" a presentation
P Kirk Paul Lafler

Data-driven
Programming Techniques

Using SAS®

Presenter Biography

Kirk Paul Lafler is an entrepreneur, consultant and programmer, and has used SAS
software since 1979. Kirk currently works as a SAS consultant, application
developer, programmer, data analyst and educator; a lecturer and adjunct
professor at San Diego State University; an advisor and adjunct professor at the
University of California San Diego Extension; and an educator of dozens of SAS,
SQL, R and Python courses, seminars, workshops, and webinars to thousands of
users around the world.

As the author of several books including PROC SQL: Beyond the Basics Using SAS,
Third Edition (SAS Press. 2019) along with hundreds of papers and articles on a
variety of SAS topics; Kirk has been selected as an Invited speaker, educator,
keynote and section leader at SAS conferences and meetings worldwide; and is
the recipient of 25 “Best” contributed paper, hands-on workshop (HOW), and
poster awards.

Copyright © 2018 — 2021 by Kirk Paul Lafler
All rights reserved.

SAS and all other SAS Institute Inc. product or service names are
registered trademarks or trademarks of SAS Institute Inc. in the USA
and other countries.

All other company and product names mentioned are used for
identification purposes only and may be trademarks of their respective

owners.

—
- -
O
o
S
o
O
O

v BN 2 B _ _

Popular
Programming |
Paradigms

Data-driven
Programming ‘
Techniques
Using SAS
Metadata

Data-driven
Programming 1
Technigques
Using

- CALL EXECUTE,
User-defined
Formats, and

PROC SOL/
Macros

Make
Acura
Acura
Acura
Acura
Acura
Acura
Acura
Audi
Audi
Audi
Audi
Audi
Audi
Audi
Audi
Audi
Audi
Audi
Audi
Audi
Audi

Mode

MDX

REX Type 5 2dr

TSX 4dr

TL 4dr

3.5 RL 4dr

3.5 RL wiNavigation 4dr
NSX coupe 2drmanual 5
Ad BT 4dr

A41.8T convertible 2dr
A4 2.0 4dr

A4 3.0 Quattro 4dr manusl
A4 3.0 Quattro 4dr auto
AG 2.0 4dr

AS 3.0 Quattro 4dr

A4 3.0 convertible 2dr
A4 3.0 Quattro convertible 2dr
AG 2.7 Turbo Quattro 4dr
AG 4.2 Quattro 4dr

AB L Quattro 4dr

54 Quattro 4dr

RS G 4dr

Type

suv

Sedan
Sedan
Sedan
Sedan
Sedan
Spors
Sedan
Sedan
Sedan
Sedan
Sedan
Sedan
Sedan
Sedan
Sedan
Sedan
Sedan
Sedan
Sedan

Spors

Origin
Asia
Asia
Azia
Asia
Azig
Asig
Asia
Europe
Europe
Europe
Europe
Europe
Europe
Europe
Europe
Europe
Europe
Europe
Europe
Europe

Europe

DriveTrain

A

I
Front
Front
Front
Front
Front
Rear
Front
Front
Front
All
All
Front
All
Front
All
All
All
All
All

Front

MSRP
336,945
523,820
326,990
533,185
543 755
346,100
58D 785
525040
335840
531,840
333,430
334480
536,640
330,640
542 400
544240
342 840
540,600
568,190
348,040
584,600

Invoice
§33.337
§21,781
524,647
§30.288
538,014
541,100
570,878
§23,508
§32,508
528,848
§30,385
§31,388
§33,128
§35,882
§38.325
540,075
§38.840
544,035
564,740
543,556
578,417

Engine Size
3.5
2.0
24
32
3.5
3.5
3.2
1.8
1.8
3.0
3.0
3.0
3.0
3.0
3.0
3.0
27
42
42
42
42

Cylinders
G

.

E N = R =

(=== - B R = R R = T < R = = -

[==]

Horsepower

2G5
200
200
270
225

428 Observations

15 Variables

Table Exampies — SASHELP.CARS

MPG_City
17
24
23
20
18
18
17
23
23
20
17
18
20
18
20
18

MPG_Highway
23
M
28
28
24
24
24
e}
30
28
26
25
27
25
27
25
25
24
24
20
22

Weight

4451
2778
3230
3575
3880
3883
3163
3252
3638
3482
3583
3627
3581
3BEBO
3814
4013
3836
4024
4309
3825
4024

Wheelbase
106
101
105
108
115
115
100
104
105
104
104
104
108
108
105
105
108
108
121
104
108

Programming languages are often classified by thh
basic features into one of the programming

paradigms. Three popular programming paradigms

are in use today:

v" Procedural programming — represented by blocks of code
being organized logically by function, such as data input,
data processing or manipulation, and data / results;

v' Object-oriented programming — represented by a
combination of functionality (behaviors) and data
(attributes) hidden inside an object which can then be
arranged into classes;

v' Data-driven programming — represented by data
controlling the flow of execution in a program.

7

Unlike procedural programming languages and \
object-oriented programming, data-driven

programming involves decisions and processes that
are controlled by data.

. /

Why Design Data-driven Programs?

= Data-driven programs can adapt to different d%
sets and structures;

= Data is used to define the control flow of a
program;

= Data-driven programs can write other programs;

= Avoid “hard-coding” approaches which are not
only harder to maintain, but increase the cost to
support the code over its operational life;

= Reduce programming and maintenance efforts;

= Data-driven programs can be designed for
reusability which translates into cost savings.

