SAS 2021

Paper 1088-2021

Alternate solution to %WINDOW statement in SAS® Enterprise
Guide®: PowerShell

Sumit Pratap Pradhan, Syneos Health®

%WINDOW statement provides facility to define customized window that can be used to
collect user input and display customized message. It is controlled by macro processor.
SAS® Enterprise Guide® is a powerful windows application making SAS programming much
easier and organized. Since SAS® Enterprise Guide® works on client/server model, it doesn't
support %WINDOW statement. PowerShell is a powerful automation tool, consisting of
command-line shell and scripting language. Windows PowerShell supports GUI
programming.

On a few occasions, SAS program needs to perform task dynamically based on the inputs
provided by user. Since SAS® Enterprise Guide® doesn’t support %WINDOW statement, an
alternate solution was needed to encounter this scenario. I came across two solutions:

1-Use Prompt Manager to create a prompt which can be used to take user input; however,
the drawback is that the Prompt Manager is available only if you create a project. So it
doesn’t suit to the requirement.

2-Use PowerShell. It has the capability to design customized window.

So, PowerShell is selected to design form. In this paper, the entire process is explained
through screenshots and PowerShell code is shared for reference.

%WINDOW statement provides the facility to define a customized window that can be used
to collect user input and display customized messages. It is controlled by macro processor.
SAS® Enterprise Guide® is a powerful windows application making SAS programming much
easier and organized. Since SAS® Enterprise Guide® works on client/server model, it doesn’t
support %WINDOW statement. PowerShell is a powerful automation tool, consisting of
command-line shell and scripting language. Windows PowerShell supports GUI
programming.

On few occasions, SAS program needs to perform task dynamically based on the inputs
provided by user. Since SAS® Enterprise Guide® doesn’t support %WINDOW statement, an
alternate solution was needed to encounter this scenario. I work in Citrix environment that
provides Windows Server 2012 R2 and had constraint to take user input either using SAS
programming (through SAS® Enterprise Guide®) or some open source language/software
that doesn’t need installation by IT department. I came across two solutions:

1) Use Prompt Manager to create prompt which can be used to take user input but the
drawback is that the Prompt Manager is available only if you create a project. So it
doesn’t suit to the requirement

2) Use PowerShell. It has the capability to design customized window from simpler ones
to complex. PowerShell has following advantages:

i) Itis open-source framework consisting of command-line shell and scripting
language.

i) Itis built on .NET core.

iii) It is pre-installed on Windows Server 2012 R2. So it requires no overhead for
IT team.

I have selected PowerShell to design form. Let’s understand with the help of an example.
Task is to create XPT or Define XML based on information provided by user. User defined
SAS macro is written for XPT creation or Define XML generation. It needs the following three
inputs from user:

1) Task to be performed (XPT creation or Define generation)
2) Module for which task needs to be performed (SDTM or ADaM)
3) Study name for which task needs to be performed - this will display list of all

study available to project area and user can select any one study from the list

PowerShell script is written to take user input and save the input taken to a text file. The
screen below was created using PowerShell. See Figure 1

Program is mentioned in the Appendix (Screen.psl)

85 User Input — [l e

Select options from below

|Select Task ~ |

|Se|ect Madule £ |

|Se|ect Study ot |
Submit

Figure 1. User Input Form

User needs to select option from drop-down box. The screenshot below shows the options
selected by user. See Figure 2

o5 User Input — O >

Select options from below

|Deﬁne Generation R |

|SDTM ~|

[10078624 ~ |
Submit

Figure 2. Options selected by User

Now SAS program can utilize the text file to read and produce the appropriate result i.e.
either create XPT or generate Define for selected module and selected study.

Consider SAS program is ready to read text file and run the user defined SAS macro for XPT
creation or Define generation. Running the SAS program could be done in two ways:

1) Run the PowerShell Script which will generate the text file. Now run the SAS
program in SAS® Enterprise Guide® or batch mode.

2) A more efficient way could be to write a single PowerShell script to take user
input and run SAS program. Add the code to run SAS program at the end of the
script. This is better approach because programmer only needs to run the
PowerShell script and it will produce the intended result.

In this paper, only one aspect of PowerShell has been discussed although PowerShell is very
powerful automation tool that can be utilized for various purposes. Combining SAS with
PowerShell gives more flexibility to programmers to automate tasks.

