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Problem: Input Too Large for Resources

A. Get more resources:

1. Request more resources (disk, memory, etc.).

2. If not enough, request more.

3. Etc.

B. Divide-and-conquer:

1. Segment input into a number of smaller chunks.

2. Process each segment individually.

3. Add output from each process to the final result. 
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Process in Segments?

• Problem: Input too large to aggregate in a single pass

• Can it be done in multiple passes?

• Need final output the same as from a single pass, e.g.:
select ID, Key                      

, sum(Var) as SUM              

, count(distinct Var) as UCOUNT

from  Trans                        

group ID, Key

• The techniques presented will focus on aggregation. However they 
are applicable to other data management tasks like joining and 
sorting data tables. 

Count Distinct
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Segmented Aggregation: Need Key-Independent Segments

Criteria:

• Required: No key-value in one segment must be present in another.

• Desired: Nearly even number of unique key-values across all segments.

How to achieve:

• Based on a priori knowledge about the values of certain key components.
• Such information can be obtained from the business user, or prior analysis.

• It must be validated, which can be time consuming.

• Mapping the segments via a hash function – the focus of this presentation.
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Background
• Composite key-values in large inputs are diverse and numerous. 

• There exists some combination of their bits/bytes whose values split the distinct key-
values evenly according to some formula.

• Problem: We know neither the combination nor the formula.

Concept
• We don’t need to know!

• Instead, use a hash function to map the input key-values to a string HKEY in such a 
manner that:

1. Key-value -> HKEY mapping is highly random.

2. Each unique key-value maps to one, and only one unique value of HKEY.   

• Split the unique values of some part of HKEY into N more or less equal sets. 

• Use these N sets (e.g. in a WHERE clause) to split input into N segments.

Segmentation Based on a Hash Function: Concept
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Using a Hash Function

• Concatenate the key components (via a delimiter - later on that). 
• E.g., for our sample input file Trans:

Concat = catX (‘:’,  ID,  KEY) ;

• Pass the result to hash function MD5 to obtain its signature HKEY:

length HKEY $ 16 ; 
HKEY = MD5 (Concat) ;

Or just:
HKEY = put (MD5 (catX (‘:’,ID,KEY), $16.) ;

• Function SHA256 can be used instead of MD5 - later on that.  
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Our Sample Data Trans

Obs ID KEY VAR

1 B 2 1

2 B 2 2

3 B 3 2

4 A 1 3

5 A 2 1

6 A 1 3

7 B 2 3

8 B 1 3

9 A 3 2

10 B 2 2

11 B 3 1

12 A 2 3

13 B 3 2

14 A 3 2

15 A 1 3



SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of their respective companies.

Creating the Hash Key

• Goal: Demonstrate properties of hash signature HKEY.
• Use distinct key-values (ID,KEY) to create a test table MAP:

proc sql ;                                               
create table Map as                                    
select distinct ID, Key       

, MD5 (catX (":", ID, Key)) as HKEY length=16 format=$hex32.
from   Trans                                           
order  ID, Key ;                                       

quit ;

Could be a View
• For the Map.
• For the data to be processed.
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Hash Function Signature Properties

• Test table  MAP (hash digits of HKEY spaced for clarity)
• Notice: HKEY byte values have a random pattern
• Can pick a byte or combination of bytes for segmentation

ID KEY HKEY

A 1 1A A8 1A 75 62 B7 05 FB 67 79 65 5B 8E 40 7E E3

A 2 D6 B3 D7 E5 13 1F 54 1D DE F6 81 D8 AC C1 17 13

A 3 8E 1A 7B 2F 99 09 E6 3C B6 BC D2 2E 7D E8 AB 21

B 1 0E C9 E6 87 5E 4C 6E 67 02 E1 B8 18 13 A0 B7 0D

B 2 B3 0B E9 97 C4 A0 4C 08 09 C2 5D B6 D0 A0 D3 DC

B 3 0E 04 B1 C7 15 01 16 B3 35 E8 56 60 17 29 78 63
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Converting a Signature Byte into Segments

1. Pick any byte from HKEY. For example, for byte #10:

HBYTE = char (HKEY, 10) ;

2. Obtain its rank in [0:255] range – either expression will work:

RANK = rank (HBYTE) ;
RANK = input (HBYTE, pib1.) ;

3. Use a formula to split the ranks into segments from 1 to N:

Segment = 1 + mod (RANK, N) ;
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Segmentation Picture for file Trans

ID KEY HBYTE RANK SEGMENT

A 1 79 121 2

A 2 F6 246 1

A 3 BC 188 3

B 1 E1 255 1

B 2 C2 194 3

B 3 E8 232 2
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Segmented Aggregation: All Together

%macro segAgg (N=, IN=, OUT=) ;                                     
%let X = 1 + mod (rank (char (MD5 (catX (":",ID,Key)),10)), &N) ;       
%do SEG = 1 %to &N ;                                              
proc sql ;                                                       
create table segAgg as                                           
select ID, Key, sum(Var) as SUM, count(distinct Var) as UCOUNT
from   &IN (WHERE =(&X = &SEG )) group ID, Key ;                     

quit ;                                                           
proc append base=&out data=seg Agg ;
run ;                            

%end ;                                                            
%mend ;

%segAgg (N=3, IN=Trans, OUT=Agg)
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Aggregation: Results