9

Four data-driven programming approaches will bm
presented:

v’ Using SAS Metadata Dictionary tables and SASHELP views;
v’ Using the CALL EXECUTE routine;

v’ Using User-defined informats and formats;

v Using PROC SQL SELECT and the Macro language.

. /

10

Order of PROC SQL SELECT Clauses

The PROC SQL SELECT statement’s purpose is to \

retrieve (or read) data from one, or more,
underlying tables (or views). Although the SELECT
statement supports multiple clauses, only one
clause is required — the FROM clause. All remaining
clauses are optional and only used as needed.

. /

11

Order of PROC SQL SELECT Clauses

To help remember the specific order of the SELEC'N
statement’s clauses, recite:

“SQL is fun when geeks help others”

The first letter in each word corresponds to the
SELECT statement’s clause.

PROC SQL ;
SELECT
INTO
FROM . . .
WHERE < OR > ON
GROUP BY

HAVING : : :
ORDER BY . . .3
QUIT ;

12

SELECT Clause Execution Order

Execution Order

Description

The first clause executed in a query is the FROM clause. It’s a required
clause with the purpose of determining the working set of data that is
being queried (i.e., variable names, variable type, number of rows, and
other important information).

T The INTO clause is used to create one or more macro variables where the
values can be used to manipulate data.

The ON clause is used to subset rows of data based on the condition(s)
specified, and rows that aren’t satisfied by the condition(s) are discarded.
The WHERE clause is used to subset rows of data based on the condition(s)
specified, and rows that aren’t satisfied by the condition(s) are discarded.
The GROUP BY clause takes the rows that were subset with the WHERE
clause and grouped based on common values in the column specified in
the GROUP BY clause.

The HAVING clause applies the condition(s) to the grouped rows specified

5. GROUP BY

in the GROUP BY clause, and any grouped rows that aren’t satisfied by the
condition(s) are discarded.
7. SELECT Expressions specified in the SELECT statement are processed.

The ORDER BY clause sorts the rows of data in either ascending (default) or
8. ORDER BY

descending order.

13

= Lafler (2017) offers a variety of approaches to \
determine the number of variable levels in any

SAS data set;

= Eliminates the need to construct counting
routines in programs;

= Uses PROC SQL or PROC FREQ to produce results.

. /

14

Number of Variable Levels — PROC FREQ

Code: \
//i::;le “"Display NLevels for Origin with PROC FREQ" ;

proc freq data=SASHELP.CARS NLEVELS ;
tables Origin / nopct nocum ;
run ;

Results:

Display MLevels for Origin with PROC FREGQ
The FREG Procadure

Humber of Variable Levels

Varizble Levels
Qrigin 3
COrigin Frequency
Asia 153
Eurcpe 123
U5A 147

. /

15

Code:
proc sql ;
title "Display NLevels for Origin with PROC SQL" ;

select COUNT(DISTINCT Origin) "Unique Levels"
from SASHELP.CARS ;

)

title "Display NLevels and Counts for Origin with PROC SQL";
select Origin, COUNT(Origin) AS CTR_Origin
from SASHELP.CARS
group by Origin ;
quit ;

Results:

Display NLevels for Origin with PROC SQL

Unigue Levels
2

Display NLevels and Counts for Qrigin with PROC SGQL

Crigin | CTR_Origin
Asia 158
Europs 123
LsA 47

16

Data-driven
Programming

Techniques Using

SAS Metadata Sources

K Metadata is everywhere; \

_

Metadata is often referred to as data about data;

Others define metadata as information about the
design and specification of data structures;

Metadata does not represent the physical data
resource, but the information that describes the
resource;

Metadata provides the details (i.e., what, why,
when, and where) about the various resources in

a structured way. /

18

Why Use Metadata?

Metadata provides easier, faster and more reliable
ways to find or locate information about a digital or
data asset. The reasons for using metadata are:

v Productivity often improves as search access speeds increase;

v User acceptance levels often improve as the reliability and
relevancy of results improve;

v Enhanced filtering capabilities by using meaningful metadata
variables to provide greater flexibility;

v Improved organization of data resources for searching, sorting
and summarizing;

v' Automating a process for code and data reusability, code and
data sharing, and improved productivity by programmers. /

19

Traditional Metadata Methods

@tadata has traditionally been produced using:\

v' PROC CONTENTS — Produces a directory of the SAS
library and the details associated with each member
type stored in a SAS library.

v' PROC DATASETS — Raithel (2016) describes PROC
DATASETS as the Swiss Army Knife of Data
Management procedures. Like PROC CONTENTS, the
PROC DATASETS CONTENTS statement produces a
directory of the SAS library and the details associated
with each member type (e.g., DATA, VIEW, INDEX)
stored in a SAS library.

. /

20

Dictionary Tables and SASHELP Views

K SAS collects information about a session; \

= The session information is captured as read-only
content;

= Dictionary tables are accessible using PROC SQL.:
v’ Specify table in FROM clause of a SELECT

v DICTIONARY libref is automatically assigned

PROC SQL ;
SELECT *

FROM DICTIONARY.table-name ;
QUIT ;

= SASHELP views can be accessed in a DATA step or
with any of your favorite PROCs.

21

Viewing Dictionary Tables/SASHELP Views

= # of DICTIONARY Tables and SASHELP Views: \
v’ 22in SAS 9.1.x;

v’ 29in SAS 9.2;
v’ 30 in SAS 9.3;
v 32in SAS 9.4 (39 Views in SAS 9.4).

