

1

Paper 1019-2021

A SAS Macro to Perform Bootstrapping for Internal Validation
of Time-Dependent Area Under the Curve

Jialin Han, Stanford University; Jiali Ling, University of Arizona;
Maria E. Montez-Rath, Stanford University; Margaret R. Stedman, Stanford

University

ABSTRACT

We sought to develop an algorithm in SAS that uses the bootstrap for validation of a time-

to-event prediction model and, in particular, to measure discrimination, which is the model’s
ability to distinguish between those who develop and those who do not develop the outcome

of interest at a specific time t. The area under the curve at time t, AUC(t), is a statistic

typically used to estimate discrimination, that can be implemented in SAS using the
ROCOPTIONS command in PHREG. However, the AUC(t) is computed directly from the data

used to develop the model so that overfitting is common. Overfitting occurs when the model
is excessively complex, e.g., by including too many predictors and as a consequence, the

model performs poorly when applied to other data. To assess the amount of overfitting, one

can perform internal validation, using the same dataset, or external validation, using a new
dataset. Here, we present a SAS Macro to compute a validated AUC(t) using the bootstrap

method. The bias corrected AUC(t) is calculated by applying the Cox Proportional Hazards

Model to the bootstrapped data and applying the parameter estimates to the original data.
The macro generates an estimate of the bias, the bootstrapped distribution of the AUC(t)

and displays the original AUC(t) and the bias-corrected AUC(t) in an output table.

INTRODUCTION

It is important to evaluate the performance of a prediction model. For a model with a binary
outcome, the most commonly used statistic to measure discrimination is the concordance

statistics (C-statistic). The C-statistic takes all possible pairs of individuals, one with the
outcome of interest and the other without and calculates the proportion of pairs whose

observed and predicted outcomes agree (higher predicted risk for those with the outcome).

The higher the C-statistic, the better the model discriminates individuals who experience the
outcome of interest from those who do not. The receiver operator characteristic (ROC)

curve also measures discrimination of the predication model, by plotting the sensitivity

versus 1 minus the specificity. The sensitivity is the proportion of individuals who were
predicted to be positive for the outcome out of the total individuals who are observed to be

positive. The specificity is the proportion of individuals who predicted as negative for the
outcome out of the total individuals who are observed to be negative. Area under the curve

(AUC), which equals the C-statistic, is computed by estimating the area under the ROC

curve, essentially summarizing the entire curve into a single statistic.

In many epidemiological studies the outcome of interest is time to event, such as time to

tumor detection or time to transplant. Since model accuracy could vary over the follow-up
period and ROC curves are computed at specific time points, several approaches for

estimating time-dependent ROC curves have been proposed, for example, the Kaplan Meier

(KM) estimator, then Nearest Neighbor Estimator and the Inverse probability of Censoring
Weighting estimator (Heagerty, 2000; Uno, 2007). These approaches are supported in SAS

PHREG with ROCOPTIONS (Guo, 2017). In this paper, we estimate the time-dependent

sensitivity and specificity using the KM estimator.

2

Validation is an important part in the model development process because it checks the
accuracy of the model’s performance. This can be done either using external data, where

new data is available, or with internal data, using the original sample. In practice, external

validation is hard to implement since it requires extra time and data collection, so, internal
validation is recommended to be done at the time of model development. There are several

techniques for internal validation: split-sample, cross-validation, bootstrapping. Some
research has shown that bootstrapping is recommended for estimation of the ROC curve by

internal validation because it provides stable estimates with low bias (Steyerberg, 2001). In

this paper, we developed a SAS Macro to perform internal validation of the AUC(t) by the

bootstrap method.

TIME DEPENDENT ROC CURVE

In SAS, we can use the PROC PHREG procedure with the PLOTS=ROC option to obtain time-

dependent ROC curves. The ROCOPTIONS option offers various control mechanisms to
specify the time points for ROC curves (AT=), the method of calculating ROC curves

(Method=), and the AUC(t) statistics (AUC). In this paper, we selected the Kaplan-Meier

method for both estimation and validation of the time dependent ROC curve.

The following statements can be used to run a Cox model and request the calculation of the

AUC. Below, time2event is the time to the first event. Event is a binary indicator for having
the event (1 = yes, 0 = no). Age and sex are the predictors in the model. As output, it

provides the AUC at 365 days. Additionally, there is an option for SAS to output sensitivity

and specificity by adding OUTROC= within the rocoptions command.

