
1

Uniform Hashing of Arbitrary Input Into Key-Exclusive Segments

Paul Dorfman, Independent Consultant
Don Henderson, Henderson Consulting Services, LLC

ABSTRACT

Aggregating or combining large data volumes can challenge computing resources. For example, the
process may be hindered by the system limits on utility space or memory and, as a result, either fail or run
too long to be useful. It is a natural inclination to try solving the problem by segregating the input records
into a number of smaller segments, processing them independently and combining the results. However,
in order for such a divide-and-conquer tactic to work, two seemingly contradictory criteria must be met:
First, to aggregate or combine the data correctly, no segment can share its key values with the rest; and
second, the segments must be more or less equal in size. In this presentation, we show how a hash
function can be used to achieve it for arbitrary input with no prior knowledge of the distribution of the key
values among its records. Effectively, the method renders any task of aggregating or combining data of
any size doable by splitting its input into a large enough number of segments. Such an approach can be
used to process the segments sequentially or in-parallel. The trade-off is the need to partially re-read the
data. However, it is a rather small price to pay for making a failing or endlessly running task finish on time.

INTRODUCTION

SAS programmers dealing with sizeable data are well familiar with hitting the brick wall of hardware
inadequate to cope with the data volume to be processed. The dinosaurs among us remember having to
maneuver between the Scylla of delivering data on time and Charybdis of sharing mainframe resources.
Though the modern machines aim to allay such worries, the growing data volumes and processing
demands have been keeping pace with the advances in hardware. As a result, we still run into tasks that
cannot be reasonably solved by merely throwing more hardware at them; moreover, the latter is not
always possible. Thus, nowadays, just as in the days of yore, programmers often seek their way around
hardware limitations via a divide-and-conquer approach.

One of the oldest and well-known tricks of this nature is sorting a file (for example, too large to be sorted
outright) by splitting it arbitrarily into a number of nearly equal segments, sort them independently, and
interleave the results. Other data processing tasks, such as aggregation and merging, can benefit from
split processing, too. However, in this case, the segmentation cannot be done arbitrarily, for in order to
get the correct final result, no key-value present in one segment must exist in any other. In this paper, we
aim to show how a one-way hash function (such as MD5 or SHA256), can be used to both (a) ensure that
this condition is met and (b) segment the input reasonably uniformly.

THE PLAN

We will proceed according to the following plan:

• Just to demonstrate the divide-and-conquer principle, consider an example of sorting a file by
arbitrarily splitting it into several segments, sorting them independently, and interleaving the results.

• Show that using a similar approach in order to aggregate a file by key is possible if it is segmented,
not arbitrarily, but into key-independent segments - in other words, in such a way that no two
segments share the same key-value.

• Discuss conditions under which the input can be split into key-independent segments uniformly, i.e.
with more or less the same number of unique key-values in each segment.

• Demonstrate that if such conditions are met, an otherwise arbitrary input can be split into both key-
independent and uniform segments by using a one-way hash function with no prior knowledge about
the distribution of input key-values.

• Show how to concatenate the components of a composite key for using it in the hash function

2

properly to avoid collisions - i.e., to ensure that different composite key-values map to distinct hash
function signatures.

SIMPLE SEGMENTED PROCESSING EXAMPLE: SPLIT SORTING

Let us consider a disordered data set TRANS below:

data Trans ;

 input ID $ KEY VAR ;

 cards ;

B 2 1

B 2 2

B 3 2

A 1 3

A 2 1

A 1 3

B 2 3

B 1 3

A 3 2

B 2 2

B 3 1

A 2 3

B 3 2

A 3 2

A 1 3

;

run ;

While the file is too miniscule to take advantage of input segmentation, it can be used to demonstrate its
principle. Imagine that it represents a severely scaled-down model of a really large file that cannot be
sorted head-on due to hardware inadequacies (such as insufficient sort work space, for example). One
long in the tooth way around the problem is to arbitrarily divide the file into N more or less equal segments
and proceed as follows:

1. Sort the first segment into a file forming the "base" of the future sorted file.

2. Sort the next segment and interleave the result with the "base" file.

3. Repeat #2 until the last segment has been processed.

For example, to sort our sample file Trans in this manner by splitting it into 3 equal segments, one could
code:

proc sort data=Trans(firstobs= 1 obs= 5) out=Srt; by ID Key; run;

proc sort data=Trans(firstobs= 6 obs=10) out=Seg; by ID Key; run;

data Srt; set Srt Seg; by ID Key; run;

proc sort data=Trans(firstobs=11 obs=15) out=Seg; by ID Key; run;

data Srt; set Srt Seg; by ID Key; run ;

This way, we need only enough sort work space to sort 1/N of the input file and store 1/N of it (file Seg) in
the WORK library. Of course, the method of N-splitting can be different, and the process can be
automated in a variety of ways by generating the needed SAS code (e.g. using a macro).

Note that for this particular task the segments can be chosen arbitrarily (and not necessarily the way it
was done above) because the correctness of the final result is ensured by the interleaving. However,
arbitrary segmentation will not work for data processing tasks whose partial results cannot be combined
by interleaving them. One of such tasks is data aggregation.