. /

22

A Sampling of Dictionary Tables

CATALOGS Allocated SAS catalog librefs and member names.
CHECK_CONSTRAINTS User-assigned CHECK constraints.

COLUMNS Column names and attribute information.
DICTIONARIES Information about all known Dictionary tables.
EXTFILES FILEREF, pathname, and engine for external files.
FORMATS Information about defined formats and informats.
INDEXES Data set index information for each libref.
LIBNAMES Allocated librefs and paths.

MACROS Macro variables, their scope, and value.

OPTIONS SAS system options and settings of your environment.
STYLES Librefs, template names, style names, and notes.
TABLES Allocated SAS data set librefs and member names.

VIEWS Librefs and dictionary view names.

23

A Sampling of SASHELP Views
ViewName _|Description

VCATLG Allocated SAS catalog librefs and member names.
VCHKCON User- and system-assigned CHECK constraints.
VCOLUMN Column names and attribute information.
VDCTNRY Information about all known Dictionary tables.
VEXTFL FILEREF, pathname, and engine for external files.
VFORMAT Information about defined formats and informats.
VINDEX Data set index information for each libref.
VLIBNAM Allocated librefs and paths.

VMACRO Macro variables, their scope, and value.

VOPTION SAS system options and settings of your environment.
VSTYLE Librefs, template names, style names, and notes.
VTABLE Allocated SAS data set librefs and member names.

VVIEW Librefs and dictionary view names.

24

Dictionary.TABLES or SASHELPUTABLE

Dictionary.TABLES Table

|
= SASHELP.VTABLE View
= 41 Variables (or Columns)
Ubrary | Member | Member | DBMS | pocoi oo |DataSet | puicuied | DateModfed | Prymed | Obsevation
Name Name Type | Member Type Type Oheervalions Length
SASHELP CARS DATA 2004 CarData DATA 07NOV18:20:48:08 07NOV18:20:48:08 428 152
Type of Numberof | Numberof | Longest
Number of | Password | Compression E tion Number of Size of File Percent |Reuse Bufsize | Deleted Logical variable Longest
Variables |Protection| Routine Pages Compression | Space Py e [, ey [y— label
15 — NO NO 2 196608 0 no 65536 0 428 1 15
Maximum .| Data Set Name of . Data
number of Gener::n Attributes E‘?Ed R Ds:r?ﬂ i Collating S_lc_:rtlng S?n-l't:jﬁ Requirements Vector Representation
generations | ™M e epre 0N Sequence | 'YP€ By Name
0 . ON NATIVE S ANSI 181F1011222200333301023204330123 WINDOWS_64
Audit | Audit | Audit | Auwdit | Audit | Number of | Number of
Data Encoding Trail | Before | Admin | Emor | Data | Character | Numeric
Active?| Image?| Image?|Image?|Image?| Vanables | Vanables
no no no no 5 10

us-ascii ASCII (ANSI) no

Dictionary.COLUMNS or SASHELPVCOLUMN

= Dictionary.COLUMNS Table

°
» SASHELPVCOLUMN View
°
= 18 Variables (or Columns)
; Member | Member Column | Column | Column Columnl Column | Column Column | - Order in Extende -
Library Name ‘ e Type Column Name Type | Length | Position qu[natfr in | Column Label Format Informat Index Key Type Not NULL? | Precision | Scale | Transcoded ‘
= Type | Sequence
SASHELP CARS DATA Make char 13 80 1 1 char no 0 . yes
SASHELP CARS DATA Model char 40 93 2 0 char no D . yes
SASHELP CARS DATA Type char 8 133 3 2 char no 0 . yes
SASHELP CARS DATA Origin char 6 141 4 0 char no 0 . yes
SASHELP CARS DATA DriveTrain char 5 147 5 0 char no 0 . yes
SASHELP CARS DATA MSRP num 8 0 6 DOLLARS. 0 num no 0 . yes
SASHELP CARS DATA Invoice num 8 8 7 DOLLARS. 0 num no 0 . yes
SASHELP CARS DATA EngineSize num 8 16 8 Engine Size (L) 0 num no i . yes
SASHELP CARS DATA Cylinders UM 8 24 9 0 num no 0 . yes
SASHELP CARS DATA Horsepower num 8 32 10 0 num no D . yes
SASHELP CARS DATA MPG_City num 8 40 11 MPG (City) 0 num no D . yes
SASHELP CARS DATA MPG_Highway num 8 48 12 MPG (Highway) 0 num no] . yes
SASHELP CARS DATA Weight Aum] 56 13 Weight (LBS) 0 num no 0 . yes
SASHELP CARS DATA Wheelbase num 8 64 14 Wheelbase (IN) 0 num no 0 . yes
SASHELP CARS DATA Length num 8 72 15 Length (IN) 0 num no D . yes
SASHELP CLASS DATA Name char 8 24 1 0 char no 0 . yes
SASHELP CLASS DATA Sex char 1 32 2 0 char no 0 . yes
SASHELP CLASS DATA Age num] 0 3 0 num no 0 . yes
SASHELP CLASS DATA Height num 8 8 < 0 num no 0 . yes
SASHELP CLASS DATA Weight num 8 16 5 0 num no D . yes

26

Dictionary.OPTIONS or SASHELPVOPTION

= Dictionary.OPTIONS Table

- LP.VOPT i
SASHELP.VOPTION View
= 8 Variables (or Columns)
Offset into
Option option Option Option Option

Option Name type value Option Setting Option Description Location Set Group

ASYNCHIO Boolean 0 NOASYNCHIO Enables asynchronous input and output. Portable startup SASFILES

CATCACHE num 00 Specifies the number of SAS catalogs to keep open in cache memory Portable startup SASFILES

CBUFNO num 00 Specifies the number of extra page buffers to allocate for each open SAS catalog Portable anytime SASFILES

CMPLIB char 0 Specifies one or more SAS data sets that contain compiler subroutines to include during Portable anytime SASFILES
compilation.