/*AUC(t) in original sample*/

proc phreg data=DT plots=roc rocoptions(at= 365) method = KM) ;

model time2event*event(0)= AGE SEX;

run;

METHOD

To validate the original AUC(t) from PROC PHREG, we will use the KM estimator to generate

the bootstrapped AUC(t). The KM estimator of the AUC(t) is defined as follows.

For each individual i (i =1,…n), let 𝑇𝑖 be the failure time, 𝑀𝑖 be the predicted value for that

individual and let 𝐷𝑖(𝑡) = 1 indicate that individual i has had an event prior to time t. Let c be

a threshold for classifying the predicted values as positive or negative. In our macro, we
calculate sensitivity and specificity for all possible values (c) in the range of 𝑀𝑖. The time

dependent sensitivity and specificity are defined as (Heagerty, 2000):

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(𝑐, 𝑡) = 𝑃{𝑀𝑖 > 𝑐|𝐷(𝑡) = 1}

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦(𝑐, 𝑡) = 𝑃{𝑀𝑖 ≤ 𝑐|𝐷(𝑡) = 0}

The estimates for sensitivity (Se) and specificity (𝑆𝑝) at time t are then calculated by

combining the conditional KM estimator of the survival function, 𝑆̂(𝑡|𝑀𝑖), for the subset of

Mi>c, and 𝐹̂𝑀(𝑐), the cumulative distribution function of the subset of Mi ≤ 𝑐 (Cattaneo, 2017):

𝑆𝑒̂(𝑐, 𝑡) =
{1 − 𝑆̂(𝑡|𝑀𝑖 > 𝑐)} (1 − 𝐹̂𝑀(𝑐))

1 − 𝑆̂(𝑡)

3

1 − 𝑆𝑝̂(𝑐, 𝑡) =
{𝑆̂(𝑡|𝑀𝑖 > 𝑐)} (1 − 𝐹̂𝑀(𝑐))

𝑆̂(𝑡)

In our macro, we used PROC LIFETEST to generate the KM estimator for 𝑆̂(𝑡). 𝑆̂(𝑡|𝑀𝑖 > 𝑐) is
the conditional survival function for the subset of data where 𝑀𝑖 > 𝑐. We used the WHERE

statement in PROC LIFETEST to restrict the data to those individuals whose predicted values
meet the threshold criteria, c , and calculate the conditional survival function. 𝐹̂𝑀(𝑐) is the

cumulative distribution function for the predicted values, 𝑀𝑖. This is computed as the

proportion of observations below the threshold c . We nested the procedure within a do loop

to estimate the survival and cumulative distribution functions across all possible values for
the threshold c .

%macro Sen_Spe;

/*This macro uses the dataset orig_z1 that contains predicted values for each

individual. Orig_z1 is obtained from PROC PHREG, previously run with the

baseline statement:

baseline out=orig_z xbeta=betaz covariates=orig timelist=&Timepoint;

orig is a dataset of individuals for which you want the predicted values*/

%let i = 1;

/*Calculate Sensitivity and Specificity at each criterion c*/

%do %until(%sysevalf(&&c&i. >= &m,boolean) = 1);

/*Estimate Conditional Survival Function Shat_c = S(t|M>c) at time T*/

proc lifetest data=orig_z1 method=KM outsurv=shat_c noprint;

where betaz > &&c&i..;

time &time2event_2*&event(0);

run;

proc sort data=shat_c;

by &time2event_2;

run;

/*Specify Timepoint T*/

data _null_;

set shat_c end=eof;

where &time2event_2 <= &Timepoint and not missing(survival);

if eof then call symput('shat_c',put(survival, best20.));

run;

/*Empirical Distribution Defined as Obs Below C Divided by Total Obs*/

proc sql;

select count(*) into: n_c from orig_z1 where betaz <= &&c&i.;

quit;

data Out;

c = &&c&i.;

/*Sensitivity*/

boot_sens = (1 - &shat_c)*(1 - &n_c/&n)/(1 - &shat);

/*Specificity*/

boot_spec = 1 - (&shat_c*(1 - &n_c/&n))/(&shat);

run;

proc append data=out base=res;

run;

%let i = %eval(&i+1);

%end;

data Out;

c = &&c&i.;

boot_sens = 0;

boot_spec = 1;

run;

proc append data=out base=res;

run;

%mend;

4

The %Sen_Spe macro generates a dataset with the sensitivity and specificity for all possible

threshold values at time t. The area under the curve, AUC(t):

𝐴𝑈𝐶̂(𝑡) = ∫ 𝑆𝑒̂(𝑐, 𝑡)𝑑[1 − 𝑆𝑝̂(𝑐, 𝑡)]
1

0

can be estimated by applying the trapezoidal rule such that (Shiang, 2004):

 ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 ≅ ∑

𝑓(𝑥𝑘−1)+𝑓(𝑥𝑘)

2
∗ ∆𝑥𝑘

Where 0 < 𝑎 = 𝑥0 < 𝑥1 < ⋯ < 𝑥𝑁 = 𝑏 < 1, ∆𝑥𝑘 = 𝑥𝑘 − 𝑥𝑘−1

/*Step 5 Calculate AUC(t), using data with sensitivity and specificity at

each C.*/

proc sort data=res(rename=(Boot_sens = sens));

by descending boot_spec Sens;

run;

data area1;

set res end=last;

x = 1 - boot_spec;

xprev=lag(x);

yprev=lag(sens);

output;

if last then do;

xprev=x;

yprev=sens;

x=1;

sens=1;

 output;

end;

run;

/*Apply Trapezoidal rule */

data _null_;

retain area 0;

set area1(firstobs=2) end=last;

area=area+(sens+yprev)*(x-xprev)/2;

if last then call symput('ROC_Boot',put(area, best20.));

run;

BOOTSTRAPPING

The bootstrap is a technique used to obtain estimates of statistics without making
assumptions about the actual distribution of the data. It replicates the process of sample

generation by drawing, with replacement, a sample of the observed data points of the same
size as the original data. The newly generated data is called the bootstrap sample. In SAS,

bootstrap samples can be generated by using PROC SURVERYSELECT with the replacement

option (method=urs). Efron (Efron, 1993) introduced several bootstrap procedures for
obtaining a nearly unbiased estimate of future model performance. In this paper, we apply

the enhanced bootstrap method, which uses the difference between the AUC(T) estimated
on the original data and the estimated AUC(t) from applying a model estimated in the

bootstrap sample to the original data as the bias incurred from overfitting or “optimism”.

This process is repeated and averaged to obtain the average optimism. The average
optimism is subtracted from the AUC(t) calculated on the original sample to get the bias-

corrected estimate of the AUC(t).

METHOD

To implement internal validation of the 𝐴𝑈𝐶̂(𝑡), we bootstrap our sample B times. Then we

estimate the 𝐴𝑈𝐶(𝑡)̂
𝑏 for each bootstrapped sample using the following steps:

5

1) Using the original dataset, estimate the time-dependent sensitivity (𝑆𝑒̂0) and

specificity (𝑆𝑝̂0) from the Cox Proportional Hazards (Cox PH) model and calculate

𝐴𝑈𝐶(𝑡)̂
0.

2) Select B independent bootstrap samples, by sampling the original data with
replacement B times using PROC SURVEYSELECT. For each 𝑏 = 1 … . 𝐵 bootstrap

sample:

a. Fit a Cox PH model and apply the parameter estimates to the original data to
estimate 𝑀𝑏𝑖 and the range of threshold 𝐶𝑏.

b. Calculate the time-dependent sensitivity (𝑆𝑒̂𝐵𝑜𝑜𝑡𝑏) and specificity (𝑆𝑝̂𝐵𝑜𝑜𝑡𝑏
) for

each 𝐶𝑏.

c. Estimate 𝐴𝑈𝐶(𝑡)̂
𝑏 from the sensitivity (𝑆𝑒̂𝐵𝑜𝑜𝑡 𝑏) and specificity (𝑆𝑝̂𝐵𝑜𝑜𝑡𝑏

).

The following code generates N bootstrap samples using PROC SURVEYSELECT, fits the

Cox PH model on the bootstrap sample (boot) and applies the parameter estimates to
original sample to obtain 𝑀𝑏𝑖 (orig_z).

/*Bootstrap orginal sample*/

proc surveyselect data=&DT NOPRINT seed=&seed outhits

 out=Boot

 method=urs /* resample with replacement */

 samprate=1 /* each bootstrap sample has N observations */

 reps=&Nboot; /* generate Nboot bootstrap resamples */

run;

/*Cox model on Boot&n data*/

proc phreg data=Boot noprint;

by Replicate;

class &cls_var/ param=reference;

model &time2event*&event(0) = &adj_var/rl ridging=absolute;

/*Apply parameter on original data*/

baseline out=orig_z xbeta=betaz covariates=orig timelist=&Timepoint;

run;

3) Estimate 𝐴𝑈𝐶(𝑡)̂
𝑜𝑝 optimism by the sample average of the B replications

𝐴𝑈𝐶(𝑡)̂
𝑜𝑝 =

1

𝐵
∑(𝐴𝑈𝐶(𝑡)̂

𝑏 − 𝐴𝑈𝐶(𝑡)̂
0)

𝐵

𝑏=1

4) Final biased-correlated 𝐴𝑈𝐶(𝑡)̂ equals to

𝑨𝑼𝑪(𝒕)̂ = 𝑨𝑼𝑪(𝒕)𝟎
̂ − |𝑨𝑼𝑪(𝒕)̂

𝒐𝒑|

THE %TIMEAUCBOOT MACRO

The %TIMEAUCBOOT macro parameters are shown in Table 1.