SEGMENTED AGGREGATION

3

Now imagine that the sample file Trans above represents a severely downscaled model a large
disordered file that needs to be aggregated. Suppose, for example, that we need to obtain the sum and
count of distinct values of VAR for each unique combination of the key-values (ID, KEY). So, we expect
the aggregated output to look like the result of the following query:

 proc sql ;

 create table aggregate as

 select ID, Key, sum(Var) as SUM, count(distinct Var) as UCOUNT

 from Trans

 group ID, Key

 ;

 quit ;

or any other equivalent aggregation technique, such as sort/control-break, aggregating by using the SAS
hash object, etc. In other words, we expect the content of the aggregated file to look as follows:

ID KEY SUM UCOUNT

A 1 9 1

A 2 4 2

A 3 4 1

B 1 3 1

B 2 8 3

B 3 5 2

Now suppose that the real file is so large that aggregating it head-on is impossible and we need to find a
workaround. Inspired by the input segmentation concept, we may ask if it is possible to apply it for data
aggregation just as we did for sorting. To wit, can we split the input file in more or less equal chunks,
aggregate them independently and combine the results?

Though in principle the answer is "yes", splitting the file arbitrarily will not work for data aggregation. It is
obvious from a cursory look at file Trans as segmented above for sorting:

Obs ID KEY VAR Segment

1 B 2 1

1

2 B 2 2

3 B 3 2

4 A 1 3

5 A 2 1

6 A 1 3

2

7 B 2 3

8 B 1 3

9 A 3 2

10 B 2 2

11 B 3 1

3

12 A 2 3

13 B 3 2

14 A 3 2

15 A 1 3

For example, taking the records with the key-value (ID,Key)=(B,2), we see that they are present in all
three segments. Hence, if we aggregate the segments independently and stack the results, we will have
three records with (ID,Key)=(B,2) in the output, whereas we need just one. Moreover, aggregating the
result again to get the keys collapsed to their unique values will work only for the additive statistic SUM;
but it will not work in the end for the non-additive statistic UCOUNT.

4

Apparently, for the split aggregation to work properly, we need to segment the file in such a way that a
given key-value is present in one, and only one, segment. The way to do it is to base the segmentation,
not on arbitrary grouping of the records, but on the key-values themselves. For example, we may notice
that in our sample file, the partial key-values Key=(1,2,3) are spread more or less uniformly throughout
the file. So, we may think of segmenting it as follows:

Obs ID KEY VAR Segment

4 A 1 3

1
6 A 1 3

8 B 1 3

15 A 1 3

1 B 2 1

2

2 B 2 2

5 A 2 1

7 B 2 3

10 B 2 2

12 A 2 3

3 B 3 2

3

9 A 3 2

11 B 3 1

13 B 3 2

14 A 3 2

Since with such a split any value of partial key Key belongs to one, and only one, segment, no composite
key-value (ID,Key) found in one segment is found in any other segment. Therefore, we can now
aggregate each segment independently and simply stack the partial results together. Below, it is done
against the sample file Trans by aggregating one segment at a time via SQL and appending the output to
the combined aggregate:

 proc sql;

 create table seg as

 select ID, Key, sum(Var) as SUM, count (distinct Var) as UCOUNT

 from trans where key=1 group ID, Key;

 quit;

 proc append base=agg data=seg; run;

 proc sql;

 create table seg as

 select ID, Key, sum(Var) as SUM, count (distinct Var) as UCOUNT

 from trans where key=2 group ID, Key;

 quit;

 proc append base=agg data=seg; run;

 proc sql;

 create table seg as

 select ID, Key, sum(Var) as SUM, count (distinct Var) as UCOUNT

 from trans where key=3 group ID, Key;

 quit;

 proc append base=agg data=seg; run;

Again, this repetitive process can be easily automated for any selected number of segments N using a
macro or another code-generating SAS tool.

The takeaway from this simple example is that we can take advantage of segmented processing for data
aggregation if we can use some part of the processing key in order to:

• Segment the input into key-independent groups of records to guarantee the correctness of the final
result. In other words, no key-values in any segment must be present in any other segment.

5

• Make the segments more or less equally sized to balance the processing workload for each segment
approximately evenly.

SEGMENTATION BASED ON KNOWN KEY PROPERTIES

In our simple aggregation example, we were able to satisfy both segmentation criteria because we knew
ahead of time how the values of Key are distributed across the input file. Sometimes similar favorable
situations happen in the real data processing world as well. Namely, we may already know that the data
set to be aggregated contains a partial key - or part of it - whose values have been purposely spread
approximately evenly across the data collection when it was created. For example:

• A specific position in a retail customer ID number contains a digit whose values from 0 to 9 are known
to be distributed evenly across the customer population.

• The values of some key have been created randomly.

• The frequency of key values distribution are available from an already done analysis.

In all such instances, we can merely rely on the known key properties to achieve the key-independent
and even segmentation, just as it was done in the aggregation example above.

SEGMENTATION WHEN KEY PROPERTIES ARE UNKNOWN

Most of the time, we do not know which keys and how can be used to achieve key-independent and even
segmentation. In principle, an attempt could be made to discover it by performing data analysis on the
input keys. However, it takes time and guarantees no success, since we do not know a priori which partial
keys (or their combinations thereof to look for). This is exacerbated by the fact that real-world large files
likely to benefit from segmented aggregation contain multi-component, high-cardinality composite keys.