DATASTMTCHK char 0 COREKEYWORDS Specifies which SAS statement keywords are prohibited from being specified as a one-level Portable anytime SASFILES
DATA step name to protect against overwriting an input data set.

DKRICOND char 0 ERROR Specifies the error level to report when a variable is missing from an input data set during the | Portable anytime SASFILES
processing of a DROP=, KEEP=, or RENAME= data set option.

DKROCOND char 0 WARN Specifies the error level to report when a variable is missing from an output data set during the | Portable anytime SASFILES
processing of a DROP=, KEEP=, or RENAME-= data set option

DLCREATEDIR Boolean 0 NODLCREATEDIR Creates a directory for the SAS library that is named in a LIBNAME statement if the directory | Portable anytime SASFILES
does not already exist.

DLDMGACTION char 0 REPAIR Specifies the type of action to take when a SAS data set or a SAS catalog is detected as Portable anytime SASFILES
damaged.

ENGINE char 0 V9 Specifies the default access method for SAS libraries Portable startup SASFILES

EXTENDEDDATATYPES char 0 NO Specifies whether SAS processes all supported data types or converts nontraditional SAS Portable anytime SASFILES
data types to CHAR and DOUBLE

EXTENDOBSCOUNTER | char 0 YES Specifies whether to extend the maximum number of observations in a new SAS data file. Portable anytime SASFILES

FILESYNC char 0 HOST Specifies when operating system buffers that contain contents of permanent SAS files are Portable startup SASFILES
written to disk.

FIRSTOBS num 01 Specifies the observation number or external file record that SAS processes first. Portable anytime SASFILES

IBUFNO num 00 Specifies the number of extra buffers to be allocated for navigating an index file Portable anytime SASFILES

IBUFSIZE num 00 Specifies the buffer page size for an index file. Portable anytime SASFILES

27

Rows in All Tables — PROC SQL

Code:
PROC SQL ;
SELECT LIBNAME, MEMNAME, NOBS
FROM DICTIONARY.TABLES
WHERE LIBNAME = "SASHELP" ;
QUIT ;

Library Mame | Member Hame Number of Physical Observations

Resu Its: SASHELP AACOMP 2020
SASHELP AARFM]
SASHELP ADSMEG 422
SASHELP AFMEG 100D
SASHELP AR 144
SASHELP APFLIANC 158
SASHELP ASSCMGR 402
SASHELP BASEBALL 32
SASHELP BEI 24305
SASHELP BIRTHWGT pLECE L]
SASHELP BMIMEM 3334
SASHELP BMT 137
SASHELP BURROWS 24501
SASHELP LY 11
SAEHELF BWEIGHT S

SASHELP CARS 428

Rows in All Tables — PROC PRINT

Code:

PROC PRINT DATA=SASHELP.VTABLE NOOBS
VAR LIBNAME MEMNAME NOBS ;

WHERE LIBNAME = "SASHELP" ;

RUN ;

Res u ItS : Library Mame | Member Hame Number of Physical Observations
SASHELP ARCONP 2020
SASHELP ABRFM 120
SASHELP ADSMEG 428
SASHELP AFMSG 1080
SASHELP AlR 144
SASHELP APPLIAMC 158
SASHELP ASSCMGR 402
SASHELP BASEBALL 322
SASHELP BEI 24205
SASHELP BIRTHWGT OO0
SASHELP BMIMEM 3254
SASHELP BMT 137
SASHELP BURROWS 24581
SASHELP BuY 11
SABHELP BWEIGHT]
SABHELP CARE 428

)

29

Number of Gharacter/Numeric Variahles

KLafler (2013) offers a way to determine the
number of character and numeric variables for

any SAS data set;

= Reduce the time to review pages of PROC
CONTENTS output;

= Use the DATA step or your favorite PROC;
= Access the contents of the Dictionary.TABLES and
SASHELP.VTABLE view;

= Select columns: LIBNAME, MEMNAME,
MEMTYPE, NUM_CHARACTER, NUM_NUMERIC,

\and NVAR.

30

Number of Gharacter/Numeric Variahles

Code: ‘\\\\
TITLE # Character vs Numeric Variables All Datasets ;

PROC SQL ;

SELECT LIBNAME,MEMNAME,NUM_CHARACTER,NUM_NUMERIC,NVAR
FROM DICTIONARY.TABLES
WHERE MEMTYPE = "DATA" ;

QUIT ;

Results:

Character vs Numeric Variables All Datasets

MMMMMMMMMMM
FFFFFFFFFFF
SSSSSSSSSSSS
SSSSSSSSSSS

FFFFFFFFFFFFF
SSSSSSSSSSSSS
EEEEEEEEEEEE
EEEEEEEEE

SASHELF BIRTHWGT

31

Variable Keeper - PROG S(L

KLafler (2013) describes a macro that creates a list

of variables for processing in a SELECT query;
Triggered by calling a macro to reduce coding
requirements;

Assigns the directory and SAS table name that
the user specified when calling macro;

Reads the Dictionary.COLUMNS table and
creates a value-list macro variable containing the
names of all variables;

Produces a subset based on what the user enters

\when calling the macro.

