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ABSTRACT  

Analysis of cumulative incidence functions requires special attention when there are 
competing events. A competing event is an event that either precludes or changes the 

probability of the event of interest from occurring. There are different approaches to 

handling competing events in survival analysis. One approach, developed by Fine and Gray 
(1999), for example, cannot be applied directly to stratified data or to data with time-

varying covariates. For these situations, Ruan and Gray (2008) proposed an alternative 
approach (Kaplan-Meier multiple imputation (KMI)) which recovers the missing censoring 

times for those who experienced a competing event. The missing censoring times are 

imputed from a non-parametric multiple-imputation approach based on the Kaplan-Meier 
estimator. In this paper, we introduce a user-friendly SAS Macro (%SASKMI) to implement 

this approach. %SASKMI generates a dataset with a new event status and imputed times 

that can be analyzed using a regular Cox model (PROC PHREG).  The output dataset follows 
PROC MI data standards so PROC MIANALYSIS can be used to summarize the results. To 

demonstrate the effectiveness of the new macro using a real data example, we compare the 
effect estimates, standard errors, and run times obtained after applying %SASKMI to that of 

a standard Fine and Gray model as implemented in PROC PHREG. We find that %SASKMI 

performs similarly to the Fine and Gray option in PROC PHREG but with significant run time 

reduction. 

INTRODUCTION  

Survival analysis is the analysis of time to event data such as the time to a cardiovascular 

event or time to death. Sometimes, in medical studies, observation of the event of interest 
for a patient is not possible due to the study ending or the patient failing to return for a 

follow-up visit prior to the event occurring. These situations that prevent researchers from 
observing an individual from start to finish are known as censoring events. Under the 

assumption that censoring is non-informative, meaning that it is not imbalanced across 

exposure groups, regular survival models are sufficient for the correct analysis of the data. 

Statisticians must pay special attention to the existence of competing events. A competing 

event is a separate event that either changes the probability of the event of interest from 

occurring or precludes the event of interest from occurring (Bakoyannis and Touloumi, 
2012; Gooley et al, 1999; Pintilie, 2007; Lau et al, 2009). For example, death is considered 

a competing event since it prevents the outcome of interest from happening. In survival 
analysis, competing events are problematic because they can cause overestimation of the 

probability of survival if they are ignored (Schuster et al, 2020). 
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Competing risks methodology has gained popularity in the medical literature because it 
allows for the calculation of “real-world” probabilities for the event of interest (Pintilie, 

2007). It accomplishes this by keeping individuals who have had a competing event in the 

risk set – instead of dropping them from the risk set (as in a censoring approach) (Lau et al, 
2009). Fine and Gray (1999) proposed a proportional hazards model for the subdistribution 

of a competing risk that allows one to make statements related to the cumulative incidence 
function and risks (Fine and Gray, 1999). The model can be implemented in the PHREG 

procedure in SAS where the competing event is specified in the MODEL statement by adding 

the EVENTCODE= option.  

The Fine and Gray model is not suitable in many situations such as stratified analyses, time-

varying covariates, weighted analysis of case-cohort samples and clustered survival data 

analysis (Ruan and Gray, 2008). There have been several extensions to the Fine and Gray 
model to accommodate clustered and stratified data (Zhou et al, 2010, 2011; Satsahiam et 

al, 2006), but implementation of these models is complex. 

Ruan and Gray (2008) proposed a Kaplan–Meier multiple imputation approach (KMI) that 

recovers potential censoring times for failures from competing causes (Arthur et al, 2010). 

Their approach was based on the fact that standard survival regression analysis methods 
can be applied to “censoring complete” data where potential censoring times are observed 

for all the individuals who have failed from a competing event (Fine and Gray, 1999). The 
approach can be applied in most of the settings mentioned above and the “complete” data 

can be analyzed using techniques and software developed for ordinary right censored 

survival data. 

