
Data-driven

Programming Techniques

Using SAS
®

a presentation

by

Kirk Paul Lafler

Presenter Biography
Kirk Paul Lafler is an entrepreneur, consultant and programmer, and has used SAS
software since 1979. Kirk currently works as a SAS consultant, application
developer, programmer, data analyst and educator; a lecturer and adjunct
professor at San Diego State University; an advisor and adjunct professor at the
University of California San Diego Extension; and an educator of dozens of SAS,
SQL, R and Python courses, seminars, workshops, and webinars to thousands of
users around the world.

As the author of several books including PROC SQL: Beyond the Basics Using SAS,
Third Edition (SAS Press. 2019) along with hundreds of papers and articles on a
variety of SAS topics; Kirk has been selected as an Invited speaker, educator,
keynote and section leader at SAS conferences and meetings worldwide; and is
the recipient of 25 “Best” contributed paper, hands-on workshop (HOW), and
poster awards.

Copyright © 2018 – 2021 by Kirk Paul Lafler
All rights reserved.

SAS and all other SAS Institute Inc. product or service names are

registered trademarks or trademarks of SAS Institute Inc. in the USA

and other countries.

All other company and product names mentioned are used for

identification purposes only and may be trademarks of their respective

owners.

3

Presentation Topics

4

Popular

Programming

Paradigms

Data-driven

Programming

Techniques

Using SAS

Metadata

Sources

Data-driven

Programming

Techniques

Using

CALL EXECUTE,

User-defined

Formats, and

PROC SQL /

Macros

Table Examples – SASHELP.CARS

5

428 Observations

15 Variables

Popular

Programming

Paradigms

6

Programming languages are often classified by their
basic features into one of the programming
paradigms. Three popular programming paradigms
are in use today:

 Procedural programming – represented by blocks of code
being organized logically by function, such as data input,
data processing or manipulation, and data / results;

 Object-oriented programming – represented by a
combination of functionality (behaviors) and data
(attributes) hidden inside an object which can then be
arranged into classes;

 Data-driven programming – represented by data
controlling the flow of execution in a program.

Programming Paradigms

7

Unlike procedural programming languages and
object-oriented programming, data-driven
programming involves decisions and processes that
are controlled by data.

What is Data-driven Programming?

8

Why Design Data-driven Programs?

9

 Data-driven programs can adapt to different data
sets and structures;

 Data is used to define the control flow of a
program;

 Data-driven programs can write other programs;

 Avoid “hard-coding” approaches which are not
only harder to maintain, but increase the cost to
support the code over its operational life;

 Reduce programming and maintenance efforts;

 Data-driven programs can be designed for
reusability which translates into cost savings.

Four data-driven programming approaches will be
presented:

 Using SAS Metadata Dictionary tables and SASHELP views;

 Using the CALL EXECUTE routine;

 Using User-defined informats and formats;

 Using PROC SQL SELECT and the Macro language.

Data-driven Programming Approaches

10

The PROC SQL SELECT statement’s purpose is to
retrieve (or read) data from one, or more,
underlying tables (or views). Although the SELECT
statement supports multiple clauses, only one
clause is required – the FROM clause. All remaining
clauses are optional and only used as needed.

Order of PROC SQL SELECT Clauses

11

To help remember the specific order of the SELECT
statement’s clauses, recite:

 “SQL is fun when geeks help others”

The first letter in each word corresponds to the
SELECT statement’s clause.

 PROC SQL ;
 SELECT . . .
 INTO . . .
 FROM . . .
 WHERE < OR > ON . . .
 GROUP BY . . .
 HAVING . . .
 ORDER BY . . . ;
 QUIT ;

Order of PROC SQL SELECT Clauses

12

SELECT Clause Execution Order

13

Execution Order Description

1. FROM

The first clause executed in a query is the FROM clause. It’s a required

clause with the purpose of determining the working set of data that is

being queried (i.e., variable names, variable type, number of rows, and

other important information).

2. INTO

The INTO clause is used to create one or more macro variables where the

values can be used to manipulate data.

3. ON

The ON clause is used to subset rows of data based on the condition(s)

specified, and rows that aren’t satisfied by the condition(s) are discarded.

4. WHERE

The WHERE clause is used to subset rows of data based on the condition(s)

specified, and rows that aren’t satisfied by the condition(s) are discarded.

5. GROUP BY

The GROUP BY clause takes the rows that were subset with the WHERE

clause and grouped based on common values in the column specified in

the GROUP BY clause.