On the other hand, this very fact also virtually guarantees that there exists some condition, perhaps
involving multiple partial keys, that could be used to segment the file as required if we knew what it is.
The problem is that we do not.

It raises the question: Assuming that the input can be segmented key-independently and evenly, can it be
done simply and inexpensively in a "blind" manner, i.e. without any prior knowledge of the key distribution
properties? Fortunately, the answer to this question is "yes".

THE CONCEPT

The idea behind the "blind" segmentation is based on random deterministic mapping. To wit:

• Map each key-value of the processing key to alternate, highly random, variable (let us call it HKey,
say). In the case of our sample file Trans, it would mean mapping (ID,Key)->Hkey.

• Ensure that each unique key-value of the processing key corresponds to one, and only one unique
value of the mapping variable. That is, the distinct key-values of (ID,Key) must have one-to-one
relationship with the respective distinct values of HKey.

• Use the values of some part of Hkey (e.g., of one of its bytes) grouped into N more or less equal sets
or ranges to split the input into N segments.

In order to implement this plan, we need a reasonably fast mapping function that can satisfy the
requirements listed above. Luckily, SAS has two such functions in its arsenal: MD5 and SHA256.

ONE-WAY HASH FUNCTION TO THE RESCUE

In this paper, we will concentrate on using the MD5 function for input segmentation. (The SHA256
function can be used in the same exact manner with certain distinctions we will briefly discuss near the
end.) Let us use an example to see how the MD5 function will map the distinct values of (ID, Key) from
our sample file Trans to its mapping variable Hkey:

 proc sql ;

 create table Map as

 select distinct ID, Key

6

 , MD5 (catx (":", ID, Key)) as Hkey length=16 format=$hex32.

 from Trans

 order ID, Key ;

 quit ;

The expression for HKey, above, does the following:

• Concatenates the component keys ID and Key, separating the values by a colon (more on it later).

• Feeds the result into the function MD5. The function generates a character string called "hash
signature". Its first 16 bytes are non-blank, and the rest are blank. We are interested only in the non-
blank part, hence length=16. (The $hex32. format is used to visualize its characters, some of which
may be unprintable.)

The output looks as follows (note that in the table below, the hex digits of Hkey are spaced apart
artificially for better visual discernability):

ID KEY Hkey

A 1 1A A8 1A 75 62 B7 05 FB 67 79 65 5B 8E 40 7E E3

A 2 D6 B3 D7 E5 13 1F 54 1D DE F6 81 D8 AC C1 17 13

A 3 8E 1A 7B 2F 99 09 E6 3C B6 BC D2 2E 7D E8 AB 21

B 1 0E C9 E6 87 5E 4C 6E 67 02 E1 B8 18 13 A0 B7 0D

B 2 B3 0B E9 97 C4 A0 4C 08 09 C2 5D B6 D0 A0 D3 DC

B 3 0E 04 B1 C7 15 01 16 B3 35 E8 56 60 17 29 78 63

A cursory look at the table reveals that there is no regular pattern in the distribution of the values of any
particular byte of HKey: Because the signature of the hash function MD5 is random, its bytes are random
as well. Hence, if we use any of them (or their combination thereof) to separate the key-values of (ID,Key)
into a number of segments, we can expect the segments to be similar in size, even though no a priori
knowledge about the actual key-values of (ID, Key) is used to achieve it.

Segmenting the input evenly is one reason to use a hash function such as MD5. Another, even more
important, reason is that it provides for splitting the key-values of (ID,Key) into key-independent
segments, i.e. segments mutually exclusive of one another with respect to the key-values they contain. It
is made possibleby the one-to-one relationship between the distinct values of (ID,Key) and those of the
hash signature HKey. To understand how, suppose that for any fixed part of HKey (such as a specific
byte; let us name it HKeyPart, say), we have picked two different values. These values of HKeyPart
correspond to (a) two different sets of key-values of (ID,Key) and (b) different values of HKey as a whole.
But because of the one-to-one relationship between HKey and (ID,Key), different values of HKey cannot
be related to the same key-value of (ID,Key). Therefore, a key-value present in one set cannot be present
in the other. Q.E.D.

As a corollary, the key-values in any two segments will be also mutually exclusive if we base one
segment on a number of HKeyPart values and base the other on a number of different HKeyPart values.

SEGMENTATION NUTS AND BOLTS

Since the values of every byte of the hash signature HKey is equally random, the simplest way to select a
byte from HKey and work with its values; let us call it just Hbyte. A obvious head-on approach is to break
the characters in the collating sequence into N_segments (non-overlapping) ranges by their hexadecimal
values and then select the segment depending on the range into which the hex value of Hbyte happens to
fall. For example, for N_segments=3, we can segment based on the following range logic:

 proc format; invalue seg "00"x-"55"x=1 "56"x-"AA"x=2 other=3; run ;

and then define the expression for the segment to be used in the WHERE clause thus:

input (Hbyte, seg.)

7

This way, the three ranges will have 86, 85, and 85 values, respectively. However, this approach requires
hard coding that needs to be changed depending on the number of segments. Though it can be remedied
programmatically, it is much more convenient to base the segregation process, not on the actual
character values of Hbyte, but on their respective numeric positions in the collating sequence, i.e. on their
ranks.

