

Uniform Hashing of Arbitrary Input
Into Key-Exclusive Segments

Paul Dorfman, Independent Consultant

Don Henderson, Henderson Consulting Services

Don Henderson has used SAS software since 1975, designing and developing
business applications with a focus on data warehouse, business intelligence,
and analytic applications. Don was one of the primary architects in the initial
development and release of SAS/IntrNet software in 1996, and he was one of
the original developers for the SAS/IntrNet Application Dispatcher. He is also
the author of three SAS Press books including “Data Management Solutions
Using SAS® Hash Table Operations: A Business Intelligence Case Study” that he
co-authored with Paul Dorfman.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

Problem: Input Too Large for Resources

A. Get more resources:

1. Request more resources (disk, memory, etc.).

2. If not enough, request more.

3. Etc.

B. Divide-and-conquer:

1. Segment input into a number of smaller chunks.

2. Process each segment individually.

3. Add output from each process to the final result.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

Process in Segments?

• Problem: Input too large to aggregate in a single pass

• Can it be done in multiple passes?

• Need final output the same as from a single pass, e.g.:
select ID, Key

, sum(Var) as SUM

, count(distinct Var) as UCOUNT

from Trans

group ID, Key

• The techniques presented will focus on aggregation. However they
are applicable to other data management tasks like joining and
sorting data tables.

Count Distinct

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

Segmented Aggregation: Need Key-Independent Segments

Criteria:

• Required: No key-value in one segment must be present in another.

• Desired: Nearly even number of unique key-values across all segments.

How to achieve:

• Based on a priori knowledge about the values of certain key components.
• Such information can be obtained from the business user, or prior analysis.

• It must be validated, which can be time consuming.

• Mapping the segments via a hash function – the focus of this presentation.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

Background
• Composite key-values in large inputs are diverse and numerous.

• There exists some combination of their bits/bytes whose values split the distinct key-
values evenly according to some formula.

• Problem: We know neither the combination nor the formula.

Concept
• We don’t need to know!

• Instead, use a hash function to map the input key-values to a string HKEY in such a
manner that:

1. Key-value -> HKEY mapping is highly random.

2. Each unique key-value maps to one, and only one unique value of HKEY.

• Split the unique values of some part of HKEY into N more or less equal sets.

• Use these N sets (e.g. in a WHERE clause) to split input into N segments.

Segmentation Based on a Hash Function: Concept

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

Using a Hash Function

• Concatenate the key components (via a delimiter - later on that).
• E.g., for our sample input file Trans:

Concat = catX (‘:’, ID, KEY) ;

• Pass the result to hash function MD5 to obtain its signature HKEY:

length HKEY $ 16 ;
HKEY = MD5 (Concat) ;

Or just:
HKEY = put (MD5 (catX (‘:’,ID,KEY), $16.) ;

• Function SHA256 can be used instead of MD5 - later on that.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

Our Sample Data Trans

Obs ID KEY VAR

1 B 2 1

2 B 2 2

3 B 3 2

4 A 1 3

5 A 2 1

6 A 1 3

7 B 2 3

8 B 1 3

9 A 3 2

10 B 2 2

11 B 3 1

12 A 2 3

13 B 3 2

14 A 3 2

15 A 1 3

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

Creating the Hash Key

• Goal: Demonstrate properties of hash signature HKEY.
• Use distinct key-values (ID,KEY) to create a test table MAP:

proc sql ;
create table Map as
select distinct ID, Key

, MD5 (catX (":", ID, Key)) as HKEY length=16 format=$hex32.
from Trans
order ID, Key ;

quit ;

Could be a View
• For the Map.
• For the data to be processed.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

Hash Function Signature Properties

• Test table MAP (hash digits of HKEY spaced for clarity)
• Notice: HKEY byte values have a random pattern
• Can pick a byte or combination of bytes for segmentation