32

Variable Keeper - PROG S(L

@ez \
proc sql noprint ;

select name,
count(name)
into :mvariables separated by ', ',
:mvariablesnum
from dictionary.columns
where libname="SASHELP"
and upcase(memname)="CARS" ;
quit ;
%Sput &mvariables &mvariablesnum ;

SAS Log Results:

Make, Model, Type, Origin, DriveTrain, MSRP, Invoice,

EngineSize, Cylinders, Horsepower, MPG_City,
MPG_Highway, Weight, Wheelbase, Length 15

33

Gross-reference Listing

Lafler (2013 and 2019) describes an approach
that produces a cross-reference listing of all data
sets (or tables) that contain a specific variable;

Eliminates the time to review pages of PROC
CONTENTS or PROC DATASETS output;

Uses PROC SQL, PROC PRINT or your favorite
PROCG;

Accesses the contents of Dictionary.COLUMNS
table or the SASHELP.VCOLUMN view;

Subsets columns: LIBNAME, MEMNAME, NAME,

\TYPE and LENGTH. /

34

Cross-reference Listing — PROG SOL

Code:
PROC SQL ;
SELECT LIBNAME, MEMNAME, NAME, TYPE, LENGTH
FROM DICTIONARY.COLUMNS
WHERE LIBNAME="SASHELP"
AND UPCASE(NAME)="TYPE" ;
QUIT ;

Library Name | Member Name Column Name Column Type Column Length

Res u Its: SASHELP CARS Type char 8

SASHELP COLUMMN TYPE char 1
SASHELP FEEDER type char 26
SASHELP GCTYPE type char 14
SASHELP MANAGE TYPE char 25
SASHELP QUAKES Type char 10
SASHELP REVHUB2 TYPE char 16
SASHELP SLKWXL Type char 32
SASHELP SPRINGS Type char 9
SASHELP SVRTDIST Type char 32
SASHELP TABLE TYPE char 8
SASHELP VCOLUMN type char 4
SASHELP VDCTNRY type char 4
SASHELP VPROMPT type char 4
SASHELP VTITLE type char 1

SASHELP _CMPIDX_ Type char 8

Gross-reference Listing — PROG PRINT

Code:

PROC PRINT DATA=SASHELP.VCOLUMN NOOBS ;

VAR LIBNAME MEMNAME NAME TYPE LENGTH
WHERE LIBNAME="SASHELP"
AND UPCASE(NAME)="TYPE" ;
RUN ;

Results:

Library Name | Member Name Column Name Column Type Column Length

SASHELP CARS Type char 8
SASHELP COLUMMN TYPE char 1
SASHELP FEEDER type char 26
SASHELP GCTYPE type char 14
SASHELP MANAGE TYPE char 25
SASHELP QUAKES Type char 10
SASHELP REVHUB2 TYPE char 16
SASHELP SLKWXL Type char 32
SASHELP SPRINGS Type char 9
SASHELP SVRTDIST Type char 32
SASHELP TABLE TYPE char 8
SASHELP VCOLUMN type char 4
SASHELP VDCTNRY type char 4
SASHELP VPROMPT type char 4
SASHELP VTITLE type char 1
SASHELP _CMPIDX_ Type char 8

)

36

Data-driven
Programming
Techniques Using
CALL EXECUTE,
User-defined Formats,
and PROC SOL / Macros

Data-driven with CALL EXEGUTE

K SAS users have a powerful DATA step routine
called CALL EXECUTE that can be used for data-
driven processing;

= The CALL EXECUTE routine accepts a single
argument where the value can be a character-
string or, when needed, a character expression
containing SAS code elements to be executed
after they are resolved;

= The CALL EXECUTE routine permits SAS
statements and macro code to be stacked

\together and then executed. /

38

Using CALL EXEGUTE

The CALL EXECUTE argument can be specified with

single or double quotes, dynamically generating SAS
code for execution. Two steps are involved:

v' Create a Control Data Set;
v" Process CALL EXECUTE statement(s).

. /

39

step 1-Greate a Control Data Set

This CALL EXECUTE process creates a control data\
set containing six distinct car types (i.e., “Hybrid”,

“SUV”, “Sedan”, “Sports”, “Truck”, and “Wagon”)
represented as six separate observations.

data Cars_1list ; /* Control Data Set */
input @1 Car_Type $6. ;
datalines ;

Hybrid

SUV

Sedan

Sports

Truck

Wagon

N Y

40

Sten 2 - Process Multiple CALL EXECUTEsS

The next step reads the contents of the control data

set populating the unique value for the Type

concatenate multiple strings together.

_

variable in the individual CALL EXECUTE statements.
Note: The CATS function is used to strip blanks and

/

41

Sten 2 - Process Multiple CALL EXECUTEsS

//;;;a _null_ ; /* Process in a DATA Step */ ‘\\\\\
set Cars_1list ;

call execute(CATS('ods Excel
file="“d:/',Car_Type,' Rpt.xlsx"
style=styles.barrettshlue
options(embedded_titles="yes");"')) ;
call execute(CAT('title ', Car_Type, ' Cars;')) ;
call execute(CATS('proc freq
data=SASHELP.Cars(where=

(Type=""',Car_Type,'"));"')) ;

call execute('tables Model;') ;

call execute('run;') ;
42

call execute('ods Excel close;') ;
run ;

Hybrid Cars

The FREQ Procedure

Civic Hybrid 4dr manual (gas/electric)
Insight 2dr (gas/electric)