This can be done in a variety of ways. However, all of them are based on the fact that a value of any byte
in HKey is a single character represented by its rank in the collating sequence, i.e. by a specific integer
from 0 to 255. In other words, any character value is in effect nothing more than an equivalent of a 256-
radix number. In SAS, this rank is returned by either the RANK function or by the PIBw informat, so that
for any single character Hbyte, its rank is determined by either of the expressions:

 rank = rank (Hbyte) ;

 rank = input (HByte, pib1.) ;

(As we will see later, the functionality of the PIBw informat is somewhat richer than that of the RANK
function.) Let us apply one of the formulae above to one of the bytes of HKey - for example, the 10th:

 data Map_rank10 ;

 set Map ;

 Rank = input (char (HKey, 10), pib1.) ;

 run ;

As a result, we will get the following picture:

ID KEY Hkey Rank

A 1 1A A8 1A 75 62 B7 05 FB 67 79 65 5B 8E 40 7E E3 121

A 2 D6 B3 D7 E5 13 1F 54 1D DE F6 81 D8 AC C1 17 13 246

A 3 8E 1A 7B 2F 99 09 E6 3C B6 BC D2 2E 7D E8 AB 21 188

B 1 0E C9 E6 87 5E 4C 6E 67 02 E1 B8 18 13 A0 B7 0D 225

B 2 B3 0B E9 97 C4 A0 4C 08 09 C2 5D B6 D0 A0 D3 DC 194

B 3 0E 04 B1 C7 15 01 16 B3 35 E8 56 60 17 29 78 63 232

Now we need some method of turning the ranks into the value ranges. One simple way of doing so is to
obtain the remainder of the division of Rank by the required number of N_segments. For N_segments=3:

 data Map_rank10_segment ;

 set Map ;

 Rank = input (char (HKey, 10), pib1.) ;

 Segment = 1 + mod (Rank, 3) ;

 run ;

The unity is added to the response of the MOD function merely to get the values of Segment in the range
of 1-3 instead of 0-2. Now the step generates the following output:

ID KEY Hkey Rank Segment

A 1 1A A8 1A 75 62 B7 05 FB 67 79 65 5B 8E 40 7E E3 121 2

A 2 D6 B3 D7 E5 13 1F 54 1D DE F6 81 D8 AC C1 17 13 246 1

A 3 8E 1A 7B 2F 99 09 E6 3C B6 BC D2 2E 7D E8 AB 21 188 3

B 1 0E C9 E6 87 5E 4C 6E 67 02 E1 B8 18 13 A0 B7 0D 225 1

B 2 B3 0B E9 97 C4 A0 4C 08 09 C2 5D B6 D0 A0 D3 DC 194 3

B 3 0E 04 B1 C7 15 01 16 B3 35 E8 56 60 17 29 78 63 232 2

Now we can nest it all together and code segmented aggregation thus:

 %let N_segments = 3 ;

 %let X = 1+mod(input(char(MD5(catx(":",ID,Key)),10),pib1.),&N_segments) ;

 proc sql;

8

 create table seg as

 select ID, Key, sum(Var) as SUM, count (distinct Var) as UCOUNT

 from trans where &X=1 group ID, Key;

 quit;

 proc append base=agg data=seg; run;

 proc sql;

 create table seg as

 select ID, Key, sum(Var) as SUM, count (distinct Var) as UCOUNT

 from trans where &X=2 group ID, Key;

 quit;

 proc append base=agg data=seg; run;

 proc sql;

 create table seg as

 select ID, Key, sum(Var) as SUM, count (distinct Var) as UCOUNT

 from trans where &X=3 group ID, Key;

 quit;

 proc append base=agg data=seg; run;

As we have noted above, this type of repetitive code can be automated based on N_segments as a
parameter - for example, by using a simple macro (which can be further parameterized if desired):

 %macro agg (in=, out=, N_segments=) ;

 %local X seg ;

 %let X=1+mod(input(char(MD5(catx(":",ID,Key)),10),pib1.),&N_segments) ;

 %do seg = 1 %to &N_segments ;

 proc sql;

 create table seg as

 select ID, Key, sum(Var) as SUM, count (distinct Var) as UCOUNT

 from &in where &X = &seg group ID, Key;

 quit;

 proc append base=&out data=seg; run;

 %end ;

 %mend ;

 %agg (in=Trans, out=Agg, N_segments=3)

Depending on the method chosen for aggregation and programmer's personal preferences, other code-
assembling methods can be used as well.

Note that we do not have to write out any interim files containing the computed values of HKey, Rank, or
Segment - above, they have been used just for the sake of illustrating the concept. Rather, we simply
calculate the nested expression X to obtain the values of Segment entirely on the fly.

Also note that we did not have to select the 10th byte of HKey to do the segregation. The only reason we
have chosen it above is that with our small sample file Trans, it provides for better illustration of the
concept, splitting the key-values into the 3 segments most uniformly. With so few distinct input keys to
work with, If a different byte were picked, the distribution could miss a segment or get more skewed.
However, this is a mere side effect of the small number of input keys: we just do not have enough for the
randomness of the hash function to fully manifest itself in every byte of HKey. As we will see in the next
section, in the situations more closely resembling real life, choosing a particular Hkey byte on which to
base the segmentation is irrelevant.