6. HAVING

The HAVING clause applies the condition(s) to the grouped rows specified

in the GROUP BY clause, and any grouped rows that aren’t satisfied by the

condition(s) are discarded.

7. SELECT Expressions specified in the SELECT statement are processed.

8. ORDER BY

The ORDER BY clause sorts the rows of data in either ascending (default) or

descending order.

 Lafler (2017) offers a variety of approaches to
determine the number of variable levels in any
SAS data set;

 Eliminates the need to construct counting
routines in programs;

 Uses PROC SQL or PROC FREQ to produce results.

Number of Variable Levels

14

Code:
title "Display NLevels for Origin with PROC FREQ" ;
proc freq data=SASHELP.CARS NLEVELS ;
 tables Origin / nopct nocum ;
run ;

Results:

Number of Variable Levels – PROC FREQ

15

Code:
proc sql ;
 title "Display NLevels for Origin with PROC SQL" ;
 select COUNT(DISTINCT Origin) "Unique Levels"
 from SASHELP.CARS ;
 title "Display NLevels and Counts for Origin with PROC SQL";
 select Origin, COUNT(Origin) AS CTR_Origin
 from SASHELP.CARS
 group by Origin ;
quit ;

Results:

Number of Variable Levels – PROC SQL

16

Data-driven

Programming

Techniques Using

SAS Metadata Sources

17

 Metadata is everywhere;

 Metadata is often referred to as data about data;

 Others define metadata as information about the
design and specification of data structures;

 Metadata does not represent the physical data
resource, but the information that describes the
resource;

 Metadata provides the details (i.e., what, why,
when, and where) about the various resources in
a structured way.

What is Metadata?

18

Metadata provides easier, faster and more reliable
ways to find or locate information about a digital or
data asset. The reasons for using metadata are:

 Productivity often improves as search access speeds increase;

 User acceptance levels often improve as the reliability and
relevancy of results improve;

 Enhanced filtering capabilities by using meaningful metadata
variables to provide greater flexibility;

 Improved organization of data resources for searching, sorting
and summarizing;

 Automating a process for code and data reusability, code and
data sharing, and improved productivity by programmers.

Why Use Metadata?

19

Metadata has traditionally been produced using:

 PROC CONTENTS – Produces a directory of the SAS
library and the details associated with each member
type stored in a SAS library.

 PROC DATASETS – Raithel (2016) describes PROC
DATASETS as the Swiss Army Knife of Data
Management procedures. Like PROC CONTENTS, the
PROC DATASETS CONTENTS statement produces a
directory of the SAS library and the details associated
with each member type (e.g., DATA, VIEW, INDEX)
stored in a SAS library.

Traditional Metadata Methods

20

 SAS collects information about a session;

 The session information is captured as read-only
content;

 Dictionary tables are accessible using PROC SQL:

 Specify table in FROM clause of a SELECT

 DICTIONARY libref is automatically assigned

 PROC SQL ;
 SELECT *
 FROM DICTIONARY.table-name ;
 QUIT ;

 SASHELP views can be accessed in a DATA step or
with any of your favorite PROCs.

Dictionary Tables and SASHELP Views

21

Viewing Dictionary Tables/SASHELP Views

 # of DICTIONARY Tables and SASHELP Views:

 22 in SAS 9.1.x;

 29 in SAS 9.2;

 30 in SAS 9.3;

 32 in SAS 9.4 (39 Views in SAS 9.4).

22

A Sampling of Dictionary Tables

23

Table Name Description

CATALOGS Allocated SAS catalog librefs and member names.

CHECK_CONSTRAINTS User-assigned CHECK constraints.

COLUMNS Column names and attribute information.

DICTIONARIES Information about all known Dictionary tables.

EXTFILES FILEREF, pathname, and engine for external files.

FORMATS Information about defined formats and informats.

INDEXES Data set index information for each libref.

LIBNAMES Allocated librefs and paths.

MACROS Macro variables, their scope, and value.

OPTIONS SAS system options and settings of your environment.

STYLES Librefs, template names, style names, and notes.

TABLES Allocated SAS data set librefs and member names.

VIEWS Librefs and dictionary view names.

A Sampling of SASHELP Views

24

View Name Description

VCATLG Allocated SAS catalog librefs and member names.

VCHKCON User- and system-assigned CHECK constraints.

VCOLUMN Column names and attribute information.

VDCTNRY Information about all known Dictionary tables.

VEXTFL FILEREF, pathname, and engine for external files.