DATA= (Required) SAS data set name.

TIMEPOINT= (Required) Specific time point for AUC.

EVENT= (Required) The outcome of interest. This has to be
coded as 0 or 1, where 0 means censored and 1 means

having the outcome of interest.

TIME2EVENT= (Required) Time to the event (or censoring).

ADJ_VAR= All covariates adjusted for in the model.

6

CLS_VAR= (Required if categorical variable exist in ADJ_VAR) All
categorical covariates from ADJ_VAR. The reference

can be specified in this statement.

NBOOT = The number of bootstrap samples. The default is 10.

SEED= Random control seed. The default is 123.

METHOD=KM Methods of estimating time-dependent AUC. Currently

only the Kaplan-Meier method is available.

Table 1. Parameters for Macro %TIMEAUCBOOT

The Macro generates two figures, and one table. The Figure 1 displays the estimated bias
within each bootstrap sample. The bias is calculated as the bootstrap AUC(t) minus the

original AUC(t). The closer to zero, the less biased are the AUC(t) estimates from each

bootstrap sample. The Figure 2 shows the distribution of the bootstrapped AUC(t). Ideally,
we would like to see a distribution with a peak at a certain value rather than a flat

distribution. Table 2 includes the time point which was specified to estimate the AUC(t).

The pre-validation AUC(t) from the original sample and validated AUC(t).

The macro is available upon request from the author (Jialin Han) and is posted to GitHub

website (https://github.com/hjlhanjialin/TIMEAUCBOOT). Once downloaded, use the

%INCLUDE statement to specify the directory where the “TIMEAUCBOOT” macro is stored.

%include "Directory/TIMEAUCBOOT.SAS";

EXAMPLE

This example uses a data from Transplant Readiness Assessment Clinic (TRAC), a transplant

waitlist management strategy to evaluate a patient’s readiness for kidney transplant.

(Cheng, 2018; Watford, 2020). The file contains data for 199 patients from 2017 to 2018.
We are interested in assessing the predictive accuracy of a survival model that predicts the

time to removal from the waitlist or death, adjusted for age group, gender and self-reported

SF-36 physical functioning subscale scores. The data contains the following variables:

• ID: The system generated identification number

• REC_SF36_AVG: The average SF-36 scores

• REC_ISMALE: The gender indicator: 0=female and 1=male

• AGE_GRP: The age group variable. 1=age less than 45, 2=age between 45 and 70, and

3=above 70

• EVENT: The outcome 1=removal from waitlist or death, 0=censored prior to removal

from waitlist or death

• FOLLOW_TIME: The time to the first event (censoring or outcome of interest).

The following statements create the TRAC dataset:

Data TRAC;

format age_grp agegr.;

Input ID REC_SF36_AVG REC_ISMALE AGE_GRP FOLLOW_TIME EVENT;

datalines;

1 50 0 2 259 1

2 75 1 2 40 1

3 90 1 2 185 0

4 85 1 1 620 0

5 80 1 2 625 0

6 75 0 2 480 0

https://github.com/hjlhanjialin/TIMEAUCBOOT

7

7 80 0 2 314 0

8 20 0 2 730 0

9 90 0 2 415 0

10 95 1 2 385 0

11 40 0 2 532 0

12 60 0 2 101 0

13 25 0 2 7 1

14 85 0 2 511 0

15 80 0 1 183 0

... more lines ...

198 80 0 1 98 0

199 95 1 1 397 0

;

The following code is used to run the macro to validate the time-dependent AUC.

%TIMEAUCBOOT(

 DT = TRAC,

 TIMEPOINT = 365,

 ADJ_VAR = AGE_GRP REC_SF36_AVG REC_ISMALE,

 CLS_VAR = AGE_GRP REC_ISMALE(REF = “1”),

 TIME2EVENT = FOLLOW_TIME,

 EVENT = EVENT,

 NBOOT = 100,

 METHOD = KM,

 SEED = 123

);

As shown in Figure 1, most of the values are negative suggesting that the original model
performed better than the bootstrapped model, i.e., there was overfitting present. The

distribution of the bootstrapped AUC(t) is shown in Figure 2 with values ranging between

0.75-0.80 with a few extreme values below 0.70. This suggests that the model performance

is fairly stable.