STRAIGHT SEGMENTED

ID KEY SUM UCOUNT ID KEY SUM UCOUNT Segment

A 1 9 1 A 2 4 2
1

A 2 4 2 B 1 3 1

A 3 4 1 A 1 9 1
2

B 1 3 1 B 3 5 2

B 2 8 3 A 3 4 1
3

B 3 5 2 B 2 8 3

• Same data. Only (ID,KEY) orders are different. 
• Not a problem: Aggregate files’ keys are normally indexed.
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More Numerous/Diverse Keys

• File Trans is too small to see the effect of MD5 on segmentation uniformity.
• Let’s create a file with more numerous/diverse distinct keys (1,816 records):

%let N = 3 ; * Number of segments ;           

%let W = 1 ; * Number of leftmost HKEY bytes ;

data ID_Key ;                                 

do ID = "A","B","C","D" ;                   

do KEY = 1 to ceil (ranuni(1) * 1000) ;   

format HKEY $hex32. ;                   

HKEY = md5 (catx (":", ID, KEY)) ;      

RANK = input (HKEY, pib&W..) ;          

Segment = 1 + mod (RANK, &N) ;          

output ;                                

end ;                                     

end ;                                       

run ;
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More Numerous, Diverse Keys (Cont’d)

• Frequency on Segment with W=1 and N=(3,4):

proc freq data=ID_KEY noprint ;                      
tables Segment / out=Segment_Freq ;    

run ;

Segments: N=3 Segments: N=4 

Segment 1 2 3 1 2 3 4

Count 606 610 600 451 456 452 457

Percent 33.4 33.6 33.0 24.8 25.1 24.9 25.2
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Input Segmentation Works with Any Aggregation Method

• In our demo examples, SQL has been used as the aggregation method.
• Input segmentation concept applies to any aggregation method, such as: sort/control-

break, the SAS hash object, the MEANS procedure, etc. 
• Just use your method as the core of macro %segAgg. E.g., for sort/control-break just 

loop thru the segments as in the earlier SQL example:
proc sort data=&IN (WHERE=(&X = &SEG)) out=SEG ;
by ID Key Var ;    

run ;                           
data SEG (drop=Var) ;                           
do until (last.Key) ;                         
set SEG ;                                   
by ID Key Var ;                             
SUM = sum (SUM, Var) ;                      
UCOUNT = sum (UCOUNT, first.Var) ;          

end ;                                         
run ;

Count Distinct
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Applicability

The concept of key-independent uniform segmentation works:
• Regardless of the input data nature
• Regardless of the industry

Such as:
• Point of Sale retail data
• Financial Transactions
• Insurance Claim Data
• Social Security Payments 
• So on, and so forth
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Choosing the Number of Segments N and HKEY bytes W

• N segments reduce the demand for resources (disk, memory) ~ N times.
• Each extra segment means an extra pass thru input, albeit via the WHERE clause.
• Hence, N has to be chosen judiciously in order to:

• Reduce resource usage in each pass to an acceptable level
• Avoid overtaxing the I/O with too many passes

• Opting for a single HKEY byte (W=1) allows for up to N=256 way split.
• W=2 allows for up to N=65,536 way split.
• You are never going to need nearly as many segments (and passes).
• Practically, you may want to select:

• W between 1 and 4
• N as a power of 2, i.e. N=2, 4, 8, 16, etc.
• The MOD formula will automatically handle the N-split regardless of W. 
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Ensuring Unique Process-Key to HKEY Mapping

• Input segmentation works because the segments are key-independent, i.e. no key-
value in one segment is present in the other.

• Key-independence rests entirely on the one-to-one mapping between the process-
key, such as (ID,KEY), and hash signature HKEY. 

• The process-key to HKEY mapping includes 2 separate stages:
• Concatenating all process-key components (let’s call the result CONCAT).
• Mapping of CONCAT to HKEY via a hash function.

• In order to make the mapping of process-key to HKEY unique:
• The concatenation must map the process-key to CONCAT as one-to-one. 
• The hash function must map CONCAT to HKEY as one-to-one. 

• Hence, no breach in one-to-one mapping is allowed at either stage. 
• Let us consider the two stages from this standpoint, one at a time.
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Concatenation Uniqueness

• Two sources of non-uniqueness: 
• CATX buffer length. 
• Improper CATX delimiting.

• CATX  buffer length:
• Is 200 by default. With long enough key-values, can result in truncation.
• Use LENGTH CONCAT $w or PUT (CATX(…),$w.) to set the proper buffer length.    
• Choose it only as long as needed. Longer length = reduced execution speed.

• Improper CATX delimiting:
• Never fail to use a delimiter – i.e. use CATX, not CATS.
• Choose a delimiter different from the endpoints of any key component to avoid a 

delimiter-endpoint conflation.
• Bulletproof: Surround each key component value 2 characters different from the 

delimiter. (See the paper.) 
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Hash Function Uniqueness

MD5: 
• This hash function (16-byte signature) has a “vulnerability”: In principle, it can map 

two different arguments to the same signature (termed a collision). 
• However, a 50% chance of getting an MD5 collision is 2**64≃2E+19, which means: 

• To see one collision, MD5 must process 200 quintillion distinct arguments.
• Or, it must be executed 100 trillion times per second for 100 years. 

• Practically speaking, an MD5 collision is never going to happen. 

SHA256:
• This hash function (32-byte signature) has no known collisions.
• However, it executes about 20-40 times slower than MD5.
• Given the chance of an MD5 collision, using SHA256 for input segmentation is not 

worth the “peace of mind” it supposedly offers.  



Thank you!

Paul Dorman, Paul.Dorfman@gmail.com

Don Henderson, Don.Henderson@hcsbi.com

Or tag one/both of us on communities.sas.com

Paul: @hashman

Don: @donh

As others can also chime in.
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