VFORMAT Information about defined formats and informats.

VINDEX Data set index information for each libref.

VLIBNAM Allocated librefs and paths.

VMACRO Macro variables, their scope, and value.

VOPTION SAS system options and settings of your environment.

VSTYLE Librefs, template names, style names, and notes.

VTABLE Allocated SAS data set librefs and member names.

VVIEW Librefs and dictionary view names.

Dictionary.TABLES or SASHELP.VTABLE

25

 Dictionary.TABLES Table

 SASHELP.VTABLE View

 41 Variables (or Columns)

 Dictionary.COLUMNS Table

 SASHELP.VCOLUMN View

 18 Variables (or Columns)

Dictionary.COLUMNS or SASHELP.VCOLUMN

26

 Dictionary.OPTIONS Table

 SASHELP.VOPTION View

 8 Variables (or Columns)

Dictionary.OPTIONS or SASHELP.VOPTION

27

Rows in All Tables – PROC SQL

Code:
PROC SQL ;
 SELECT LIBNAME, MEMNAME, NOBS
 FROM DICTIONARY.TABLES
 WHERE LIBNAME = "SASHELP" ;
QUIT ;

Results:

28

Rows in All Tables – PROC PRINT

Code:
PROC PRINT DATA=SASHELP.VTABLE NOOBS ;
 VAR LIBNAME MEMNAME NOBS ;
 WHERE LIBNAME = "SASHELP" ;
RUN ;

Results:

29

 Lafler (2013) offers a way to determine the
number of character and numeric variables for
any SAS data set;

 Reduce the time to review pages of PROC
CONTENTS output;

 Use the DATA step or your favorite PROC;

 Access the contents of the Dictionary.TABLES and
SASHELP.VTABLE view;

 Select columns: LIBNAME, MEMNAME,
MEMTYPE, NUM_CHARACTER, NUM_NUMERIC,
and NVAR.

Number of Character/Numeric Variables

30

Code:
TITLE # Character vs Numeric Variables All Datasets ;

PROC SQL ;
 SELECT LIBNAME,MEMNAME,NUM_CHARACTER,NUM_NUMERIC,NVAR

 FROM DICTIONARY.TABLES
 WHERE MEMTYPE = "DATA" ;
QUIT ;

Results:

Number of Character/Numeric Variables

31

 Lafler (2013) describes a macro that creates a list
of variables for processing in a SELECT query;

 Triggered by calling a macro to reduce coding
requirements;

 Assigns the directory and SAS table name that
the user specified when calling macro;

 Reads the Dictionary.COLUMNS table and
creates a value-list macro variable containing the
names of all variables;

 Produces a subset based on what the user enters
when calling the macro.

Variable Keeper – PROC SQL

32

Code:
proc sql noprint ;
 select name,
 count(name)
 into :mvariables separated by ', ',
 :mvariablesnum
 from dictionary.columns
 where libname="SASHELP"
 and upcase(memname)="CARS" ;
 quit ;
 %put &mvariables &mvariablesnum ;

SAS Log Results:

Make, Model, Type, Origin, DriveTrain, MSRP, Invoice,
EngineSize, Cylinders, Horsepower, MPG_City,
MPG_Highway, Weight, Wheelbase, Length 15

Variable Keeper – PROC SQL

33

 Lafler (2013 and 2019) describes an approach
that produces a cross-reference listing of all data
sets (or tables) that contain a specific variable;

 Eliminates the time to review pages of PROC
CONTENTS or PROC DATASETS output;

 Uses PROC SQL, PROC PRINT or your favorite
PROC;

 Accesses the contents of Dictionary.COLUMNS
table or the SASHELP.VCOLUMN view;

 Subsets columns: LIBNAME, MEMNAME, NAME,
TYPE and LENGTH.

Cross-reference Listing

34

Cross-reference Listing – PROC SQL

Code:
PROC SQL ;

 SELECT LIBNAME, MEMNAME, NAME, TYPE, LENGTH

 FROM DICTIONARY.COLUMNS

 WHERE LIBNAME="SASHELP"

 AND UPCASE(NAME)="TYPE" ;

QUIT ;

Results:

35

Cross-reference Listing – PROC PRINT

Code:
PROC PRINT DATA=SASHELP.VCOLUMN NOOBS ;

 VAR LIBNAME MEMNAME NAME TYPE LENGTH ;

 WHERE LIBNAME="SASHELP"

 AND UPCASE(NAME)="TYPE" ;

RUN ;

Results:

36

Data-driven

Programming

Techniques Using

CALL EXECUTE,

User-defined Formats,

and PROC SQL / Macros
37

 SAS users have a powerful DATA step routine
called CALL EXECUTE that can be used for data-
driven processing;

 The CALL EXECUTE routine accepts a single
argument where the value can be a character-
string or, when needed, a character expression
containing SAS code elements to be executed
after they are resolved;

 The CALL EXECUTE routine permits SAS
statements and macro code to be stacked
together and then executed.