SIZE MATTERS

Resorting to the input segmentation techniques described in this paper makes sense under the
circumstances where a frontal, single-pass attack fails due to the input data volume. In turn, it means
dealing with large input data and multi-component, high-cardinality keys involved in the process. Let us
see what happens with the distribution of the HKey and Segment values when the distinct input data keys
are sufficiently numerous and diverse. To do so, we will:

9

Generate a moderately sized set of composite keys (ID,Key) with a random number of distinct ID values
for each value of Key.

• Apply the segmentation process described above to each key (ID,Key).

• Observe how many distinct (ID,Key) key-values fall into each segment.

First, let us divide the keys into 3 segments, as we did above, and select the first (i.e. leftmost) byte of
HKey as the segmentation base:

%let N_segments = 3 ; * Number of segments ;

%let N_bytes = 1 ; * Number of leftmost HKey bytes ;

data ID_Key ;

 do ID = "A","B","C","D" ;

 do Key = 1 to ceil (ranuni(1) * 1000) ;

 format HKey $hex32. ;

 HKey = md5 (catx (":", ID, Key)) ;

 Rank = input (HKey, pib&N_bytes..) ;

 Segment = 1 + mod (Rank, &N_segments) ;

 output ;

 end ;

 end ;

run ;

proc freq data = ID_key noprint ;

 tables Segment / out = Freq_&N_segments&N_bytes ;

run ;

The FREQ procedure generates the following output:

Segment COUNT PERCENT

1 606 33.37

2 610 33.59

3 600 33.04

As we see, if the keys are sufficiently numerous and diverse, basing the segments just on the first byte of
the hash function signature spreads the key-values among the segments extremely evenly. Moreover, we
do not have to rummage around the actual key-values of (ID,Key) looking for some condition to provide
for a uniform distribution. Note that the split is very even in spite of the fact that the number of distinct
keys in the file is negligibly small compared to real-life, big-file cases. Furthermore, running a frequency
on the Rank variable reveals that even with such a limited number of input keys (1816, to be exact), the
ranks of the first byte of HKey more or less evenly hit every single collating sequence position from 0 to
255, i.e. every single character from "00"x to "FF"x.

HOW MANY BYTES?

An alert reader could ask why then bother with any other byte of HKey or involve more than this single
byte into the segmentation process by specifying N_bytes greater than 1. It is a very good question; and
the answer is that most of the time, it is indeed unnecessary. However, sometimes, depending on the
input, including more than the first leftmost byte of HKey in the process may result in still more even
distribution. For example, if for the same set of keys we specified N_bytes=3 and reran the program, we
would get a slightly better distribution:

Segment COUNT PERCENT

1 606 33.37

2 606 33.37

3 604 33.26

10

Practically speaking, of course, it would not have any significant impact on aggregation performance. But
just in case the reader would like to experiment with different combinations of N_segments and N_bytes,
it should be noted that:

• The PIBw informat (where the width w above is dictated by the value of N_bytes) automatically
selects the first w bytes of HKey, so there is no need to use the SUBSTR function before the informat
is applied.

• N_bytes, i.e. the PIB width w, should not exceed 6, for otherwise the response of the INPUT function
can exceed the integer precision of the SAS numeric expression. This is because the largest integer
returned by PIBw equals to (256**w)-1. Besides, the shorter the informat width w, the faster the
INPUT function executes.

HOW MANY SEGMENTS?

Depending on the enormity of your input, you may of course elect to split it into more than 3 segments
and thus trade more than 2 extra passes through the input data for the ability to get the job ultimately
done. In principle, even using just the first byte of HKey can provide for splitting the input into up to 256
key-independent segments. Using two bytes of Hkey can provide for 256**2-way splitting, and so forth.

However, it is hard to imagine that splitting the input in so many segments could be practically necessary,
no matter how huge the input could be. Though splitting it into a greater number of smaller segments
reduces the resources needed to process each segment roughly proportionally to N_segments, each
extra segment also means another pass through the input file. Thus, the number of segments needs to be
chosen judiciously to (a) make each segment small enough for the system resources to be able to handle
its processing and (b) avoid overtaxing the system with unnecessary extra I/O.

For example, if the aggregation is done using the hash object, the most significant resource hurdle to
overcome is its memory footprint dictated by the need to ultimately store in memory all unique values of
(ID,Key), which is necessary to calculate the "count distinct" statistic. If it required, say, 256G of RAM,
while we had only 64G available, choosing N_segments=8 could be a reasonable compromise because it
would reduce the memory footprint needed to process one segment to 32G at the expense of 8 passes
through the data. In addition, the cost of the increased I/O is somewhat mitigated by using the WHERE
clause to subset the input data for each particular segment.

SEGMENTATION PROCESSING: RECAP

If you need to aggregate data so large that it does not yield to a frontal attack, it can be divided-and-
conquered by splitting the input into a number of nearly equal key-independent segments without any a
priori knowledge about the key-values involved in aggregation in the following manner:

1. Select the number of segments, N_segments, in such a way that the system resources can
comfortably deal with processing 1/N_segments of the input. The trade-off is N_segments passes
through the data using the WHERE clause to subset it for each specific segment.

