We would like to thank our colleagues at the Emmes Company for their feedback and
encouragement, and especially the web report team of the NIDA CTN Data and Statistics

Center. This work has been partially funded by the National Institute on Drug Abuse

(contract 75N95019D00013).

RECOMMENDED READING

• Base SAS® Procedures Guide

• Carpenter's Complete Guide to the SAS REPORT Procedure (SAS Press) Pap/Cdr Edition,

by Art Carpenter

• Carpenter's Complete Guide to the SAS Macro Language, Third Edition 3rd Edition, by

Art Carpenter

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Noga Meiry Lewin

The Emmes Company

nlewin@emmes.com

Aimee Wahle

The Emmes Company
awahle@emmes.com

Amarnath Vijayarangan

Emmes Services Pvt Ltd

avijayarangan@emmes.com

Abigail G. Matthews

The Emmes Company

amatthews@emmes.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies.

https://www.amazon.com/Art-Carpenter/e/B001JP3PV6/ref=dp_byline_cont_book_1
mailto:nlewin@emmes.com
mailto:awahle@emmes.com
mailto:avijayarangan@emmes.com
mailto:amatthews@emmes.com