Data-driven with CALL EXECUTE

38

The CALL EXECUTE argument can be specified with
single or double quotes, dynamically generating SAS
code for execution. Two steps are involved:

 Create a Control Data Set;

 Process CALL EXECUTE statement(s).

Using CALL EXECUTE

39

This CALL EXECUTE process creates a control data
set containing six distinct car types (i.e., “Hybrid”,
“SUV”, “Sedan”, “Sports”, “Truck”, and “Wagon”)
represented as six separate observations.

 data Cars_list ; /* Control Data Set */
 input @1 Car_Type $6. ;
 datalines ;
 Hybrid
 SUV
 Sedan
 Sports
 Truck
 Wagon
 ;
 run ;

Step 1 – Create a Control Data Set

40

The next step reads the contents of the control data
set populating the unique value for the Type
variable in the individual CALL EXECUTE statements.
Note: The CATS function is used to strip blanks and
concatenate multiple strings together.

Step 2 – Process Multiple CALL EXECUTEs

41

data _null_ ; /* Process in a DATA Step */

 set Cars_list ;

 call execute(CATS('ods Excel

 file=“d:/',Car_Type,'_Rpt.xlsx"

 style=styles.barrettsblue

 options(embedded_titles="yes");')) ;

 call execute(CAT('title ', Car_Type, ' Cars;')) ;

 call execute(CATS('proc freq

 data=SASHELP.Cars(where=

 (Type="',Car_Type,'"));')) ;

 call execute('tables Model;') ;

 call execute('run;') ;

 call execute('ods Excel close;') ;

run ;

Step 2 – Process Multiple CALL EXECUTEs

42

CALL EXECUTE Results

43

 To prevent hard-coding VALUE clauses, custom-
defined formats can be created dynamically from
a SAS data set;

 This can be a more efficient approach than
processing sort, merge, and join operations, by
allowing leveraging data-driven processes;

 The FORMAT procedure is able to create
informats and formats without specifying an
INVALUE, PICTURE, or VALUE clause by using a
SAS control data set as input.

Data-driven User-defined Formats

44

The control data set is specified with the CNTLIN
option of PROC FORMAT. To start the process, the
control data set must have the following variables:

 FMTNAME - specifies the name of a character variable
whose value is the format or informat name.

 START - specifies the name of a character variable that
contains the value to be converted.

 LABEL - specifies the name of a character variable that
contains the converted value.

Data-driven User-defined Formats

45

A DATA step is specified with IF-THEN/ELSE logic to
produce a control table with the required variables.

data control ;
 fmtname = "$Car_Origin" ;
 length label $13. ;
 input start $6. ;
 if start = “Asia" then label = “Asian Cars" ;
 else if start = “Europe" then label = “European Cars";
 else if start = “USA" then label = “USA Cars" ;
 output ;
 datalines ;
Asia
Europe
USA
;
run ;

Step 1 – Create Control Table

46

The contents of the control data set is then
displayed with the PRINT procedure.

proc print data=control noobs ;
 title ;
 var fmtname start label ;
run ;

Step 2 – Print Control Table Contents

47

Finally, the control data set is specified in the PROC
FORMAT CNTLIN option.

proc format library=work cntlin=control ;
quit ;

proc print data=SASHELP.Cars noobs ;
 format Origin $Car_Origin. ;
run ;

Step 3 – Specify CNTLIN Option

48

User-defined Format Results

49

 Lafler (2018 and 2019) offers ways to create
multiple data sets (or tables) and output;

 Traditional (non Data-driven) approach using the
DATA step with the OUTPUT statement;

 Data-driven approach using PROC SQL and the
Macro language by iterating through a process to
create multiple data sets (or tables) and output.