2. Concatenate the processing key components and pass the result to the MD5 function to obtain its
signature, HKey.

3. Select up to 6 leftmost bytes of Hkey. In most cases, the first byte alone will more than suffice. Due to
the randomness of HKey, it does not matter which HKey bytes to use, so using the leftmost ones is
just simpler (and faster).

4. Calculate the numeric equivalent (denoted above as Rank) of the combined character value of the
selected bytes. Regardless of the number of bytes chosen, the PIBw informat (with the width w equal
to the number of selected bytes) will return the value of Rank in one fell swoop.

5. Create a numeric expression returning a value of Segment from 1 to N_segments depending on Rank
and N_segments. It can be done in a number of ways, including an informat, the MOD functions, etc.

6. Compose an expression (let us call it X) combining all of the above.

7. Process the first segment as you would process the unsegmented input by letting WHERE X=1 and
append the result to a file you want to hold the final aggregated result. Then process the second

11

segment in the same manner by letting WHERE X=2, and so forth until all segments have been
processed.

Note that once the hash signature has been obtained, there are many ways to segregate the input limited
only by the creativity of the programmer. For example, if you have decided to use a single byte of HKey
(say, the leftmost), you may:

• Elect to eschew the calculation of Rank altogether and act directly upon the character values of the
byte.

• Use the $HEX1 informat to extract the first half of the byte, which is wide enough for a 16-way split.

• Use the BITSw informat instead of the PIB1 informat to obtain the numeric equivalent (the Rank
variable, above) of the desired number of w leftmost bits. Thus, one can choose w=1 (good for up to a
2-way split), w=2 (4-way), w=3 (8-way), and so on till w=8 (256-way). It may come in handy if one
should decide to split the input exactly into 2, 4, 8, etc. segments, because in this case, Rank can be
used directly as Segment without the need to compute it in the item #5 above.

Let your imagination fly.

DOES THE AGGREGATION METHOD MATTER?

Not as far as the input segmentation concept is concerned. Using it to make the available system
resources sufficient for processing each separate segment works regardless of the technique chosen to
aggregate the data. Although above, the concept was illustrated by using the SQL procedure, it would
work just the same if the data aggregation were done using a different technique, such as the sort/control-
break, the SAS hash object, the MEANS procedure (except that the latter cannot calculate the "count
distinct" statistic), etc.

For instance, if we wanted to aggregate using the sort/control-break method instead of SQL, we would
only have to replace the SQL step in macro SEGMENT above with the following, leaving everything else
intact:

 proc sort data = &in (where=(&X = &i)) out=seg ;

 by ID Key Var ;

 run ;

 data seg (drop=Var) ;

 do until (last.Key) ;

 set seg ;

 by ID Key Var ;

 SUM = sum (SUM, Var) ;

 UCOUNT = sum (UCOUNT, first.Var) ;

 end ;

 run ;

Now it is only natural to ask whether data aggregation is the only data processing task, to which this
divide-and-conquer paradigm is applicable. The answer is: But of course not; any task where processing
is done by a key can benefit from key-independent uniform segmentation if its input is too large for taking
on it head-on. Merging (aka joining) data is another typical example.

SEGMENTED MERGE/JOIN

At this point, we already have in our arsenal all the tools do perform any merge/join using input
segmentation in the same manner as we have done it with data aggregation. To illustrate how it can be
done, let us create another small sample file in addition to file Trans:

 data Extra ;

 input ID:$1. Key Extra:$2. ;

 cards ;

 B 2 E6

 A 0 E0

12

 B 1 E2

 A 1 E3

 B 3 E4

 B 7 E7

 A 2 E1

 A 3 E5

 ;

 run ;

Suppose that we want to equi-join file Trans with file Extra by (ID,Key). Using a head-on SQL approach,
we could code:

 proc sql ;

 create table Join as

 select trans.ID, trans.Key, trans.Var, extra.Extra

 from Trans, Extra

 where trans.ID = extra.ID and trans.Key = extra.Key ;

 quit ;

Expectedly, the output, where the non-matching rows are eliminated (equi-join), will look as follows:

ID KEY VAR EXTRA

B 2 1 E6

B 2 2 E6

B 3 2 E4

A 1 3 E3

A 2 1 E1

A 1 3 E3

B 2 3 E6

B 1 3 E2

A 3 2 E5

B 2 2 E6

B 3 1 E4

A 2 3 E1

B 3 2 E4

A 3 2 E5

A 1 3 E3

Let us assume, as we have done before, that files Trans and Extra are merely severely scaled-down
counterparts of two real files with many more observations and variables, too large to yield to the single-
pass frontal attack approach above. Furthermore, suppose that if we split the processing in 2 independent
segments (and hence 2 passes through each side of the join), we would have enough resources to attain
the goal. The plan is simple:

1. Segregate Trans into 2 key-independent uniform segments using the hash function.

2. Use exactly the same algorithm to split Extra into 2 segments.

3. Join segment 1 of Trans to segment 1 of Extra. Add the result to the initially empty final joined file.

4. Join segment 2 of Trans to segment 2 of Extra. Add the result to the final joined file.

Since we already have all the nuts and bolts of the algorithm from the aggregation section, we can
proceed directly to macro coding:

 %macro join (in=, out=, N_segments=) ;
 %local X seg ;

 %let X=1+mod(input(MD5(catx(':',ID,Key)),pib1.),&N_segments) ;

 %do seg = 1 %to &N_segments ;