ID KEY HKEY

A 1 1A A8 1A 75 62 B7 05 FB 67 79 65 5B 8E 40 7E E3

A 2 D6 B3 D7 E5 13 1F 54 1D DE F6 81 D8 AC C1 17 13

A 3 8E 1A 7B 2F 99 09 E6 3C B6 BC D2 2E 7D E8 AB 21

B 1 0E C9 E6 87 5E 4C 6E 67 02 E1 B8 18 13 A0 B7 0D

B 2 B3 0B E9 97 C4 A0 4C 08 09 C2 5D B6 D0 A0 D3 DC

B 3 0E 04 B1 C7 15 01 16 B3 35 E8 56 60 17 29 78 63

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

Converting a Signature Byte into Segments

1. Pick any byte from HKEY. For example, for byte #10:

HBYTE = char (HKEY, 10) ;

2. Obtain its rank in [0:255] range – either expression will work:

RANK = rank (HBYTE) ;
RANK = input (HBYTE, pib1.) ;

3. Use a formula to split the ranks into segments from 1 to N:

Segment = 1 + mod (RANK, N) ;

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

Segmentation Picture for file Trans

ID KEY HBYTE RANK SEGMENT

A 1 79 121 2

A 2 F6 246 1

A 3 BC 188 3

B 1 E1 255 1

B 2 C2 194 3

B 3 E8 232 2

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

Segmented Aggregation: All Together

%macro segAgg (N=, IN=, OUT=) ;
%let X = 1 + mod (rank (char (MD5 (catX (":",ID,Key)),10)), &N) ;
%do SEG = 1 %to &N ;
proc sql ;
create table segAgg as
select ID, Key, sum(Var) as SUM, count(distinct Var) as UCOUNT
from &IN (WHERE =(&X = &SEG)) group ID, Key ;

quit ;
proc append base=&out data=seg Agg ;
run ;

%end ;
%mend ;

%segAgg (N=3, IN=Trans, OUT=Agg)

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

Aggregation: Results

STRAIGHT SEGMENTED

ID KEY SUM UCOUNT ID KEY SUM UCOUNT Segment

A 1 9 1 A 2 4 2
1

A 2 4 2 B 1 3 1

A 3 4 1 A 1 9 1
2

B 1 3 1 B 3 5 2

B 2 8 3 A 3 4 1
3

B 3 5 2 B 2 8 3

• Same data. Only (ID,KEY) orders are different.
• Not a problem: Aggregate files’ keys are normally indexed.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

More Numerous/Diverse Keys

• File Trans is too small to see the effect of MD5 on segmentation uniformity.
• Let’s create a file with more numerous/diverse distinct keys (1,816 records):

%let N = 3 ; * Number of segments ;

%let W = 1 ; * Number of leftmost HKEY bytes ;

data ID_Key ;

do ID = "A","B","C","D" ;

do KEY = 1 to ceil (ranuni(1) * 1000) ;

format HKEY $hex32. ;

HKEY = md5 (catx (":", ID, KEY)) ;

RANK = input (HKEY, pib&W..) ;

Segment = 1 + mod (RANK, &N) ;

output ;

end ;

end ;

run ;

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

More Numerous, Diverse Keys (Cont’d)

• Frequency on Segment with W=1 and N=(3,4):

proc freq data=ID_KEY noprint ;
tables Segment / out=Segment_Freq ;

run ;

Segments: N=3 Segments: N=4

Segment 1 2 3 1 2 3 4

Count 606 610 600 451 456 452 457

Percent 33.4 33.6 33.0 24.8 25.1 24.9 25.2

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

Input Segmentation Works with Any Aggregation Method

• In our demo examples, SQL has been used as the aggregation method.
• Input segmentation concept applies to any aggregation method, such as: sort/control-

break, the SAS hash object, the MEANS procedure, etc.
• Just use your method as the core of macro %segAgg. E.g., for sort/control-break just

loop thru the segments as in the earlier SQL example:
proc sort data=&IN (WHERE=(&X = &SEG)) out=SEG ;
by ID Key Var ;

run ;
data SEG (drop=Var) ;
do until (last.Key) ;
set SEG ;
by ID Key Var ;
SUM = sum (SUM, Var) ;
UCOUNT = sum (UCOUNT, first.Var) ;

end ;
run ;