In this paper we introduce an innovative and user-friendly SAS Macro (%SASKMI) that 

implements the KMI approach. To demonstrate the effectiveness of the approach, we use an 

example dataset to perform a comparison of the effect estimates, standard errors, and run 
times after application of the %SASKMI macro and the Fine and Gray model as 

implemented in PROC PHREG.  

THE KAPLAN-MEIER MULTIPLE IMPUTATION (KMI) APPROACH 

The KMI approach reformulates competing risks as a missing data problem, meaning that 
the potential censoring time for those people who experience the competing event is 

missing or unobserved. The procedure then imputes the missing data under the assumption 
that the Kaplan-Meier survival estimator of the conditional censoring distribution can be 

applied to those with competing events. Additionally, a model for the censoring distribution 

can be adjusted for covariates if they are found to be correlated with the censoring 
mechanism. In this case, the imputed censoring times are randomly drawn from the 

estimated conditional censoring distribution. When the largest time is an event time (main 
or competing event), an additional censoring time  needs to be added to the censoring 

distribution. In this macro, we specify  as 1, meaning that we will add one day to the 

largest observed event time. As a result, the imputed censoring time will be larger than the 

observed time for an individual with the competing event.  

Each observed competing event time is then replaced with the imputed potential censoring 
time rendering censoring-complete data (Fine and Gray, 1999). This process is repeated to 

form k imputed data sets. After the imputation, we can apply a regular Cox proportional 

hazards regression model to estimate the effect of the variable of interest within each 
imputation k. The final estimate is then obtained by combining the coefficients from each of 

the k analyses using the Rubin’s rule (Little and Rubin, 1987). See Figure 1, for a diagram 
of the process of estimating one coefficient using 5 imputed datasets. The process can be 

expanded to the estimation of multiple coefficients. 
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Figure 1. Example flow chart of the implementation of the KMI approach with 5 

imputations.  

THE %SASKMI MACRO 

The %SASKMI macro implements the KMI approach to impute potential censoring times for 
those individuals with a competing event. The macro is called with the parameters included 

in Table 1. We recommend including covariates, such as age, sex and race, that potentially 

correlate with the censoring distribution. When covariates are specified, censoring times are 
imputed from a proportional hazard model, otherwise, the censoring times are imputed from 

the KM estimator of the observed censoring distribution. The user specifies the code number 

for the main event and the censoring event, and all other codes will be considered as 

competing events. 

Macro parameters Required/ Optional Definition 

DATA= Required SAS input data set name. 

EVENT=  Required The variable name of the outcome of interest. This is 

usually coded as 0, 1, or 2 where 0 denotes a 
censoring event, 1 denotes the outcome of interest and 

2 denotes the competing event. The macro allows for 

more than one competing event. 

EVENTCODE= Optional The code number for the outcome of interest in the 

EVENT variable, default is 1.  

CENSCODE= Optional The code number for a censored outcome in the EVENT 

variable, default is 0. 

TIME= Required The time to event variable.  

ADJVAR= Optional List of covariates to be used to model the censoring 

distribution.  

CLASS= Required if category 

variable exist in 

ADJVAR 

All categorical covariates from ADJVAR must be 

included here.  

NIMP= Required The number of imputations. 

SEED= Optional The random control seed. The default is 123. Since the 
KMI approach is based on randomly drawing censoring 

times from the estimated conditional censoring 

distribution, we recommend specifying a SEED in order 

to replicate the results.  
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OUT= Optional The name of the output dataset. The default is “OUT”. 

Table 2. Parameters for Macro %SASKMI 

The macro generates an output dataset with three new variables: NEWTIME, NEWEVENT 

and _IMPUTATION_. NEWTIME contains the imputed time. NEWEVENT is coded so that 
individuals with the competing event are now coded as censored. _IMPUTATION_ contains 

the imputation number. The macro also generates two figures, one containing the model 
information and the other providing summary statistics for event time, censoring time and 

each imputed time. 