In Table 2, the first two columns show the method (KM) and the timepoint (t=365 days)

specified in the macro as the follow-up time for estimating the AUC(t). The pre-validation
AUC(t) from the original sample equals to 0.79, the average bias or optimism equals to -

0.02 and the final biased-corrected AUC(t) equals to 0.77. These results demonstrate that
after internal validation, the final bias corrected AUC(t) is 0.77, which is slightly smaller

than the original estimate but suggesting good performance.

8

Figure 1. Bias for Each Bootstrap

Figure 2. Distribution of Bootstrap AUC(t)

Method Time point
AUC original

sample
Over-optimism

Bias-corrected
AUC

KM 365 0.79190 -0.020478 0.77142

Table 2. Final Output

CONCLUSION

With the increased popularity of developing prediction models for survival outcomes it is

important to have readily available tools to evaluate the performance of these models. The
%TIMEAUCBOOT macro provides a useful and convenient tool for internal validation of the

time-dependent AUC by using the bootstrap. Not only does it produce an estimate for the
bias-corrected 𝐴𝑈𝐶(𝑡), it also displays the distribution of bias within each bootstrap sample.

By using this tool researchers can evaluate the stability of the final model.

9

REFERENCES

Heagerty, P. J., Lumley, T., and Pepe, M. S. (2000). “Time-Dependent ROC Curves for

Censored Survival Data and a Diagnostic Marker.” Biometrics 56:337–344.

Uno, H., Cai, T., Tian, L., and Wei, L. J. (2007). “Evaluating Prediction Rules for t-Year

Survivors with Censored Regression Models.” Journal of the American Statistical Association

102:527–537.

Steyerberg, EW., Harrell, FE., Borsboom, G., Eijkemans, M.J.C., Vergouwe, Y., Habbema,

J.D.K. (2001) “Internal validation of predictive models: Efficiency of some procedures for
logistic regression analysis” Journal of Clinical Epidemiology, Volume 54, Issue 8, Pages

774-781.

Guo, C., So, Y., and Jang, W. (2017). “Evaluating Predictive Accuracy of Survival Models
with PROC PHREG” In SAS Conference Proceeding: SAS Global Forum 2017, Orlando,

Florida: SAS Institute Inc.

Cattaneo, M., Malighetti, P., Spinelli, D. (2017) “Estimating Receiver Operative

Characteristic Curves for Time-dependent Outcomes: The Stroccurve Package” The Stata

Journal: 17(4):1015-1023.

Shiang, K. (2004) “The SAS® Calculations of Areas Under the Curve (AUC) for Multiple

Metabolic Readings”, In SAS Conference Proceeding: Western Users of SAS Software 2004,

Pasadena: SAS Institute Inc.

Efron, B. and Tibshirani, R. 1993. An Introduction to the Bootstrap. New York: Chapman

and Hall.

Cheng, XS., Busque, S., Lee, J., Discipulo, K., Hartley, C., Tulu, Z., Scandling, JD., Tan, JC.

(2018) “A new approach to kidney wait-list management in the kidney allocation system

era: Pilot implementation and evaluation.” Clin Transplant. 2018 Nov;32(11):e13406.

Watford, DJ., Cheng, XS., Han, J., Stedman, MR., Chertow, GM., Tan, JC. (2021) “Toward
telemedicine‐compatible physical functioning assessments in kidney transplant

candidates.” Clin Transplant. 2021; 35:e14173.

ACKNOWLEDGMENTS

We would like to thank Dr. Jane Tan, Dr. Daniel Watford and Dr. Xingxing Cheng for use of
the TRAC data which provided motivation for developing this macro. The John M. Sobrato

Gift fund provided funding to support this project.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Jialin Han

Stanford University

Colin-Jialin.han@stanford.edu

https://med.stanford.edu/profiles/jialin-han

	Abstract
	Introduction
	Time DepENDENT ROC CURVE
	METHOD

	Bootstrapping
	METHOD

	,𝑨𝑼𝑪(𝒕).=,,𝑨𝑼𝑪(𝒕)-𝟎..−,,,𝑨𝑼𝑪(𝒕).-𝒐𝒑..
	The %timeaucboot macro
	example
	Conclusion
	References
	Acknowledgments
	Contact Information