SUV Cars

The FREQ Procedure

4Runner SR5 V6

Ascender S

Aviator Ultimate

Aztekt

CR-V LX

Cayenne S

Discovery SE

Durango SLT

Element LX

Endeavor XLS 1.67

Sedan Cars

W W~ O R WN =

-
o

16.67

The FREQ Procedure

3.5 RL 4dr

3.5 RL w/Navigation 4dr

300M 4dr

300M Special Edition 4dr

325Ci 2dr

325Ci convertible 2dr

325i 4dr

325xi 4dr

330Ci 2dr

330Ci convertible 2dr 0.38
330i 4dr 0.38

= 0O W o~ O B wN-=

-

CALL EXEGUTE Resuits

Sports Cars

The FREQ Procedure

350Z Enthusiast convertible 2dr
350Z coupe 2dr

911 Carrera 4S coupe 2dr (convert)
911 Carrera convertible 2dr (coupe)
911 GT2 2dr

911 Targa coupe 2dr

Boxster S convertible 2dr

Boxster convertible 2dr

Celica GT-S 2dr

W N R W=

Truck Cars

The FREQ Procedure

Avalanche 1500

B2300 SX Regular Cab
B4000 SE Cab Plus

Baja

Canyon Z85 SL Regular Cab
Colorado Z85

Dakota Club Cab

Dakota Regular Cab
Escalade EXT

W W0~ OO R WN

Wagon Cars

The FREQ Procedure

325xi Sport

9-5 Aero
AG 3.0 Avant Quattro

43

= To prevent hard-coding VALUE clauses, custom-

defined formats can be created dynamically from
a SAS data set;

= This can be a more efficient approach than
processing sort, merge, and join operations, by
allowing leveraging data-driven processes;

= The FORMAT procedure is able to create
informats and formats without specifying an
INVALUE, PICTURE, or VALUE clause by using a
SAS control data set as input.

. /

44

The control data set is specified with the CNTLIN
option of PROC FORMAT. To start the process, the
control data set must have the following variables:

v FMTNAME - specifies the name of a character variable
whose value is the format or informat name.

v' START - specifies the name of a character variable that
contains the value to be converted.

v' LABEL - specifies the name of a character variable that
contains the converted value.

. /

45

step 1- Greate Gontrol Table

A DATA step is specified with IF-THEN/ELSE logic to
produce a control table with the required variables.

data control ;
fmtname = "$Car_Origin" ;
length label $13. ;
input start $6. ;
if start = “Asia" then label
else if start “Europe” then label
else if start “USA" then label
output ;
datalines ;

Asia

Europe

USA

)

\ /

46

“Asian Cars" ;
“European Cars";
“USA Cars" ;

Step 2 - Print Control Tahle Contents

The contents of the control data set is then \
displayed with the PRINT procedure.

proc print data=control noobs ;
title ;
var fmtname start label ;
run ;

. /

47

step 3 - Specify GNTLIN Option

mally, the control data set is specified in the PRON

FORMAT CNTLIN option.

proc format library=work cntlin=control ;
quit ;

proc print data=SASHELP.Cars noobs ;
format Origin $Car_Origin. ;
run ;

. /

48

fntname start label
$Car_Origin | Asia Asian Cars
$Car_Origin = Europe | Ewropean Cars
$Car_OCrnigin | USA USA Cars

Model Type Crrigin DriveTrain MS5RP Invoice | EngineSize Cylinders | Horsepower | MPG_City | MPG_Highway = Weight | Wheelbase | Length
MO s Aszian Cars All 538,045 533,337 35 8 285 17 23 4451 106 188
REX Type 5 2dr Sedan | Asian Cars Front §23.820 521,781 2.0 4 200 24 3 2778 101 172
T3 4dr Sedan | Asian Cars Front 520,950 524,547 24 4 200 2 29 3230 106 183
TL 4dr Sedan | Asian Cars Front 533,185 530,289 3z 8 270 20 28 3575 108 186
3.5 RL 4dr Sedan | Asian Cars Front $43,755 530,014 3.5] 225 18 24 3880 115 187
3.5 RL w/havigation 4dr Sedan | Asian Cars Front 548,100 541,100 38] 225 18 24 3803 115 187
MEX coupe 2dr manual 5 Sports | Asian Cars Rear 535,785 878878 32 a8 280 17 24 3153 100 174
A4 18T 4dr Sedan | Europesn Cars | Front §25,940 523,508 1.8 4 170 22 3 3252 104 179
A41.8T convertible 2dr Sedan | Europesn Cars | Front 535,240 532,506 1.8 4 170 23 30 2838 108 180
A4 3.0 &dr Sedan | Europesn CGars | Front §31,840 528,346 30 8 220 20 28 3452 104 178
A4 3.0 Quattro 4dr manual Sedan | Europesn Cars | All $33.430 530,266 3.0 8 220 17 26 3583 104 178
Ad 3.0 Quattro 4dr auto Sedan | Europesn Cars | All 534,480 531,288 30] 220 18 25 827 104 179
A8 3.0 &dr Sedan | Europesn CGars | Front 538,640 533,129 30 8 220 20 a7 3561 108 182
A 3.0 Quattro 4dr Sedan | Europesn Cars | All 535,640 535.982 3.0 8 220 18 25 380 108 182
A4 3.0 convertible 2dr Sedan Europesn Cars | Front 542 480 538,225 3.0 a 220 20 27 2214 1086 1E0
Ad 3.0 Quatiro convertible 2dr Sedan | Europesn Cars | All 544,240 540,075 30] 220 18 25 4013 108 180
A8 2.7 Turbo Quattro 4dr Sedan | Europesn Cars | All 542,840 538.240 27] 250 18 26 3838 109 102

49

= Lafler (2018 and 2019) offers ways to create \

multiple data sets (or tables) and output;

DATA step with the OUTPUT statement;

_

= Traditional (hon Data-driven) approach using the

= Data-driven approach using PROC SQL and the
Macro language by iterating through a process to
create multiple data sets (or tables) and output.