1. SAS Documentation

https://documentation.sas.com/?cdcld=pgmsascdc&cdcVersion=9.4 3.5&docsetld=mcr
olref&docsetTarget=n00jc9rtfrzvbdn16kgd2c5mzobg.htm&locale=en

2. PowerShell Documentation: Overview

https://docs.microsoft.com/en-us/powershell/scripting/overview?view=powershell-7.1

3. PowerShell Documentation: Creating a Custom Input Box

https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-
powershell-1.0/ff730941(v=technet.10)?redirectedfrom=MSDN

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=mcrolref&docsetTarget=n0ojc9rtfrzvbdn16kqd2c5mzobq.htm&locale=en
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=mcrolref&docsetTarget=n0ojc9rtfrzvbdn16kqd2c5mzobq.htm&locale=en
https://docs.microsoft.com/en-us/powershell/scripting/overview?view=powershell-7.1
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-powershell-1.0/ff730941(v=technet.10)?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-powershell-1.0/ff730941(v=technet.10)?redirectedfrom=MSDN

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Sumit Pratap Pradhan

Syneos Health, Principal Statistical Programmer

Building No. 14, Tower B, DLF Cyber City, Gurgaon - 122002, Haryana, India
E-mail: sumit.pradhan@syneoshealth.com

LinkedIn: https://www.linkedin.com/in/sumit-pradhan-71133345/

Any brand and product names are trademarks of their respective companies.

APPENDIX
<# FRFRFX POWERSHELL SCRIPT *¥ ¥k

KKOkkkOkk kR kk GCREEN.PS 1 kokokskokskoskskoskok ko

Kk ok ok Sk ok Sk Sk Sk sk Sk ok Kk KK KK KOk koK KOk Kok Skokskok ok s

#Load Required assemblies for Form Creation
Add-type -AssemblyName System.Windows.Forms

#Design User Input Form
$Form_Input = New-Object System.Windows.Forms.Form
$Form_Input.Text='User Input'
$Form_Input.width = 400
$Form_Input.height = 300

#Add Group
$Group_Input = New-Object System.Windows.Forms.GroupBox
$Group_Input.Location=New-Object System.Drawing.Size(40,30)
$Group_Input.Size=New-0Object System.Drawing.Size(300,160)
$Group_Input.Text="'Select options from below'

#Add Drop-Down Button having Task details
$Button_Task = New-Object System.Windows.Forms.ComboBox
$Button_Task.Location=New-Object System.Drawing.Size(20,40)
$Button_Task.Name='Button_Task'
$Button_Task.Size=New-0Object System.Drawing.Size(150,20)
$Button_Task.Text="'Select Task'
#Add to Group
$Group_Input.Controls.Add($Button_Task)

#Add Drop-Down for Module
$Button_Module = New-Object System.Windows.Forms.ComboBox
$Button_Module.Location=New-Object System.Drawing.Size(20,70)
$Button_Module.Name="'Button_Module'
$Button_Module.Size=New-Object System.Drawing.Size(150,20)
$Button_Module.Text="'Select Module'
#Add to group
$Group_Input.Controls.Add($Button_Module)

mailto:sumit.pradhan@syneoshealth.com
https://www.linkedin.com/in/sumit-pradhan-71133345/

#Add Drop-Down for Study
$Button_Study = New-Object System.Windows.Forms.ComboBox
$Button_Study.Location=New-Object System.Drawing.Size(20,100)
$Button_Study.Name="'Button_Study'
$Button_Study.Size=New-0Object System.Drawing.Size(150,20)
$Button_Study.Text="'Select Study'
#Add to group
$Group_Input.Controls.Add($Button_Study)

TASK VALUES
$Button_Task.Items.Clear()
ForEach ($Itemt in 'XPT Creation', 'Define Generation') {
$Button_Task.Items.Add($Itemt)
b

MODULE VALUES
$Button_Module.Items.Clear()
ForEach ($Itemm in 'SDTM', 'ADaM") {
$Button_Module.Items.Add($Itemm)
b

STUDY VALUES
$ROOTPATH="C:\Users\supradha\Desktop\SAS';
$areaval = (Get-Childitem -Path $ROOTPATH -Directory -Exclude root).Name
$Button_Study.Items.Clear();
ForEach ($Itemts in $areaval) {
$Button_Study.Items.Add($Itemts)
b

#Add Submit Button
$Button_Submit = New-Object System.Windows.Forms.Button
$Button_Submit = New-Object System.Windows.Forms.Button
$Button_Submit.Location=New-0Object System.Drawing.Size(150,200)
$Button_Submit.Size=New-Object System.Drawing.Size(100,40)
$Button_Submit. Text='Submit'
$Button_Submit.DialogResult=[System.Windows.Forms.DialogResult]::abort
#Add Submit Button to Form
$Form_Input.Controls.Add($Button_Submit)

#Add Group to Form
$Form_Input.Controls.Add($Group_Input)
$Form_Input.CancelButton = $Button_Submit

$Form_Input.Add_Shown({$Form_Input.Activate()})
$Form_Input.showdialog()

#Create TEXT file to store selected option
"TASK: "+ $Button_Task.text +
"*r'nMODULE: "+ $Button_Module.text +
"r’'nSTUDY: "+ $Button_Study.text +
"| Out-File "$ROOTPATH\User_input.txt" -Force