The macro is available upon request from the author (Jialin Han) and is posted to GitHub 
website (https://github.com/hjlhanjialin/SASKMI). Once downloaded, use the %INCLUDE 

statement to specify the directory where the “SASKMI” macro is stored. 

%include "Directory/SASKMI.SAS"; 

EXAMPLE 

DATA 

As an example, we used a random sample of 30,000 individuals from a study investigating 

the effect of glomerular disease subtypes on cardiovascular death in patients on dialysis 

(O’Shaughnessy et al, 2018). The original data was obtained from the United States Renal 
Data System (USRDS), a national registry of US patients with end stage renal disease. The 

data contain information on 62,874 adult patients with ESRD attributed to one of six 
glomerular disease subtypes (IgA nephropathy (IgAN), focal segmental glomerulosclerosis 

(FSGS), membranous nephropathy (MN), membranoproliferative glomerulonephritis 

(MPGN), lupus nephritis (LN), vasculitis (VAS)) who initiated dialysis in the continental US 

between January 1st, 1997 and October 1st, 2014.  

The following variables are included in the dataset: 

• ID: The system generated identification.  

• CV_DEATH: Outcome, cardiovascular death at 5 years. Patients are censored for loss 

insurance coverage or end-of-study (31 December 2014). Kidney transplantation and 
non-cardiovascular death were treated as competing events. The variable is coded as 0 

(censored event), 1 (cardiovascular death) or 2 (competing event). 

• TIME2CV_DEATH: Time to cardiovascular death in days. 

• GN: Main exposure variable indicating the six glomerular disease subtypes.  

• AGE: Baseline age.  

• RACE:  Race.  

• REGION: Region. 

The following code inputs the data: 

Proc format; 

 value race 1 = “White” 2 = “Black” 3 = “Asian” 4 = “Other”; 

 value region 1 = “Northeast” 2 = “Midwest” 3 = “South” 4 = “West”; 

 value GN 1=”FSGS” 2=”MN” 3=”MPGN” 4=”VAS” 5=”LN” 6=”IgAN” 

; 

run; 

Data GNstudy; 

input ID CV_DEATH TIME2CV_DEATH AGE RACE REGION GN; 

 datalines; 

1 2 285 66 1 2 5 
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2 0 1826 57 3 1 1 

3 1 435 46 4 4 6 

4 2 132 51 1 3 1 

5 0 1826 56 2 3 1 

6 2 36 71 2 4 6 

7 0 1826 32 1 1 1 

8 2 171 75 2 2 2 

9 0 1826 62 1 2 1 

10 0 1826 46 1 4 5 

…… more lines ……  

30000 0 298 45 3 4 6 

; 

run; 

MACRO OUTPUT 

The following code runs the %SASKMI macro with 10 imputations. The KMI model includes 

the patient characteristics: AGE, RACE, and REGION.  

%SASKMI( 

 DATA  = Gnstudy,  

 ADJVAR = AGE RACE REGION, 

 CLASS  = RACE REGION, 

 EVENT  = CV_DEATH,  

 EVENTCODE = 1,  

CENSCODE = 0,  

 TIME   = TIME2CV_DEATH,  

 NIMP   = 10,  

 SEED   = 123,  

 OUT   = OUT 

); 

Once the macro is finished, it outputs a dataset named “OUT” with the three new variables: 

NEWTIME, NEWEVENT and _IMPUTATION_. 

The macro outputs a summary of the model specifications as shown in Figure 2.  