/

50

Multipie Data Sets — Non Data-driven

Data Hybrid

SUV

Sedan

Sports

Truck

Wagon ;
set sashelp.cars ;
1f type = “Hybrid” then output Hybrid ;
else if type = “SuUv” then output SUV ;
else if type = “Sedan” then output Sedan ;
else if type = “Sports” then output Sports ;
else if type = “Truck” then output Trucks ;
else if type = “Wagon” then output Wagon ;

Run ; ‘////

51

Name Member Type File Size Last Modified

1 HYBRID ' DATA 128KB ' 04/03/2019 08:24:36

2 SEDAN | DATA 128KB | 04/03/2019 08:24:37

3 SPORTS DATA 128KB | 04/03/2019 08:24:37

4 SUV DATA 128KB 04/03/2019 08:24:37

5 TRUCK | DATA 128KB 04/03/2019 08:24:37

6 | WAGON | DATA 128KB 04/03/2019 08:24:37
DBMS Data Data Number of Number
Library Member Member Member Set Set Physical Observation of
Name Name Type Type Label Type Date Created Date Modified Observations Length Variables
WORK HYBRID DATA DATA 03APR19:08:24:36 03APR19:08:24:36 3 162 15
WORK SEDAN DATA DATA 03APR19:08:24:37 03APR19:08:24:37 262 152 15
WORK SPORTS DATA DATA 03APR19:08:24:37 03APR19:08:24:37 49 152 15
WORK | SUV DATA DATA 03APR19:08:24:37 03APR19:08:24:37 60 152 15
WORK TRUCK DATA DATA 03APR19:08:24:37 03APR19:08:24:37 24 152 15

WORK | WAGON | DATA DATA 03APR19:08:24:37 03APR19:08:24:37 30 152 15

K A data-driven approach is used with PROC SQL
and the macro language to perform iterative
processes to create results and output;

= The SQL procedure and the macro language are
two robust tools found in Base SAS software;

" Triggered by calling a macro to reduce coding
requirements, the process uses the Macro
language, PROC SQL, the ODS Excel destination,
and PROC FREQ to send output (results) to Excel.

. /

53

@ez \
options symbholgen ;

%macro multidatasets ;
proc sql noprint ;
select count(distinct type)
into :mtype_cnt /* number of unique types */
from SASHELP.cars ;
select distinct type
into :mtype_1lst separated by "~“ /* values */
from SASHELP.CARS ;
quit ;

. /

54

@ie (continued): \
%do 1L = 1 %to &mtype_cnt ;

proc sql ;
create table %scan(&mtype_lst,&i,’~")
select *
from SASHELP.cars
where type=“%scan(&mtype_1lst,&i,’'~")" ;
quit ;
%send ;

%mend multidatasets ;

smultidatasets ;

. /

55

Name Member Type File Size Last Modified

1 HYBRID ' DATA 128KB ' 04/03/2019 08:24:36

2 SEDAN | DATA 128KB | 04/03/2019 08:24:37

3 SPORTS DATA 128KB | 04/03/2019 08:24:37

4 SUV DATA 128KB 04/03/2019 08:24:37

5 TRUCK | DATA 128KB 04/03/2019 08:24:37

6 | WAGON | DATA 128KB 04/03/2019 08:24:37
DBMS Data Data Number of Number
Library Member Member Member Set Set Physical Observation of
Name Name Type Type Label Type Date Created Date Modified Observations Length Variables
WORK HYBRID DATA DATA 03APR19:08:24:36 03APR19:08:24:36 3 162 15
WORK SEDAN DATA DATA 03APR19:08:24:37 03APR19:08:24:37 262 152 15
WORK SPORTS DATA DATA 03APR19:08:24:37 03APR19:08:24:37 49 152 15
WORK | SUV DATA DATA 03APR19:08:24:37 03APR19:08:24:37 60 152 15
WORK TRUCK DATA DATA 03APR19:08:24:37 03APR19:08:24:37 24 152 15
WORK WAGON DATA DATA 03APR19:08:24:37 03APR19:08:24:37 30 152 15

56

Another Data-driven Example

KAS before, PROC SQL and the macro language are
used to create a macro routine that performs an
iterative process to produce results and output;

= Create a single-value (or aggregate) macro
variable and a value-list (or array of values)
macro variable;

" Triggered by calling a macro to reduce coding
requirements, the process uses the Macro
language, PROC SQL, the ODS Excel destination,
and PROC FREQ to send output (results) to Excel.