13

 proc sql ;

 create table seg as

 select trans.ID, trans.Key, trans.Var, extra.Extra

 from Trans (where=(&X = &seg))

 , Extra (where=(&X = &seg))

 where trans.ID = extra.ID and trans.Key = extra.Key ;

 quit ;

 proc append base=&out data=seg; run;

 %end ;

 %mend ;

 %join (in=Trans, out=Join, N_segments=2)

Again, as in the case of data aggregation, the segmentation process is independent from the particular
method used to execute the join. For example, if we decided to use the SAS hash object to join the files,
we could merely replace the entire SQL step with the following DATA step:

 data seg ;
 if _n_ = 1 then do ;

 if 0 then set Extra (keep=Extra) ;

 dcl hash h (dataset:"Extra(where=(&X=&seg))", multidata:"Y") ;

 h.defineKey ("ID", "Key") ;

 h.defineData ("Extra") ;

 h.defineDone () ;

 end ;

 set Trans (where=(&X=&seg)) ;

 if h.find() = 0 ;

 run ;

Regardless of the joining method, the segregation process remains the same: Join every segment of
Trans to the corresponding segment of Extra. Note that because the segmentation is key-independent
and done identically in both files, the algorithm is valid since only the key-values in the corresponding
segments of Trans and Extra can possibly match.

ENSURING ONE-TO-ONE KEYS-TO-SIGNATURE MAPPING

As explained above, the fundamental premise on which the key independence of the segmentation
process rests is the strict one-to-one correspondence between the key-values of the original processing
key, such as (ID,Key), and the values of the hash function signature HKey. In order to achieve it, two
conditions must be met:

1. The hash function itself must pair any value of its argument to a distinct value of its signature related
to this, and only this, argument value.

2. The response of the function used to concatenate the components of a composite processing key,
such as CATX, must correspond to one, and only one, key-value of any given composite key.

Let us consider these two conditions separately.

HASH FUNCTION MAPPING

A big fuss has been made of the fact that under some very esoteric circumstances and with a big deal of
computing effort, the MD5 function can be in principle forced to return the same signature for two distinct
values of its argument. Such an event is termed a collision. Based on this fact, the function has been
declared "unsafe" by puritans of cryptographic rigor (particularly those who believe in the inviolability of
Murphy's law). However, let us take a step back and examine what it means from the standpoint of real-
world data processing we, the SAS programmers, have to deal with.

In the worst case scenario, the approximate number of distinct arguments that need to be hashed to get a
50 percent chance of an MD5 collision is about 2**64≃2E+19. It means that to encounter just 1 collision,
the MD5 function has to be executed against 200 quintillion distinct arguments, i.e. approximately 1 trillion
times per second for 100 years. To put it into common sense perspective, the lifetime odds of being

14

struck by a meteorite is 1 in 1.6E+6 (one in 1.6 million), i.e. about 2 trillion times greater. Practically
speaking, it means that in the data processing world such as that we are dealing with here, an MD5
collision will never occur.

If after this logical excursion you are still worried about getting a MD5 collision and a resulting data
processing inaccuracy, the SHA256 hash function can be used instead. This function is known to be free
of collisions even theoretically. For our purposes, it work exactly the same as MD5, except that its hash
signature non-blank length is $32, and so the length of HKey should be sized accordingly; for example:

 format HKey $hex64. ;

 HKey = sha256 (catx (":", ID, Key)) ;

So, if SHA256 is bulletproof, why not do away with MD5 and use SHA256 instead at all times? The
answer is that SHA256 is much slower to execute. How much slower? Here is a table showing what
happens when both MD5 and SHA256 are executed 1 million times each on the X64_7PRO platform
against the same non-blank arguments of various lengths:

Argument Length SHA256 Time MD5 Time SHA256 to MD5 Speed Ratio

2 7.53 0.25 1:30

4 7.13 0.29 1:25

8 7.36 0.20 1:37

16 6.76 0.19 1:36

32 7.14 0.19 1:38

64 7.91 0.39 1:20

Since our goal here is improving performance, in our opinion using SHA256 instead of MD5 for the sake
of preventing an infinitesimally small chance of collision at the expense of dramatically poorer
performance makes no practicable sense.

CONCATENATION MAPPING

If our processing key is composite, such as the (ID,Key) above, its components need to be concatenated
before they are passed as an argument to the hash function. The mapping of the composite key-value to
the concatenated value must be strictly one-to-one; otherwise, the one-to-one mapping of the composite
key-value to the hash signature will be compromised. There are two reasons why two distinct composite
key-values can end up being mapped to the same concatenated value:

• The CATX buffer length is shorter than the actual concatenated value.

• The value of a partial key component being concatenated begins or ends with the same character as
the concatenation delimiter (i.e. the value of the first CATX argument).

Let us look at these two possible issues and the methods of addressing them separately.

Insufficient CATX Buffer Length

If we do not size the length of the CATX expression (otherwise termed the length of the CATX buffer)
beforehand and leave it to the finction's own devices, the buffer length is set to the default value of 200. If
the total length of the concatenated value, including the delimiters, should exceed 200, its characters
beyond 200 will be truncated. In this case, if two concatenated values are the same all the way up to the
200th position and differ only in the positions 201 and above, the truncation will chop the discriminating
part of the value off. As a result, two distinct composite key-values will map to the same concatenated
value. Therefore, in order to avoid that, we must make sure that the CATX buffer length is sufficiently
longer than 200 to hold the concatenated value without truncating it.