Model Information 

Data Set GNstudy 

Method KMI 

Number of Imputations 10 

Time variable time2cv_death 

Event variable cv_death 

Censoring code 0 

Event code 1 

Model Info cv_death*time2cv_death = AGE RACE REGION 

Seed for random number generator 123 

Figure 2. KMI Model Information 

Figure 3 shows the output generated summarizing the time to event variable. It includes 

summary statistics among those with the main event of cardiovascular death (Event time), 

among those originally censored (Censoring time) and among those with the competing 
event for each imputation data set (Imputation time 1-10). Note that the imputed times are 

stable, with a median imputed time to event of 1826 days in all imputed data sets.  
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Figure 3. Summary of Imputation Time 

ESTIMATION OF THE FINAL EFFECT USING %SASKMI 

Using the NEWTIME and NEWEVENT variables created in the %SASKMI output dataset, we 
can then perform Cox proportional hazards regression to estimate the effect of the main 

exposure on the outcome. The first step is to run PROC PHREG to fit the model to each 

imputed dataset. The final estimate is obtained by running PROC MIANALYZE. The following 

statements demonstrate this process. 

/* 

Using OUT data with NEWTIME NEWEVENT 

Run regular Cox model on each imputed dataset 

*/ 
PROC PHREG DATA=OUT; 

 BY _imputation_; 

 CLASS RACE REGION GN(REF = “IgAN”)/PARAM=REFERENCE; 

 MODEL NEWTIME*NEWEVENT(0) = GN AGE RACE REGION; 

 ODS OUTPUT ParameterEstimates = EST; 

RUN; 
/*Process the output data to create a new variable with labels that refer to 

the various levels of the exposure variable*/ 

DATA EST1; 

 SET EST; 

 Var = Parameter||Label; 

RUN; 

PROC SORT DATA=est1; 

 BY var; 

RUN;  

/*Combine results to get overall estimate*/ 

PROC MIANALYZE DATA=EST1; 

 BY var; 

 MODELEFFECTS estimate; 

 STDERR StdErr; 

 ODS OUTPUT ParameterEstimates = est_out; 

run; 

ESTIMATION OF THE EFFECT USING THE FINE AND GRAY MODEL 

For comparison, we also applied the Fine and Gray model as implemented in PROC PHREG 

with the EVENTCODE option. The estimated subdistribution coefficients are provided directly 

in the PROC PHREG output. 
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Proc phreg data=GNStudy; 

CLASS RACE REGION GN(REF = “IgAN”)/PARAM=REFERENCE; 

MODEL TIME2CV_DEATH*CV_DEATH(0) = GN AGE RACE REGION/eventcode=1; 

run; 

RESULTS 

We found the estimates between the two models to be very similar (Table 2). For example, 

the estimated subdistribution coefficient (standard error) for LN vs IgAN is 0.25 (0.09) in 
the Fine and Gray model and 0.24 (0.09) when using the KMI approach. However, we found 

that the %SASKMI macro uses a fraction (4%) of the time it takes to run the Fine and Gray 

model (8.1 seconds vs. 3.1 minutes, respectively). 

  Fine and Gray 

(PROC PHREG) 

KMI 

(%SASKMI) 

Total run time 3.1 minutes 8.1 seconds 

Exposure coefficient estimate (SE)  

 FSGS vs IgAN 0.32(0.07) 0.32(0.07) 

 LN vs IgAN 0.24(0.09) 0.25(0.09) 

 MN vs IgAN 0.24(0.10) 0.24(0.10) 

 MPGN vs IgAN -0.07(0.09) -0.07(0.09) 

 VAS vs IgAN 0.67(0.08) 0.66(0.08) 

Table 2. Total run time and coefficient estimate (standard error) comparison 
between the Fine and Gray model in PROC PHREG and the KMI approach 

in %SASKMI. 

CONCLUSION 

Our macro successfully implements the KMI approach in SAS and provides a more flexible 
and efficient tool to model time to event data in the presence of competing events when 

compared to the application of the Fine and Gray model. Parameter estimates and standard 

errors from our macro are equivalent to those obtained using a Fine and Gray model. In 
addition, our macro significantly reduces the run time in comparison with fitting the Fine 

and Gray model in PROC PHREG.    
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