. /

57

step 1-Use PROC FORMAT - Traffic Lights

PROC SORT DATA=SASHELP.CARS
OUT=WORK.CARS_SORTED ;

BY Origin
RUN ;

PROC FORMAT ;

Value MSR

RUN ;

_

MSRP ;

)

PFmt LOW - < 20000 =
20000 - < 35000 =
35000 - < 50000 =
50000 - HIGH =

‘Green’
‘Blue’

‘Orange’
'‘Red’ ;

~

58

Step 2 - Create Macro Variahles with SQL

select
into
from

select
into
from

quit ;

_

//;;;;ro multiExcelfiles ;
proc sql noprint ;

count(distinct Origin)

:morigin_cnt /* number of unique origins */

WORK.Cars_Sorted ;
distinct Origin

:morigin_lst separated by "~" /* Values */

WORK.Cars_Sorted ;

~

/

59

%do 1=1 %to &morigin_cnt ;

ods Excel file="d:/%SCAN(&morigin_1lst,&i,~).xlsx” ;
proc report data=SASHELP.Cars NOWINDOWS
STYLE(Header)={BackGround=Blue ForeGround=White

Font=(Arial,h10pt,Bold)} ;
where Origin="%SCAN(&morigin_lst,&i,~)" ;

COLUMNS Origin Make Type Model MSRP ;

DEFINE MSRP / ANALYSIS 'Vehicle MSRP' WIDTH=8

STYLE(Column)=[FontWeight=bold BackGround=MSRPFmt.] ;
COMPUTE MSRP ;

b
CALL DEFINE(_COL_,"STYLE","STYLE={ForeGround=White}") ;
ENDCOMP ;

run ;
ods Excel close ;
%send ;
smend multiExcelfiles ;

)
smultiExcelfiles ;

60

Adding Color to Excel - Results

Asiz Kia

Asiz Toyota
Asiz Scion
Asiz Mazda
Asiz Toyota
Asiz Suzuki
Asiz Toyota
Asziz Mitsubishi
Aziz Misszan
Asia Subaru
Asia Mazda
Asia Subaru
Asiz Subaru
Asiz Toyota
Asia Nissan
Asiz Missan
Asiz Lesus
Asziz Infiniti
Aziz Infiniti

S

Wagon
Truck
Wagon
Truck
Truck
Wagon
Wagon
Wagon
Truck
Wagon
Truck
Wagon
Truck
Truck
Truck
Wagon
Wagon
Wagon
Wagon

Rio Cinco

Tacoma

xB

B2300 5X Regular Cab
Tundra Regular Cab Wi
Aerio 5

Matrix XR

Lancer Sportback LS
Frontier King Cab XE W
Foraster X

B4000 SE Cab Plus
Outback

Bajz

Tundra Access Cab VB SRS
Titan King Cab XE
Murano 5L

15 300 SportCross.
FX35

FX45

Vehicle MSRP

$12,200
$44,840
$16,695
$17,495

$19.479

$22.350
$232 895

Eurocpe
Eurocpe
Eurocpe
Eurocpe
Eurocpe
Eurocpe
Eurocpe
Europe
Europe
Eurocpe
Eurocpe

Eurocpe

Wolkswagen
“iolkswagen
Woleo

BMW
Mercedes-Benz
ol
“olkswagen
Aud

Sazb

Aud
Mercedes-Banz
Mercedes-Banz

Ford
GMC
Pontiac
Ford
Dodge
Chevrolet
Dodge
Dodge
Chevraolet
Ford
Chevralet
Ford
Mercury
Saturn
GMC
GMC
GMC
Chrysler
Ford
Chevraolet
Chevralet
Chevralet

Cadillac

Wagon
Wagon
Wagon
Wagon
Wagon
Wagon
Wagon
Wagon
Wagon
Wagon
Wagon
Wagon

Truck
Truck
Wagon
Wagon
Truck
Truck
Truck
Truck
Truck
Truck
Wagon
Wagon
Wagon
Wagon
Truck
Truck
Truck
Wagon
Truck
Truck
Truck
Truck

Truck

Jetta GL

Passat GLE 1.2T
W4l

325 Sport

KCT

Passat WE

AG 3.0 Avant Quattro
8-5 Aaro

S4 Avant Quatiro
E320

ES0O

Ranger 2.3 XL Regular Cab
Canyon Z85 5L Regular Cab
ibe

Focus ZTW

Diakota Regular Cab
Colorado Z25

Ram 1500 Regular Cab 5T
Dakota Club Cab

Silverado 1500 Regular Cab
F-160 Regular Cab XL
Malibu Maxx LS

Tawrus S5E

Sable GS

L3002

Sonoma Crew Cab

Sierra Extended Cab 1500
Sierra HD 2800

Pacifica

F-150 Supercab Lariat
Avalanche 1500

Silverado 55

SSR

Escalade EXT

$33.780

$50,670
$60,670

w
K
K
1]

|
RIB
2
;=

8
g

61

c I
v BN i3

Data-driven Data-driven
Programming ‘ Programming ‘
Technigques Techniques
Using Using

Ponular
Progral!lming 1
Paradigms

Metadata . CALL EXECUTE,
sources User-defined
Formats, and
PROC SOL/
Macros

62

An SOL Book
9sas with “under the
hood” details,

PROC SQL explanations and

lots of examples

Beyond the Basics Using SAS
Third Edition

Kirk Paul Lafler

Available from SAS Press and other online retailers !

A Google Search
Book the Pros use for
Better Searches and
Better Results!

Google | s"%/, Complete!

-

Tips, Tricks and Shortcuts for
Better Searches and Better Results

Kirk Paul Lafler

Charles Edwin 'Shivpp

Available on www.Amazon.com!

64

Thank You for Attending!

Kirk Paul Lafler
sasNerd
SAS° Consultant, Application Developer, Programmer, Data Analyst, Educator and Author
E-mail: KirkLafler@cs.com
https://www.linkedin.com/in/KirkPaulLafler/
@sasNerd