Creating Multiple Data Sets and Output

50

Code:
Data Hybrid

 SUV

 Sedan

 Sports

 Truck

 Wagon ;

 set sashelp.cars ;

 if type = “Hybrid” then output Hybrid ;

 else if type = “SUV” then output SUV ;

 else if type = “Sedan” then output Sedan ;

 else if type = “Sports” then output Sports ;

 else if type = “Truck” then output Trucks ;

 else if type = “Wagon” then output Wagon ;

Run ;

51

Multiple Data Sets – Non Data-driven

52

Multiple Data Sets – Non Data-driven

 A data-driven approach is used with PROC SQL
and the macro language to perform iterative
processes to create results and output;

 The SQL procedure and the macro language are
two robust tools found in Base SAS software;

 Triggered by calling a macro to reduce coding
requirements, the process uses the Macro
language, PROC SQL, the ODS Excel destination,
and PROC FREQ to send output (results) to Excel.

Data-driven Approach

53

Code:
options symbolgen ;

%macro multidatasets ;

 proc sql noprint ;

 select count(distinct type)

 into :mtype_cnt /* number of unique types */

 from SASHELP.cars ;

 select distinct type

 into :mtype_lst separated by "~“ /* values */

 from SASHELP.CARS ;

 quit ;

54

Multiple Data Sets – Data-driven

Code (continued):
 %do i = 1 %to &mtype_cnt ;
 proc sql ;
 create table %scan(&mtype_lst,&i,’~’)
 select *
 from SASHELP.cars
 where type=“%scan(&mtype_lst,&i,’~’)” ;
 quit ;
 %end ;

%mend multidatasets ;

%multidatasets ;

55

Multiple Data Sets – Data-driven

56

Multiple Data Sets – Data-driven Results

 As before, PROC SQL and the macro language are
used to create a macro routine that performs an
iterative process to produce results and output;

 Create a single-value (or aggregate) macro
variable and a value-list (or array of values)
macro variable;

 Triggered by calling a macro to reduce coding
requirements, the process uses the Macro
language, PROC SQL, the ODS Excel destination,
and PROC FREQ to send output (results) to Excel.

Another Data-driven Example

57

PROC SORT DATA=SASHELP.CARS
 OUT=WORK.CARS_SORTED ;
 BY Origin MSRP ;
RUN ;

PROC FORMAT ;
 Value MSRPFmt LOW - < 20000 = 'Green'
 20000 - < 35000 = 'Blue'
 35000 - < 50000 = 'Orange'
 50000 - HIGH = 'Red' ;
RUN ;

Step 1 – Use PROC FORMAT – Traffic Lights

58

%macro multiExcelfiles ;

 proc sql noprint ;

 select count(distinct Origin)

 into :morigin_cnt /* number of unique origins */

 from WORK.Cars_Sorted ;

 select distinct Origin

 into :morigin_lst separated by "~" /* Values */

 from WORK.Cars_Sorted ;

 quit ;

Step 2 – Create Macro Variables with SQL

59

%do i=1 %to &morigin_cnt ;

 ods Excel file=“d:/%SCAN(&morigin_lst,&i,~).xlsx” ;

 proc report data=SASHELP.Cars NOWINDOWS

 STYLE(Header)={BackGround=Blue ForeGround=White
 Font=(Arial,10pt,Bold)} ;
 where Origin="%SCAN(&morigin_lst,&i,~)" ;

 COLUMNS Origin Make Type Model MSRP ;

 DEFINE MSRP / ANALYSIS 'Vehicle MSRP' WIDTH=8
 STYLE(Column)=[FontWeight=bold BackGround=MSRPFmt.] ;
 COMPUTE MSRP ;
 CALL DEFINE(_COL_,"STYLE","STYLE={ForeGround=White}") ;
 ENDCOMP ;
 run ;

 ods Excel close ;

 %end ;

%mend multiExcelfiles ;

%multiExcelfiles ;

Step 3 – Process Macro Variables

60

Adding Color to Excel – Results

61

Conclusion

62

Popular

Programming

Paradigms

Data-driven

Programming

Techniques

Using

Metadata

Sources

Data-driven

Programming

Techniques

Using

CALL EXECUTE,

User-defined

Formats, and

PROC SQL /

Macros

An SQL Book

with “under the

 hood” details,

explanations and

lots of examples

Available from SAS Press and other online retailers !

63

Available on www.Amazon.com!

A Google Search

Book the Pros use for

 Better Searches and

 Better Results!

64

Thank You for Attending!

Kirk Paul Lafler
sasNerd

SAS® Consultant, Application Developer, Programmer, Data Analyst, Educator and Author
E-mail: KirkLafler@cs.com

https://www.linkedin.com/in/KirkPaulLafler/
@sasNerd

Questions?