Count Distinct

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

Applicability

The concept of key-independent uniform segmentation works:
• Regardless of the input data nature
• Regardless of the industry

Such as:
• Point of Sale retail data
• Financial Transactions
• Insurance Claim Data
• Social Security Payments
• So on, and so forth

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

Choosing the Number of Segments N and HKEY bytes W

• N segments reduce the demand for resources (disk, memory) ~ N times.
• Each extra segment means an extra pass thru input, albeit via the WHERE clause.
• Hence, N has to be chosen judiciously in order to:

• Reduce resource usage in each pass to an acceptable level
• Avoid overtaxing the I/O with too many passes

• Opting for a single HKEY byte (W=1) allows for up to N=256 way split.
• W=2 allows for up to N=65,536 way split.
• You are never going to need nearly as many segments (and passes).
• Practically, you may want to select:

• W between 1 and 4
• N as a power of 2, i.e. N=2, 4, 8, 16, etc.
• The MOD formula will automatically handle the N-split regardless of W.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

Ensuring Unique Process-Key to HKEY Mapping

• Input segmentation works because the segments are key-independent, i.e. no key-
value in one segment is present in the other.

• Key-independence rests entirely on the one-to-one mapping between the process-
key, such as (ID,KEY), and hash signature HKEY.

• The process-key to HKEY mapping includes 2 separate stages:
• Concatenating all process-key components (let’s call the result CONCAT).
• Mapping of CONCAT to HKEY via a hash function.

• In order to make the mapping of process-key to HKEY unique:
• The concatenation must map the process-key to CONCAT as one-to-one.
• The hash function must map CONCAT to HKEY as one-to-one.

• Hence, no breach in one-to-one mapping is allowed at either stage.
• Let us consider the two stages from this standpoint, one at a time.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

Concatenation Uniqueness

• Two sources of non-uniqueness:
• CATX buffer length.
• Improper CATX delimiting.

• CATX buffer length:
• Is 200 by default. With long enough key-values, can result in truncation.
• Use LENGTH CONCAT $w or PUT (CATX(…),$w.) to set the proper buffer length.
• Choose it only as long as needed. Longer length = reduced execution speed.

• Improper CATX delimiting:
• Never fail to use a delimiter – i.e. use CATX, not CATS.
• Choose a delimiter different from the endpoints of any key component to avoid a

delimiter-endpoint conflation.
• Bulletproof: Surround each key component value 2 characters different from the

delimiter. (See the paper.)

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

Hash Function Uniqueness

MD5:
• This hash function (16-byte signature) has a “vulnerability”: In principle, it can map

two different arguments to the same signature (termed a collision).
• However, a 50% chance of getting an MD5 collision is 2**64≃2E+19, which means:

• To see one collision, MD5 must process 200 quintillion distinct arguments.
• Or, it must be executed 100 trillion times per second for 100 years.

• Practically speaking, an MD5 collision is never going to happen.

SHA256:
• This hash function (32-byte signature) has no known collisions.
• However, it executes about 20-40 times slower than MD5.
• Given the chance of an MD5 collision, using SHA256 for input segmentation is not

worth the “peace of mind” it supposedly offers.

Thank you!

Paul Dorman, Paul.Dorfman@gmail.com

Don Henderson, Don.Henderson@hcsbi.com

Or tag one/both of us on communities.sas.com

Paul: @hashman

Don: @donh

As others can also chime in.

mailto:Paul.Dorfman@gmail.com
mailto:Don.Henderson@hcsbi.com