If, on the other hand, we do size the CATX buffer ahead of time, we must ensure, once again, than its
length is sufficient to hold the concatenated value without truncation. There are two ways to set the CATX
buffer length.

First, we can create a separate appropriately sized character variable and assign the response of the
CATX function to it, then pass the variable to the hash function. For example, if the composite key

15

consists of N components K1-Kn and it has been determined that their summary concatenated length
(including the delimiters between them) will not exceed 256, then:

 length _catx $ 256 HKey $ 16 ;

 drop _catx ;

 _catx = catx (':', K1, K2, ... , Kn) ;

 HKey = MD5 (_catx) ;

Alternatively, with the aid of the $w format, it can be done without using _catx and/or prior sizing of HKey:

 HKey = put (put (catx (':', K1, K2, ... , Kn), $256.), $16.) ;

A propos, this entire expression can be passed directly to the segmentation expression without assigning
it to HKey first.

There may arise a well-understood temptation to avoid determining how much buffer length is actually
needed and cover all the bases by setting the CATX buffer length to the maximum of $32767. However, it
is not a good idea because the time needed to execute the CATX function (or any of its feline siblings) is
proportional, not to the length of the actual concatenated value, but to the buffer length. For instance, if
we execute two expressions:

 c1 = put (catx (':', "A", "B"), $64.) ;

 c2 = put (catx (':', "A", "B"), $32767.) ;

enough times to detect the difference, we will see that it will be at least 1:20. Thus, it pays to invest some
time into figuring out the shortest buffer length long enough to prevent any concatenated values from
being truncated. This is all the more true that in most cases, it can be determined programmatically by
using the metadata related to the key components being concatenated.

Delimiters and Endpoints Conflation

The desire to eliminate concatenation collisions is the very reason a delimiter is used to separated the
concatenated key components. Indeed, suppose that we have a 2-component composite key with two
different composite key-values ("A1","B") and ("A","1B"). If we then concatenate the components of each
without a delimiter, such as by using the expressions:

 catS ("A1", "B") = "A1B"

 catS ("A", "1B") = "A1B"

then both will result in the same concatenated value "A1B", thus producing a collision. However, if we use
a delimiter, for example, a colon, then each will map to its unique concatenated value:

 catX (':', "A1", "B") = "A1:B"

 catX (':', "A", "1B") = "A:1B"

Great, is it not? Yes, it is - except in the case when the endpoints of the values being concatenated may
contain the same character as the delimiter itself, for example:

 catX (':', "A:", "B") = "A::B"

 catX (':', "A", ":B") = "A::B"

So, using a delimiter in and by itself by no means guarantees one-to-one mapping. Of course, if you know
that the keys in your data never contain some specific character, it can be used safely. For example, in
our sample files Trans and Extra the colon character, ':' is not part of any key-value, which is why it could
be used with impunity.

However, as it happens in the real world, virtually any character can be part of some key-value's
endpoint. Does it mean that there is no way to avoid mapping collisions, no matter what delimiter is used?

Fortunately, there is a way around this seemingly crippling limitation. To see what it is, note that it is only
the endpoint characters that cause the problem. Hence, if, for each concatenated component, we forcibly
create new endpoints different from the delimiter, we can eliminate the issue altogether. Namely, before
concatenating the components, we can always surround each of them with a character (or characters)

16

different from the delimiter. For instance, let us surround each component in the example above with a
pair of parentheses:

 catX (':', '('||"A:"||')', '('|| "B"||')') = "(A:):(B)"

 catX (':', '('||"A" ||')', '('||":B"||')') = "(A):(:B)"

This way, the concatenation mapping will be always one-to-one, as long as the delimiter and the
surrounding characters are different, since it guarantees that no newly created endpoint character is the
same as the delimiter character. Moreover, the surrounding characters do not even have to be different
from one another like the parentheses above. In fact, the same character can be used on both sides as
long as it is not the same as the delimiter. Programmatically, such surrounding can be done in a variety of
ways, which we leave to the reader's creativity and imagination.

CONCLUSION

The subject of this paper did not originate from theorizing about "what happens if your input data are so
big that ...". Rather, it is a result of a practical attempt on part of the authors to solve a real-world data
aggregation problem for a client whose data were too large to yield to a frontal SQL attack and, to some
degree, even to the power of the SAS hash object. The authors hope that the technique presented in the
paper may one day save it for someone trying to get the job done when the data volume and the nature of
the task, on one hand, and the available machine resources, on the other hand, seem to be at
irreconcilable odds.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Paul Dorfman
Proprietor, Dorfman Consulting
4437 Summer Walk Ct
Jacksonville, FL 32258
904-260-6509
sashole@gmail.com

Don Henderson
Henderson Consulting Services, LLC
3470 Olney-Laytonsville Road, Suite 199
Olney, MD 20832
Work phone: (301) 570-5530
Fax: (301) 576-3781
Email: Don.Henderson@hcsbi.com
Web: http://www.hcsbi.com
Blog: http://hcsbi.blogspot.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://www.hcsbi.com/
http://hcsbi.blogspot.com/

17

